5

30
6

文字

分享

5
30
6

不用數學就可以解釋——相對論的著名想像實驗「雙胞胎悖論」

賴昭正_96
・2022/08/26 ・6632字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

你聽過「雙胞胎悖論」嗎?

我有時會問自己,我是如何發展相對論的。我認為其原因是:一個正常的成年人從不去思考空間和時間的問題——這些都是他小時候就想到的;但我的智力發育遲緩,因此長大後才開始思考空間和時間。

——愛因斯坦(Albert Einstein)),1921年諾貝爾物理獎得主

1905 年,愛因斯坦在題為「關於運動物體之電動力學」的論文裡,從兩個簡單的假設,得到結論謂如果張三與李四相對運動,則張三會認為李四的手錶跑得比較慢。在證明這一稱為「時間膨脹」(time dilation)的現象後,寫道:

由此產生以下奇怪結果。如果(開始時)A 點和 B 點在(靜止坐標)K 中觀察是同步的(即同一時刻),但 A 處的時鐘以速度 v 沿 AB 線到 B,則在到達 B 時,兩個時鐘將不再是同步:移動到 B 後的 A 時鐘將落後於保持不動的 B 時鐘…。我們得出這樣的結論:如果兩個 A 處同步的時鐘,其中一個以恆定速度沿閉合曲線移動 t 秒後返回 A 處,則保持靜止的時鐘將發現剛返回的時鐘慢了 tv2/(2c2)秒(c 為光速)。

昨天才校正過的手錶,怎麼現在又慢了?難道我是在黑洞附近?或是該換新手表的時候了? 圖/作者提供

或許是怕像筆者這樣智力發育遲緩的讀者難懂,愛因斯坦於 1911 年重申並詳細說明這一現象如下:

如果我們把一個活的有機體放在一個盒子裡……我們可以安排這個有機體在經過任意長時間的飛行後,在幾乎沒有改變的情況下返回到它原來的位置。此時保持在原來位置的相應有機體已經早已讓位於新一代,但對於移動的有機體來說,只要運動以接近光速進行,漫長的旅程只是一瞬間而已。

名物理教科書作者雷斯尼克(Robert Resnick)更清楚地解讀謂:

如果靜止的有機體是一個人,而旅行的是他的雙胞胎,那麼旅行者回到家時會發現他的雙胞胎兄弟比自己老得多。但在相對論中,任何一個雙胞胎都可以將另一個視為旅行者,因此再碰面時將比他自己年輕。這在邏輯上看來是一個矛盾的現象,因此被稱為「雙胞胎悖論」(twin paradox)。

雙胞胎悖論」可以說是相對論中最著名的想像實驗,為許多教科書與通俗科學文章所討論的對象;但筆者卻發現在「泛科學」裡只有一篇書評的文章中提到它!

-----廣告,請繼續往下閱讀-----

難道真如諾貝爾獎得主普朗克(Max Planck)所說的:「一個新的科學真理之所以勝利,不是因為說服了它的對手,讓他們看到了光明,而是因為它的對手最終會死去,而熟悉它的新一代會成長起來」?在習以為常的熏陶下,現在的「新一代」已經不再認為「雙胞胎悖論」是值得討論的悖論?

如果你不是這樣的「新一代」,那本文是為你所寫的,相信你在這裡將讀到在其它地方找不到之「雙胞胎悖論」的白話文解讀(不用任何數學)。

同步與同時的「相對性」

普朗克謂:「光速之於相對論就像基本的作用量子之於量子論:光速是相對論的絕對核心。」

可是如何測量光速呢?從甲處發一道光到乙處,將甲乙之距離除以光旅行的時間就得到光速。當然,要能精確地測得光速,甲乙兩處的時鐘必須是互相校正過的、同步(synchronized)的。如何校正甲乙的時鐘呢?相信很多人小時候就已經知道了:將兩個時鐘帶到同一處,然後像電影中之突擊隊,在出發前由隊長發命令說:「讓我們校正時間,現在是……」 。

可是愛因斯坦不知道為什麼竟然沒有想到這一點?或許真的是「智力發育遲緩」,他竟然建議在乙處放一面鏡子來反射甲處在零時刻所發的光,如果乙處接到光的時刻正是甲處光來回所需之時間的一半,我們便說甲乙兩處的時鐘同步化了。用這種方法來同步化時鐘,很顯然在邏輯上我們便不可能測單方向的光速是否為定值了,所以愛因斯坦增加了一個假設,即光是在真空中的傳播速率為一與發射體運動狀態無關的定值 c

-----廣告,請繼續往下閱讀-----

如果我們將同步化的甲乙兩個時鐘分別放在火車月台的兩端,讓它們在同一時刻(零點)往月台中心發射一道激光,則站在月台中心的賴教授應該「同時」收到來自甲乙兩端的激光(圖 a)。

但坐在從乙往甲方向以等速 v 行駛之車廂內的李教授,卻發現甲、乙激光發射後一直在以同一速度 c 逼近賴教授(圖 c);但因賴教授在往乙方向運動,因此如果光同時到達賴教授處(任何人都同意的「事件」,否則賴教授不是說謊就是頭腦有問題),李教授將下結論謂:甲乙兩個時鐘並不同步,甲時鐘顯然先發射,因此比乙時鐘快(甲的零點比乙的零點早)!

