0

123
6

文字

分享

0
123
6

愛因斯坦是第一個發現狹義相對論的物理學家嗎?

賴昭正_96
・2022/10/21 ・7324字 ・閱讀時間約 15 分鐘

  • 文|賴昭正/前清大化學系教授、系主任、所長;合創科學月刊

自從數學家入侵(狹義)相對論後,我自己也搞不懂了。
——愛因斯坦(Albert Einstein),1921 年諾貝爾物理獎得主

在「畢業求職碰壁,在伯爾尼專利局思索的愛因斯坦」裡,筆者提到了 1905 年愛因斯坦在專利局一口氣寫了五篇諾貝爾獎級的論文,投到德國名雜誌《物理年鑑》(Annalen der Physik),創造了理論物理界的一個「奇蹟年」。愛因斯坦曾希望他在《物理年鑑》這傑出期刊上的大量論文能夠讓他擺脫默默無聞的三流專利審查員,獲得一些學術認可,甚至找到一份學術工作;但是事與願違,反應卻是非常冷淡。

正在絕望之際,愛因斯坦於 1906 年 3 月突然收到了一位物理學家的反應;令他驚奇的是:這位物理學家竟然不是別人,而是當時歐洲受人尊敬的理論物理學大師普朗克(Max Planck)!

馬克斯.普朗克(Max Planck)。圖/維基百科

普朗克寫信告訴他說那篇題爲「關於運動物體的電動力學」(Zur Elektrodynamik bewegter Körper)論文「立即引起了我的熱烈關注」。在該論文出版後,普朗克立即在柏林大學講授相對論!由於他的影響,這個理論很快在德國被廣泛接受,並公開地為愛因斯坦理論辯護,反對一波又一波的懷疑論者,終於使這篇完全改變牛頓之時空觀念的論文與量子力學一起開創了近代物理學(詳見「除了發現量子力學,普朗克還有第二個重大發現是什麼?」)。

可是愛因斯坦真的是首位發現狹義相對論的物理學家嗎?

馬克斯威方程式:用簡單的公式解釋電磁學

在「近代物理的先驅:馬克斯威」裡,筆者提到曾被評選為有史以來第三大物理學家馬克斯威用簡潔數學方程式闡釋了當時已知的電磁現象。從那些簡潔的方程式中,他看出了原來的安培定律只適用於穩定的電流情況,因此人為地加進去一個現在稱為「位移電流」(displacement current)的項目!此「位移電流」不但解決了時變電場如何產生(誘導)磁場的問題(安培—馬克斯威定律),也讓馬克斯威看出電、磁本是一家人的對稱關係,使他成為第一位統合了自然界兩種不同作用力的科學家!也就是這一項令他在 1865 年導出電磁波的存在,並證明光事實上就是一種電磁波!

-----廣告,請繼續往下閱讀-----
詹姆士.克拉克.馬克士威(James Clerk Maxwell)。圖/維基百科

這現在所謂的「馬克斯威方程式(Maxwell′s Equations)」事實上有一個很大的問題:與具有 300 多年歷史之牛頓力學衝突!在牛頓力學裡,速度是「相對」的;但馬克斯威方程式中卻包含與光源運動無關的「定值」光速(讀者注意到沒:牛頓第二定律公式只含加速度、沒有速度)!因此儘管後者在解釋電磁現象的成功是無可置疑的,不少理論物理學家還是想修正它使其能容於牛頓力學;其中最著名的就是眾所皆知的:認為空間充滿了絕對靜止的「以太」,「光速為定值」就是相對於這一固定的「以太」而言——這不但解決了光速問題,還使電磁波有個「機械」的基礎(像聲波需要靠空氣來傳播)。

於是實驗物理學家開始設計各種實驗來偵測這一「以太」或者地球在這一「以太」中的運動速度;不幸的是各種實驗都是空手而歸:偵測不到地球在「以太」中的運動速度(其中最著名的就是 1887 年之麥可森—莫利(Albert Michelson and Edward Morley)實驗)。於是理論物理學家就開始尋找各種理論來解釋這些失敗的原因……。

