編按:本文選自《離開太陽系》第七章:機器人上太空。今日的機器其實是過度美化的機器——它們能執行特定且反覆的有限任務,卻無法勝任涉及基本知識的複雜工作。過去數十年來,電腦運算能力每 18 個月就翻倍成長,我們能懷抱怎樣的期待?
來到某個階段,我們應該會不得不指望由機器接手控制。
──英國計算機科學家亞倫.圖靈(Alan Turing)
倘若如此遙不可及的事會在接下來一兩百年內發生,我大概會非常驚訝。
──美國跨學科研究者道格拉斯.侯世達(Douglas Hofstadter)
DARPA 挑戰賽:製作可以清理核災高輻射現場的機器人
二○一三年,隸屬美國國防部、負責網路基礎建置工作的「高級研究計畫局」(Defense Advanced Research Projects Agency,DARPA)向全球科學家下戰帖:為二○一一年發生三座核電廠爐心熔毀的日本福島縣設計機器人,清理輻射外洩造成的嚴重混亂。電廠殘骸的輻射殘留極強烈,工作人員在致命輻射區待個幾分鐘就得離開,導致清理作業嚴重落後。據官方估計,該輻射汙染區至少得花三十至四十年才能清理完畢,作業成本高達一千八百億美元。
如果科學家有辦法做出毋須人類介入、能自動清理垃圾與廢棄物的機器人,無疑也可視為打造外星用自動機(協助打造月球基地或火星移居地)的第一步,即使在高輻射環境工作也不怕。
DARPA 意識到,日本福島縣會是應用最新 AI 技術的理想場所,於是決定推出獎金三百五十萬美元的「 DARPA 機器人挑戰」,徵選可執行基礎清理任務的機器人。(事實證明上一屆的 DARPA 挑戰賽極為成功,順利為開發「無人駕駛車輛」做好暖身工作。)這場競賽無疑也是完美的公共論壇,得以宣揚 AI 領域的相關進展。經過多年過度讚譽和誇大宣傳,此刻該是秀出真本事的時候了。世人將親眼目睹,機器人有能力執行較不適合人類處理的重要工作。
DARPA 訂下的規則不多,但意義明確:若想贏得大獎,機器人必須執行八項簡單任務,包括駕車、移除廢棄物、開門、關閉滲漏閥門、組接消防水喉及水帶、旋開或關閉閥門等。來自世界各地的文章條目湧入論壇,競相爭取榮耀和優渥獎酬。然而競賽結果並未順利開啟 AI 新紀元,倒是留下略嫌難堪的局面:
參賽者多數無法完成任務,有些甚至直接在鏡頭前失敗出糗。
經過這次挑戰賽,顯示 AI 的複雜程度可能比「由上往下」的設計概念還要複雜許多。
機器不像人腦具有神經網路,所以無法學習
某些 AI 研究人員已徹底揚棄由上往下法,改為「由下往上」(bottom-up),選擇模仿大自然。這套替代策略或能另闢蹊徑,有希望造出能在外太空作業的機器人。出了 AI 實驗室,這類精細複雜的全能自動機其實處處可見,遠勝過人類目前設計過功能最強大的作品。這種全能自動機叫「動物」。小不嚨咚的蟑螂在森林裡熟門熟路、動作靈巧地鑽來竄去,尋找食物和交配對象。相較之下,咱們身形龐大、動作笨拙的機器人在行進期間,有時不小心還會刮破壁紙呢。
六十年前,達特茅斯研討會在理論推定上的潛在瑕疵,至今仍是 AI 領域揮之不去的陰影。人腦不是數位電腦。人腦不跑主程式、不跑子程式,沒有中央處理器也沒有晶片組,更不需要程式碼。若移除電腦的某顆電晶體,電腦大概就掛了,然而人類就算切掉半顆大腦,大腦還是能設法運作。
大自然實現運算奇蹟的方式是將大腦設計成一套神經網絡,一部學習機器。各位的筆記型電腦永遠不可能學習,今天的它跟昨天、跟去年一樣,沒有長進。但人腦不同。人腦在學習任何事物之後,理論上都會「重組」一遍,這也就是娃娃在還沒學習任何語言之前只會咿咿呀呀、我們在學會騎單車之前只能歪歪倒倒或急轉急煞之故。
神經網絡依循「赫布定律」(Hebb’s rule),藉由「持續重複」來改善功能。赫布定律言明:
你執行某項工作的次數越多,與這項工作有關的神經傳導路徑就會使用得越頻繁,達到加強效果。