所以「同時」將因觀察者之運動而異:賴教授說甲乙兩激光是同時發射的,李教授卻說甲激光先發射的!如果李教授坐的火車是由甲往乙方向行駛呢?他將發現乙激光是先發射的!

這似乎是很明顯的結論,為什麼要等愛因斯坦告訴我們、難道牛頓沒想到嗎?牛頓不是沒想到,而是他認為宇宙中有一獨立於任何觀察者的時鐘,稱為「絕對時間」,所以「同時」是絕對,不會因觀察者之相對運動而異。

-----廣告,請繼續往下閱讀-----

但事實上這結論與絕對時間無關,而是因愛因斯坦之假設—光的傳播速率為一與發射體運動狀態無關的定值—造成的!如果不是這一假設,則光的傳播速率將與發射體運動狀態有關(古典力學),李教授會認為乙激光是以 c-v 逼近、而甲激光則是以 c+v 追趕以 v 速運動的賴教授(圖 b),因此兩道激光當然還是同時到達賴教授處!所以李教授和賴教授都同意時鐘是同步的。

所以很明顯地應是愛因斯坦的「同時相對性」改變了人類根深蒂固的「絕對同時性」觀念。如果我們將「發射激光」改成孿生子(雙胞胎)的「生日慶典」,則賴教授將說他們是同時出生的;但是李教授則會因其運動狀態而說甲孿生子先出生(比較老)或乙孿生子先出生。這不正是「雙胞胎悖論」的一個影本嗎?我們在這裡事實上還看到一個很重要的現象:參考坐標(運動方向)的改變,可能顛倒兩個不同事件的「先後次序」!

雙胞胎悖論

假設雙胞胎張四決定乘坐等速高速太空船去旅行。因他決定一去不回,故在旅行前與張三痛哭擁抱,答應在死前一刻依自己的時鐘將年齡紀錄下來,「寄」回地球。

依照經驗,如果兩人的生理機能完全不受外界的影響,則兩人的壽命應該一樣長;但是依照相對論,張三認為張四是在運動,其(生理)時鐘跑得較慢【稱為「時間膨脹」現象】,因此活得較長;同樣地,張四認為張三是在運動,其(生理)時鐘跑得較慢,因此活得較長!誰對呢?智力發育遲緩的筆者認為這是矛盾的,一定有一個人錯,但愛因斯坦說兩人都沒錯,要筆者耐心地等一等……。

-----廣告,請繼續往下閱讀-----
坐上高速太空船旅行的張四,與留在地球的張三,誰活的時間比較「長」呢? 圖/envatoelements

歲月如梭,張四的信終於抵達地球了;打開一看,怎麼?他的壽命竟然與張三一樣!筆者一個頭兩個大,顯然是不應該學物理—尤其是相對論!請讀者幫幫忙吧!

假設張四離開10年(他的時間)時突然想家,於是緊急剎車,將太空船轉個方向,緊急加速到原來的速度(為了方便,我們可以假設整個過程是「瞬間」),10 年後終於又回到地球,跟雙胞胎張三重新會合,正要擁抱時卻發現張三已經比他老多了!這正是上面愛因斯坦及雷斯尼克所說的結果。

這看似矛盾的結果事實上是很容易理解的:張四在太空中的「緊急剎車、將太空船轉個方向、緊急加速到原來的速度」破壞了兩人運動的對稱性。我們雖然沒有辦法感受到自己是在靜止狀態或者是在等速運動,但我們卻可以知道自己是在加速。所以張四在太空中的急轉彎,不但破壞了兩人運動的對稱性,也應該是造成他們年齡差異的原因。我們可以從兩方面來看為什麼改變速度(加速)造成年齡差異。

從相對論來看,在去程及回程的等速運動時,張四應該一直認為張三比他年輕。但在前面的火車站實驗中,我們發現李教授的火車行駛方向改變會造成「先後次序」的顛倒,因此張四在太空急(「瞬間」)轉彎的過程中會發現張三(「瞬間」)老了許多(不怕數學讀者,可參見附錄二):多得超過了剛提到之等速運動時的年輕數,因此張四在相會時將發現張三比他老!從張三的角度來看,他從未加速,因此認為在運動的張四一直比他年輕!不止如此,他依相對論所算出來的年齡差距,也正是張四依他自己之坐標(包括等速與改速)所算出來的!