其中「最簡單的解釋」是:馬克斯威方程式適用於在「以太」中做等速運動的任何慣性系統(inertial frame)——稱為「相對性原理」(principle of relativity)。

相對性原理——伽利略

法國數學、物理、工程、哲學家龐加萊(Henri Poincaré)於 1904 年將「相對性原理」定義為:根據該原理,物理現象的定律無論是對於固定的觀察者,或等速平移運動的觀察者,都應該是相同的;所以我們沒有、也不可能有任何方法來辨別我們是否正在做這樣的運動。

-----廣告,請繼續往下閱讀-----

事實上早在 1632 年,伽利略(Galileo Galilei)在「關於兩個主要世界系統的對話」(Dialogue Concerning the Two Chief World Systems)中,即已明確地闡述這一原理。正是因為這一個原理,所以我們沒有感覺到地球自轉及圍繞太陽運行(加速不夠快,所以大約是一個慣性系統);因此不管你什麼時候在台北或北京做實驗,所得到的結果或定律都應該是一樣的。

伽利略.伽利萊(Galileo Galilei)圖/維基百科

到了 19 世紀末、20 世紀初,物理學家已經完全接受這一原理。在數學上,他們謂牛頓力學定律必須符合「伽利略坐標轉換」(Galilean transformation)公式:物理定律不應因從甲坐標轉換到另一慣性系統之乙坐標而改變。馬克斯威方程式不符合這一坐標轉移,因此上面所提到的「最簡單的解釋」顯然不對!所以光速為定值還是一個謎。

洛倫茲與龐加萊

洛倫茲(Hendrik Lorentz, 1902 年諾貝爾物理獎得主)毫無疑問是十九世紀下半葉和二十世紀上半葉最偉大的物理學家之一。由於測不出地球在以太中的運動,洛倫茲提出理論謂:設備通過以太時,可能導致設備在運動方向上沿其長度方向收縮(空間收縮)。他進一步假設運動系統的「局部虛擬」時間[註1]也必須相應地改變(時間膨脹),導出了馬克斯威方程式必須符合的「洛倫茲(坐標)轉換」(Lorentz transformation)公式。

事實上龐加萊在 1898 年時即已意識到:「科學家必須將光速的恆定性作為一個假設,才能為物理理論提供最簡單的形式。」在相對性原理或洛倫茲轉換的物理解釋,龐加萊的貢獻至少比愛因斯坦早了 5 年;而在其它方面,他們的許多貢獻則可以說是同時發生的:例如不少科學家認為龐加萊 1905 年 6 月在法國科學院所宣讀的「關於電子動力學(Sur la dynamique de l’électron)」)刪節版,似乎「預見」了愛因斯坦 1905 年的相對論。

-----廣告,請繼續往下閱讀-----
朱爾·亨利.龐加萊(法語:Jules Henri Poincaré) 圖/維基百科

愛因斯坦

1905 年,愛因斯坦在題為「關於運動物體的電動力學」的論文引言裡,開宗明義地謂「不要爭辯」光速了:

我們建議將「相對性原理」這個猜想(conjecture)提升到一個公設(postulate)的地位,並引入另一個表面上與前者不調和(irreconcilable)的公設,即光是在真空中的傳播速率為一與發射體運動狀態無關的定值 c[註2]。 這兩個假設足以(讓我們)透過適用於靜止物體(狀態)之馬克斯威理論,導出一個簡單且不矛盾(consistent)的電動力學理論。

然後開始討論「運動學」,以光在任何等速坐標中都相同為出發點,用簡單的數學討論同時性的定義、關於長度和時間的相對性、從一個固定系統到另一個系統的時間與空間之坐標轉換理論、運動剛體和運動時鐘方程的物理意義、及速度的組成(相對運動的速度相加)。在這一章節裡愛因斯坦不需任何極端近似,就能推導出「洛倫茲轉換方程式」、時間膨脹(time dilation)、「洛倫茲—傅玆久拉空間收縮」Lorentz-FitzGerald contraction)等等學物理的都耳熟能詳想的的觀念。