在神經科學領域中,有句話是這麼說的:「同時受激發的神經元亦彼此相連。」(Neurons that fire together wire together.)各位或許聽過一則老笑話,「『卡內基廳』怎麼去?」神經網絡解讀後回答:「練習、練習、再練習。」
舉例來說,常登山健行的人都曉得,假如某條山徑被踩得亂七八糟,就表示一定有很多人走過這條路,那麼這條路很可能就是最好的選擇。正確的途徑每使用一次就會強化一次。同樣的,你越常從事某項行為,和這項行為有關的神經路徑也會越頻繁受到強化。
這套概念非常重要,因為具學習能力的機器無疑是太空探索的關鍵要素。機器人將會在外太空持續遭遇全新、不斷變化的危險挑戰,被迫跟當今科學家設想不到的意外場景短兵相接。若只為機器人安裝應付固定緊急事件的處理程式,機器人將毫無用處,因為命運會扔給它一堆無法預料的難題。比方說,老鼠身上不可能預載能應付所有局面的基因密碼,因為牠一輩子要面對的狀況無法勝數,但牠的基因卻是有限的。
假設火星某基地遭到流星雨襲擊,造成許多建物損毀。這時,配備神經網絡的機器人就能一邊處理這類意外狀況、一邊學習,並且越做越好。反觀傳統的「由上往下設計」型機器人,屆時大概只會癱在原地,無力應付意料之外的緊急狀況。
目標是打造具有學習能力的機器人
羅尼.布魯克斯(Rodney Brooks)將許多這類新概念導入研究。羅尼是麻省理工學院著名的「人工智慧實驗室」前實驗室主任。在訪談期間,他曾讚嘆像蚊子這麼簡單的小東西(那顆顯微等級的小腦袋少說也有上萬神經元),都能毫不費力在三維空間飛行,但我們卻得用無數複雜的電腦程式控制一具只會走路的機器人,而且還可能走得跌跌撞撞、蹣跚踉蹌。羅尼用他研發的「機器蟲」(bugbots)和「類昆蟲」(insectoids)率先開闢一條新路徑。透過學習,這兩種自動機都能像六腳昆蟲般移動。起初牠們總是摔個四腳朝天,不過每次嘗試都有進步、越走越好,漸漸能像真的昆蟲一樣順暢調控六隻腳。
這套將神經網路置入電腦的過程稱為「深度學習」(deep learning)。隨著這項科技逐漸發展,極可能在許多產業引發重大革新。在不久的將來,若您想看醫生、找律師,只消對著智慧牆或智慧腕錶下達「找(機器)醫師」或「找(機器)律師」的指令,程式軟體會立刻上網搜尋,提供語音醫療或語音法律服務。這類程式會透過重複的問題持續磨練學習,回答得越來越好──或甚至先發制人,滿足你的特殊需求。
深度學習也可能主導太空全能自動機的發展方向。未來數十年內,人類可能結合「由上往下」及「由下往上」兩套方式,初期先為機器人植入部分基本知識,但機器人也能利用神經網絡運作學習。它們將與人類一樣能透過經驗學習,直至精通「模式識別」和「運用常識」,終而能在三維空間內移動工具、掌控新情勢。不論在火星或整個太陽系、或甚至其他系外星球上,這群機器人都將成為建造、維持外星移居地不可或缺的重要角色。
未來,科學家也會針對各種特殊任務而設計不同的機器人。機器人可以像蛇一樣,學習在下水道系統內游泳,尋找滲漏或破損處。超級強壯的機器人則學習在建築工地負責所有重物搬運工作。飛行機器人的外型可能像鳥,它們要學的是調查與分析外星地貌。學會探勘地下熔岩通道的機器人可能外型像蜘蛛,因為這種多足生物能十分平穩地越過起伏不平的地面。還有,負責在火星冰帽提供遊歷探險服務的機器人,造型大概會像智慧型雪橇機車。至於必須潛入歐羅巴海洋採集樣本的機器人,說不定會設計成章魚的模樣。
為了探索外太空,機器人必須要能從兩方面學習:一是向隨時、隨機接觸的環境學習,二是吸收直接取得的資訊。
不過,倘若我們希望機器人能靠自己獨力建構整座城市,那麼 AI 領域就算發展到前述這種進階等級,可能還是不夠用。看來,打造「有複製能力」、並且具有「自我意識」的全能自動機,或許才是機器人這門科學的終極挑戰吧。
本文摘自《離開太陽系:移民火星、超人類誕生到星際旅行,探索物理學家眼中的未來世界》,2018 年 12 月,時報出版