-----廣告,請繼續往下閱讀-----

相信某些讀者要問:「老」是生理現象,張四的坐標轉換怎麼會使張三變老呢?火車站實驗中的「先後次序」顛倒,只是李教授的觀點而已,並沒有實質的物理意義,賴教授不是不同意嗎?1905年的相對論沒有回答這個問題,這答案 10 年後才在廣義相對論中出現(詳見愛因斯坦一生中最幸運的靈感-廣義相對論的助產士):加速可以視為是一種重力現象,時間在重力場中跑得比較慢【稱為「重力時間膨脹」(gravitational time dilation)】。

所以張四在太空中急速的減速及加速將造成強大的重力場,使得其(生理)時鐘變得非常慢,因此在這期間老得也非常慢(在黑洞附近的人—如果不被吸進去的話—幾乎可以長生不老)!

太空中急速的減速與加速,將造成強大的重力場,使時間變得非常慢。 圖/GIPHY

長度收縮

特殊相對論還預測一個稱為「長度收縮」(length contraction)的怪現象,謂:一位快跑健將拿著一根棍子沿著棍子方向以速度v飛跑,旁觀人會認為棍子長度變短。這一個怪現象事實上在月台的實驗上已經看到了:要決定兩點之間的距離,我們必須「同時」測兩點的坐標;李教授認為甲的零點比乙的零點早,因此必須「稍等」甲一下才能「同時」記錄甲、乙兩點的坐標,但這一「稍等」,因為甲在往乙方向運動,不是使得測得的距離變短嗎

如果讀者不怕數學,讓我們在這裡用點數學來看「長度收縮」這一怪現象,希望能幫助讀者更進一步了解。

-----廣告,請繼續往下閱讀-----

圖二是旁觀者的坐標,顯示在 t=a 時,棍子的前端進入原點 x=0,然後沿軌跡 x=v(t-a) 繼續前進;棍子的後端則在 t=b 時進入原點,然後沿軌跡 x=v(t-b) 繼續前進。

圖二中的 bc 是棍子後端剛進入原點時,旁觀者的「同時」線,即線上每一點的時間都是 t=b(同步化)。測量棍子的長度必須「同時」觀察其前端及後端的位置,因此他測量得到的棍子長度為 be(他不知道那個時刻棍子前端事實上已經到達 d 點了)!bd 是快跑健將的同時線,其 x 坐標 (xd-xb) 則是 他測量的棍子長度,比 be 長;所以旁觀者說「棍子變短了」。

如果快跑健將的速度不快,則前、後端軌跡將趨近於成垂直,不同運動狀態的「同時」便趨近於相同,我們便又回到我們所熟知的牛頓世界了!

旁觀者測得的棍子長度因快跑健將的速度不同而異(原始長度則是快跑健將所測量道的長度,與其速度無關)。 圖/envatoelements

結論

愛因斯坦1905年的相對論中之「光傳播速率為一與發射體運動狀態無關的定值」假設徹底地毀滅了物理學中「同時」的觀念,因之產生了一些與日常經驗不符的奇怪現象,如「長度收縮」及著名的「雙胞胎悖論」。

-----廣告,請繼續往下閱讀-----

希望本文的解釋不但能讓讀者見怪不怪,甚至發現其實不怪;了解相對論裡所有「矛盾」現象都是因為不同觀察者在「自說自話」造成的:例如在棍子的例子裡,靜止觀察者談論的是他(靜止觀察者)在某個時刻測量得到的長度,而移動觀察者談論的則是他自己(移動觀察者)在另一個瞬間測量的長度。

時間及空間是人類製造出來便利溝通的語言,如果李教授不認為甲地先發射,他沒辦法解釋為什麼賴教授同時看到甲乙兩地發射出來的光(實際經驗到的物理現象);所以「自說自話」原來是為了保持物理定律的不變性(物理定律是用來解釋我們實際經驗到的物理現象)。這些「自說自話」事實上也不是隨便說的,而是靠「洛倫茲轉換」(Lorentz transformation)連接在一起的。

附錄一:「後見之明」輕鬆地推導「洛倫茲(坐標)轉換」公式

K’ 坐標以 + v 速度相對於 K 坐標運動。如果坐標在 t=0 時重合,加上時、空的均勻性(變數沒有二次方):

…………………………………………………………(1)

β 為待解的常數。如果在 t=0 時發射一道光,則光的軌跡為 x=ct;代入上式,得

…………………………………………………………(2)

因為 K’ 坐標及 K 坐標的對稱性:

…………………………………………………………(3)