第二章「電動部分」所用的數學就複雜多了。愛因斯坦在這裡將新的空間和時間理論應用於馬克斯威電動力學,證明電場與磁場是一物的兩面,因運動者的觀點而不同;馬克斯威實際上是遵循慣性運動的相對性原理:但因為我們一直認為空間和時間具有牛頓性質,而不是狹義相對論,故我們沒有注意到它而已。

狹義相對論的關鍵是同時性的相對性,只有在相對運動速度很小的情況下,牛頓的絕對時間和空間觀念才能(近似地)適用。所以原來是牛頓力學,而不是「馬克斯威方程式」錯了!所以愛因斯坦在該論文的最後一節裡「修正」牛頓第 2 運動定律,得到電子[註3]的動能:

-----廣告,請繼續往下閱讀-----

式中 v 為電子的運動速度,m0 為電子的質量。愛因斯坦只指出「(所以)大於光速的速度……,沒有存在的可能性」[註4]

所以,到底是誰發現相對論?

德國物理學家郭夫曼(Walter Kaufmann)可能是第一個注意到愛因斯坦這篇論文之一的人:1905 年,他比較了洛倫茲和愛因斯坦的理論,謂大部分的物理學家可能會較喜歡後者的方法,但他認為這兩種理論在觀察上是等價的,因此他把相對性原理稱為「洛倫茲—愛因斯坦理論」。

這算是客氣的了!1953 年,英國數學、物理、歷史學家魏達克爾(Edmund Whittaker)爵士在總體評價上是正面的「以太和電理論史」(A History of the Theories of Aether and Electricity)一書中聲稱:相對論是龐加萊和洛倫茲的創造,愛因斯坦的貢獻並不大。

「以太和電理論史」(A History of the Theories of Aether and Electricity)一書出版於 1910 年。圖/維基百科

事實上我們應該放棄優先權的無意義爭論,探討不同方法之間的異同才能看出愛因斯坦的貢獻。愛因斯坦徹底消除了在物理學中沒有任何作用的以太,以光在任何等速坐標中都相同為出發點,探討了「同時」、空間、和時間的相對性。相比之下,龐加萊認為以太是一種定義了「真實」空間和時間的特殊參考系統,其它框架中測量的空間和時間則只是「表面的」。 愛因斯坦從他的兩個假設,用最少的數學知識,導出了當時需要幾個極端近似的洛倫茲轉換式;而龐加萊則因這樣的轉換可使馬克斯威方程式保持不變,而「被動地」反向導出這些轉換。愛因斯坦的論文不是因為要解釋實驗結果而東拼西湊出來的,它是「從公理開始,然後從中進行推論……」的美麗又簡單的理論。從他的假設中準確地推導出了當時需要幾個極端近似才能得到的結果。

-----廣告,請繼續往下閱讀-----

洛倫茲在十年後終於完全意識到他自己的論點和愛因斯坦的論點之間的區別,謂「如果我現在必須寫最後一章,我當然應該給愛因斯坦的相對論一個更突出的位置……。(他的)運動電磁現象理論系統具有我無法達到的簡單性。」儘管如此,洛倫茲(1853~1928)從未接受愛因斯坦的相對論觀點——這讓愛因斯坦非常傷心,因為洛倫茲是他最敬佩的四位物理學家之一(其他三位是伽利略、牛頓、馬克斯威)。

愛因斯坦與洛倫茲於 1921 年的合影。圖/維基百科

閔可夫斯基時空

愛因斯坦在那篇論文裡一共提了 15 次的「空間」,但從來沒有將它和「時間」連在一起,所以他當時應該沒想到在他的新運動學裡,空間和時間處於完全相同地位。將時間和空間組合成一個現在稱為「閔可夫斯基時空(Minkowski space或spacetime)」之嶄新觀念的功勞歸於他在蘇黎世聯邦理工學院就讀時的數學老師閔可夫斯基(Hermann Minkowski)。這一新觀點奠定了相對論的數學基礎,完成了近代物理學家所熟悉之(狹義)相對論形式[註5]

愛因斯坦在理工學院就讀時,常常表現出一副無所不知的態度,不但很少注意閔可夫斯基的課,也常翹課,因此閔可夫斯基稱他為「懶狗 (lazy dog)」。愛因斯坦發表相對論後,閔可夫斯基評論道「我真不敢相信他能做到」。而愛因斯坦則一開始就反對閔可夫斯基所提之時空為一體的新觀念;在他第一次聽到它時甚至貶低它,謂那是「多餘的博學」,並抱怨「自從數學家入侵相對論後,我自己也搞不懂了」!誰又想到如果不是這一新觀念及其數學,他後來的廣義相對論將永遠發展不出來!

1908 年 9 月 21 日,閔可夫斯基(已經被挖角到德國哥廷根大學)在第 80 屆德國自然科學家和醫師大會上的演講謂:

-----廣告,請繼續往下閱讀-----

……,擺在你們面前的空間和時間觀是從實驗物理學的土壤中產生的,因此蘊含著它們的力量。它們是革命性的(radical)。 從此,空間本身和時間本身注定要消逝於虛無之中,唯有兩者的某種結合才能保持獨立的現實。

在閔可夫斯基時空裡,單獨的空間和時間都不再是絕對的,而是因觀察者的運動狀態而異;但一體的時空則還是絕對的(詳見「牛頓的水桶」),比如所有觀察者測量得到的「兩點時空之距離」都是相同的。

有兩件事似乎說明了閔可夫斯基獨立地得出了愛因斯坦的狹義相對論和時空概念:

  1. 閔可夫斯基不可能那麼快的就於 1908 年報告、並發表 59 頁的成熟四維時空物理學,其內容充分地顯示了他對所有實驗都未能檢測到相對於絕對空間之均勻運動的原因有最深刻的理解;
  2. 他的學生玻恩(Max Born,1954 年諾貝爾物理獎得主)的回憶也證實閔可夫斯基獨立地在思考平面時空物理學。玻恩回憶說:在 1905 年初夏的一次內部研討會上,閔可夫斯基「偶爾提到」他的時空研究;「(但)因為他希望先弄清楚其所有輝煌的數學結構,因此沒有(提早)發表它們」,而讓愛因斯坦搶得先機。」

結論

從上面的分析看來,愛因斯坦那篇文章所討論到的幾乎都「古已有之」[註7];因此像普朗克波思(Satyendra Bose)一樣,愛因斯坦可能根本沒想到該篇電動力學論文是「革命性的」。知己莫若己,1905 年,在寫給好友哈比希特(Conrad Habicht)的信中,他只說「第一篇涉及輻射和光的能量特性,非常具有革命性:……第四篇論文現在還只是一個粗略的草稿,它是對時空理論進行修改之運動體的電動力學。」以「馬後砲」之明來看,第一篇光量子的假設只是量子力學發展中(或許是很重要)的一個螺絲而已,但第四篇相對論則是一下子推翻了三百多年古典物理中的時空觀念,讀者說那個具有革命性呢?所以愛因斯坦真的知道他發現了革命性的相對論嗎?

愛因斯坦解釋廣義相對論的手稿。圖/維基百科

後記

1915 年,愛因斯坦又發表了後來讓他一夜成名的廣義相對論,改寫了牛頓萬有引力理論;但也好事多磨,曾發生與非常傑出的數學物理學家、閔可夫斯基好友希爾伯特(David Hilbert)[註6]爭吵發現廣義相對論之頭銜。愛因斯坦也沒有因廣義相對論而獲得諾貝爾獎;他之獲得諾貝爾獎主要還是因他那自認為「非常具有革命性」的論文。

-----廣告,請繼續往下閱讀-----

爭論如此之多,愛因斯坦為什麼要發表相對論呢?知己莫若己,且聽他道來:「我有時會問自己,我是如何發展相對論的。我認為其原因是:一個正常的成年人從不去思考空間和時間的問題——這些都是他小時候就想到的;但我的智力發育遲緩,因此長大後才開始思考空間和時間。」什麼?愛因斯坦發育遲緩?怪不得筆者曾為文謂愛因斯坦其實沒那麼神?反觀筆者自己,小時候從沒想過空間和時間,長大後也只知「生活空間」及「善用時間」而已,真是白痴一個!

註解

  1. 在愛因斯坦發表相對論之前,一般物理學家都認為只有一個絕對的時間。
  2. 愛因斯坦從來沒有說明為什麼要第二個光速為定值的假設,因為這似乎是多餘的:如果馬克斯威理論謂光速在一(靜態)體系內為 c,那麼依照第一個「相對性原理」的假設,在任何其它慣性坐標體系內的光速不應也是 c 麼?在網絡上有許多猜測與討論,但筆者認為是因為當時馬克斯威理論尚不容於古典之故。又,光速是一個實驗可以測出來的物理量,怎麼可以「假設」呢?
  3. 因為可以假設物體帶有非常微量的電荷,所以愛因斯坦大膽地認為其結論適用於「所有物體」。
  4. 當電子的運動速度比光速小多時,該公式就得回牛頓的動能公式。該公式暗示電子的質量會因運動而增加,因此在網路上可以看到許多誤認為該文提出了「質能相等」的觀念(洛倫茲等人也早就「暗示」了)。事實上愛因斯坦在該文中從未提及這些字眼;而在幾個月後又發表了一篇短文,從該公式推導出「物體的質量是其能量含量的量度:如果能量變化為 L,則質量在相同意義上的變化為 L/c2」,但也沒提及「質能相等」的觀念——儘管如此,物理學家還是將提出 E=mc2 的功勞歸於愛因斯坦(詳見「愛因斯坦其實沒那麼神?」)。這篇短文事實上一開始就在邏輯上受到批評,而第一位批評的不是別人,竟然正是「發掘」他的普朗克!
  5. 正像波爾(Niels Bohr)等人在普朗克及愛因斯坦之後完成了近代物理的量子力學一樣(詳見《量子的故事》)。
  6. 正是他將閔可夫斯基挖角到德國哥廷根大學,使得該校成為當時全世界之數學物理學重鎮。可惜閔可夫斯基英年早逝,1909 年元月,正當相對論起飛時死於急性盲腸炎,時年才 45 歲。
  7. 不少物理學家及歷史學家都認為如果要發諾貝爾相對論獎,則除了愛因斯坦外,也應該包括洛倫茲及龐加萊。

延伸閱讀

文章難易度
賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

4
1

文字

分享

0
4
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

0

3
1

文字

分享

0
3
1
快速通道與無盡地界:科幻作品裡的黑洞——《超次元.聖戰.多重宇宙》
2046出版
・2024/02/08 ・4430字 ・閱讀時間約 9 分鐘

星際捷徑

一個無底深淵怎能成為星際飛行的捷徑呢?原來按照愛因斯坦的理論,黑洞是一個時空曲率趨於無限大——也就是說,時空本身已「閉合」起來的區域。但往後的計算顯示,若收縮的星體質量足夠大的話,時空在閉合到某一程度之後,會有重新開敞的可能,而被吸入的物體,將可以重現於宇宙之中。只是,這個「宇宙」已不再是我們原先出發的宇宙,而是另一個宇宙、另一個時空(姑毋論這是甚麼意思)。按照這一推論,黑洞的存在,可能形成一條時空的甬道(稱為「愛因斯坦-羅森橋接」),將兩個本來互不相干的宇宙連接起來。

這種匪夷所思的推論固然可以成為極佳的科幻素材,但對於克服在我們這個宇宙中的星際距離,則似乎幫助不大。然而,一些科學家指出,愛因斯坦所謂的另一個宇宙,很可能只是這一宇宙之內的別的區域。如果是的話,太空船便可由太空的某處飛進一個黑洞之內,然後在遠處的一個「白洞」(white hole)那兒走出來,其間無須經歷遙遠的星際距離。把黑洞和白洞連結起來的時空甬道,人們形象地稱之為「蛆洞」、「蛀洞」或「蟲洞」(wormhole)。

科幻作品裡常以穿越蟲洞作為星際旅行的快速通道。圖/envato

「蛆洞」是否標誌著未來星際旅行的「捷徑」呢?不少科幻創作正以此為題材。其中最著名的,是《星艦奇航記》第三輯《太空站深空 9 號》(Deep Space Nine, 1993-1999),在劇集裡,人類發現了一個遠古外星文明遺留下來的「蛆洞」,於是在旁邊建起了一個龐大的星際補給站,成為了星際航運的聚散地,而眾多精彩的故事便在這個太空站內展開。

我方才說「最著名」,其實只限於《星艦》迷而言。對於普羅大眾,對於「蛆洞」作為星際航行手段的認識,大多數來自二○一四年的電影《星際效應》(Interstellar,港譯:《星際啟示錄》),其間人類不但透過蛆洞去到宇宙深處尋找「地球 2.0」(因為地球環境已大幅崩壞),男主角更穿越時空回到過去,目睹多年前與年幼女兒生離死別的一幕。電影中既有大膽的科學想像,也有感人的父女之情,打動了不少觀眾。大家可能有所不知的是,導演基斯杜化.諾蘭(Christopher Nolan, 1970-)邀請了知名的黑洞物理學基普.索恩(Kip Thorne, 1940-)作顧問,所以其中所展示的壯觀黑洞景象,可不是憑空杜撰而是有科學根據的呢!

-----廣告,請繼續往下閱讀-----
星際效應裡的黑洞景象。圖/wikimedia

那麼蛆洞是否就是人類進行星際探險的寄託所在呢?

然而事情並非這麼簡單。我們不要忘記,黑洞的周圍是一個十分強大的引力場,而且越接近黑洞,引力的強度越大,以至任何物體在靠近它時,較為接近黑洞的一端所感受到的引力,與較為遠離黑洞的一端所感受到的,將有很大的差別。這種引力的差別形成了一股強大之極的「潮汐張力」(tidal strain),足以把最堅固的太空船(不要說在內的船員)也撕得粉碎。

潮汐張力的危險不獨限於黑洞,方才提及的中子星,其附近亦有很強的潮汐力。 拉瑞.尼文(Larry Niven, 1938-,港譯:拉利.尼雲)於一九六六年所寫的短篇〈中子星〉(Neutron Star),正以這一危險作為故事的題材。

尤有甚者,即使太空船能抵受極大的潮汐力,在黑洞的中央是一個時空曲率趨於無限,因此引力也趨於無限的時空「奇點」(singularity)。太空船未從白洞重現於正常的時空,必已在「奇點」之上撞得粉碎,星際旅程於是變了死亡旅程。

然而,往後的研究顯示,以上的描述只適用於一個靜止的、沒有旋轉的黑洞,亦即「史瓦西解」所描述的黑洞。可是在宇宙的眾多天體中,絕大部分都具有自轉。按此推論,一般黑洞也應具有旋轉運動才是。要照顧到黑洞自旋的「場方程解」,可比單是描述靜止黑洞的史瓦西解複雜得多。直至一九六三年,透過了紐西蘭數學家羅伊・卡爾(Roy Kerr, 1934-)的突破性工作,人類才首次得以窺探一個旋轉黑洞周圍的時空幾何特性。

-----廣告,請繼續往下閱讀-----
圖/envato

旋轉的黑洞

科學家對「卡爾解」(The Kerr solution)的研究越深入,發現令人驚異的時空特性也越多。其中一點最重要的是:黑洞中的奇點不是一個點,而是一個環狀的區域。即只要我們避免從赤道的平面進入黑洞,理論上我們可以毋須遇上無限大的時空曲率,便可穿越黑洞而從它的「另一端」走出來。

不用說,旋轉黑洞(也就是說,自然界中大部分的黑洞)立即成為科幻小說作家的最新寵兒。

一九七五年,喬.哈德曼(Joe Haldeman,1943-)在他的得獎作品《永無休止的戰爭》(The Forever War, 1974)之中,正利用了快速旋轉的黑洞(在書中稱為「塌陷體」——collapsar)作用星際飛行——以及星際戰爭得以體現的途徑。

由於黑洞在宇宙中的分佈未必最方便於人類的星際探險計劃,一位科學作家阿德里安.倍里(Adrian Berry,1937-2016)更突發奇想,在他那充滿想像的科普著作《鐵的太陽》(The Iron Sun, 1977)之中,提出了由人工製造黑洞以作為星際轉運站的大膽構思。

-----廣告,請繼續往下閱讀-----

要特別提出的一點是,飛越旋轉黑洞雖可避免在奇點上撞得粉碎,卻並不表示太空船及船上的人無須抵受極強大的潮汐力。如何能確保船及船員在黑洞之旅中安然無恙,是大部分作家都只有輕輕略過的一項難題。

此外,按照理論顯示,即使太空船能安然穿越黑洞,出來後所處的宇宙,將不是我們原先出發的那個宇宙;而就算是同一個宇宙,也很可能處於遙遠的過去或未來的某一刻。要使這種旅程成為可靠的星際飛行手段,科幻作家唯有假設人類未來對黑洞的認識甚至駕馭,必已達到一個我們今天無法想像的水平。

然而,除了作為星際飛行途徑,黑洞本身也是一個怪異得可以的地方,因此也是一個很好的科幻素材。黑洞周圍最奇妙的一個時空特徵,就是任何事物——包括光線——都會「一進不返」的一道分界線,科學家稱之為「事件穹界」(event horizon)。這個穹界(實則是一個立體的界面),正是由當年史瓦西計算出來的「史瓦西半徑」(Schwarzschild radius)所決定。例如太陽的穹界半徑是三公里,也就是說,假若一天太陽能收縮成一個半徑小於三公里的天體,它將成為一個黑洞而在宇宙中消失。「穹界」的意思就是時空到了這一界面便有如到了盡頭,凝頓不變了。

圖/envato

簡單地說,穹界半徑就是物體在落入黑洞時的速度已達於光速,而相對論性的「時間延長效應」(time dilation effect)則達到無限大。對太空船上的人來說,穿越界面的時間只是極短的頃刻,但對於一個遠離黑洞的觀測者,他所看到的卻是:太空船越接近界面,船上的時間變得越慢。

-----廣告,請繼續往下閱讀-----

而在太空船抵達界面時,時間已完全停頓下來。換句話說,相對於外界的人而言,太空船穿越界面將需要無限長的時間!

無限延長的痛苦

了解到這一點,我們便可領略波爾.安德遜(Poul Anderson, 1926-2001)的短篇〈凱利〉(Kyrie, 1968)背後的意念。故事描述一艘太空船不慎掉進一個黑洞,船上的人自是全部罹難。但對於另一艘船上擁有心靈感應能力的一個外星人來說,情況卻有所不同。理由是她有一個同樣擁有心靈感應能力的妹妹在船上,而遇難前兩人一直保持心靈溝通。由於黑洞的特性令遇難的一剎(太空船穿越穹界的一剎)等於外間的永恆,所以這個生還的外星人,畢生仍可在腦海中聽到她妹妹遇難時的慘叫聲。

安德遜這個故事寫於一九六八年,可說是以黑洞為創作題材的一個最早嘗試。

短篇〈凱利〉便是利用黑洞的特性——遇難的一剎等於外間的永恆——使生還者感受無盡的痛苦。圖/envato

太空船在穹界因時間停頓而變得靜止不動這一情況在阿爾迪斯一九七六年寫的《夜裡的黑暗靈魂》(The Dark Soul of the Night)中,亦有頗為形象的描寫。恆星的引力崩塌,在羅伯特.史弗堡(Robert Silverberg)的《前往黑暗之星》(To the Dark Star, 1968)之中卻帶來另一種(雖然是假想的)危險。故事中的主人翁透過遙感裝置「親身」體驗一顆恆星引力塌陷的過程,卻發覺時空的扭曲原來可以使人的精神陷於瘋狂甚至崩潰的境地。

-----廣告,請繼續往下閱讀-----

以穹界的時間延長效應為題材的長篇小說,首推弗雷德里克.波爾(Frederik Pohl, 1919-2013)的得獎作品《通道》(Gateway, 1977),故事描述人類在小行星帶發現了由一族科技極高超的外星人遺留下來的探星基地。基地內有很多完全自動導航的太空船,人類可以乘坐這些太空船穿越「時空甬道」抵達其他的基地,並在這些基地帶回很多珍貴的,因此也可以令發現者致富的超級科技發明。

故事的男主角正是追尋這些寶藏的冒險者之一。他和愛人和好友共乘一艘外星人的太空船出發尋寶,卻不慎誤闖一顆黑洞的範圍。後來他雖逃脫,愛人和好友卻掉進黑洞之中。但由於黑洞穹界的時間延長效應,對於男主角來說,他的愛人和好友永遠也在受著死亡那一刻的痛苦,而他也不歇地受著內疚與自責的煎熬。

故事的內容由男主角接受心理治療時逐步帶出。而特別之處,在於進行心理治療的醫生不是一個人,而是一副擁有接近人類智慧的電腦。全書雖是一幕幕的人機對話,描寫卻是細膩真摯、深刻感人,實在是一部令人難以忘懷的佳作。

圖/envato

由於這篇小說的成功,波氏繼後還寫了兩本續集:《藍色事件穹界以外》(Beyond the Blue Event Horizon, 1980)及《希徹會晤》(Heechee Rendezvous, 1984)。而且兩本都能保持很高的水準。

-----廣告,請繼續往下閱讀-----

時間延長效應並非一定帶來悲劇。在先前提及的《永無休止的戰爭》的結尾,女主角正是以近光速飛行(而不是飛近黑洞)的時間延長效應,等候她的愛侶遠征歸來,為全書帶來了令人驚喜而又感人的大團圓結局。

七○年代末的黑洞熱潮,令迪士尼(Walt Disney)的第一部科幻電影製作亦以此為題材。在一九七九年攝製的電影《黑洞》(The Black Hole)之中,太空船「帕魯明諾號」在一次意外中迷航,卻無意中發現了失蹤已久的「天鵝號」太空船。由於「天鵝號」環繞著一個黑洞運行,船上的人因時間延長效應而衰老得很慢。這艘船的船長是一個憤世疾俗的怪人,他的失蹤其實是故意遠離塵世。最後,他情願把船撞向黑洞也不願重返文明。

比起史提芬.史匹堡(Steven Spielberg, 1946-)的科幻電影,這部《黑洞》雖然投資浩大,拍來卻是平淡乏味,成績頗為令人失望。除了電影外,科幻作家艾倫.迪安.霍斯特(Alan Dean Foster, 1946-)亦根據劇本寫成的一本同名的小說。

這張圖片的 alt 屬性值為空,它的檔案名稱為 ___72dpi.jpeg

——本文摘自《超次元.聖戰.多重宇宙》,2023 年 11 月,二○四六出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。