將 (3) 代入 (2) 解得

…………………………………………………………(4)

從 x = β ( x’ + vt’ ) 解 x’ ,然後代入(1),化簡可得到

…………………………………………………………(5)

公式(1) 、(5), 及(4)就是「洛倫茲(坐標)轉換」公式。長度收縮中之快跑健將棍子的同時線方程式為公式(5) :

附錄二:雙胞胎悖論的數學

假設雙胞胎甲留在地球,雙胞胎乙決定以 v 速度往太空地球 S 旅遊,則甲(x , t)、乙( x’ , t’)兩人的坐標轉換為(為了方便,將光速定為 1,所以 v 應該小於 1 ):

圖三為甲的坐標圖:太空地球 S 的位置為( xs , ts)。依照上面公式轉換,對乙來說,其坐標為( x’s , t’s )。去程時,乙在 S 時的同時線(該線上每一點的時鐘都「同步」) t1s 為:

在到達 S 時,乙瞬間改變方向,其同時線瞬間變為 t2s :

這兩個方程式的時間零點分別為 t0t3 ,因此不能直接用它們來算去程及回程的同時點 t1 及 t2 ;但因為對稱的關係,我們可以將 t1s 延長到 x=2xs 處,用  t’s=β ( t-vx ) 解得:

所以乙的回程坐標轉換一下子讓甲老了

t2 – t1 = v2xs

……舉個實際的例子:如果 v=0.6, xs=6,則 β=1.25,所以對甲來說,乙需要 10(=6/0.6) 年才能到達 S ,也需要 10 年才能回來,因此乙回來時,甲應該已經 20 歲了(為了說明方便,假設他們一出生,乙就到太空旅行)。甲的 S 坐標為(6 , 10),透過坐標轉換,乙的 S 坐標為(0 , 8);所以甲認為乙的時鐘比較慢,只要花 8 年(乙時鐘)的時間就可以到達 S,同樣地也只要花 8 年時間回來,所以乙回來時應該只有 16 歲!

透過乙在 S 時的同時線,可以解得當 x=0 時,t1=6.4。所以對乙來說,他已經 8 歲了,但甲才 6.4 歲,顯然比他年輕(老得慢)!同樣地,在回程時,乙也應該認為他老了 8 歲,但甲才老了 6.4 歲,所以乙回到老家時,乙應該已經 16 歲,但甲才 12.8 歲,比他年輕!

但前面不是說過甲應該已經 20 歲了嗎?矛盾?不!我們忘了乙坐標轉換時的「時差」 :7.2 年!將這「時差」加進去,乙也計算出甲的年齡應該是 20 歲(=6.4+7.2+6.4)!

甲、乙兩個人的結論相同,沒有矛盾!愛因斯坦沒有騙我們!

註:

要決定兩點之間的距離,我們必須「同時」測兩點的坐標;同樣地,要決定兩個事件發生的時差(時間),我們必須在「同點」測兩個事件發生的時刻。相對論不但毀滅了物理學中「同時」的觀念,事實上也摧殘了「同點」的觀念:沒有絕對的空間,「同點」因運動者而異。所以我們也應該可以在類似月台的簡單實驗上尋找到「時間膨脹」的現象(請讀者幫幫忙吧)。

延伸閱讀

愛因斯坦一生中最幸運的靈感-廣義相對論的助產士(科學月刊,2021 年 5 月號)。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 5
賴昭正_96
44 篇文章 ・ 58 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
愛因斯坦的光速魔術
賴昭正_96
・2024/10/05 ・7055字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

起初神創造了天地。大地空虛混沌; 深淵的表面一片黑暗;神的靈運行在水面上。神說,「讓它有光」,於是就有了光。 神看見光是好的;神將光明與黑暗分開。 -創世紀 1:3

1905 年愛因斯坦在題為「關於運動物體的電動力學」(On the Electrodynamics of Moving Bodies)的論文引言裡謂:

我們建議將「相對性原理」這個猜想(conjecture)提升到一個公設(postulate)的地位,並引入另一個表面上與它不調和(irreconcilable)的公設,即光在真空中的傳播速率為一與發射體運動狀態無關的定值 c。這兩個假設足以(讓我們)透過適用於靜止物體(狀態)之馬克斯威(James Maxwell)理論,導出一個簡單且不矛盾(consistent)的電動力學理論。

愛因斯坦真大膽:一個可以用實驗來確定的光速,怎麼可以定為「公設」呢?光速與發射體運動狀態無關不是完全違反了我們日常生活的經驗(如聲速)嗎?

更令人難以相信的是:當時的物理與天文學家因為馬克斯威方程式(Maxwell Equation)的成功,都認為空間充滿了絕對靜止的「以太」,「光速為定值」僅是相對於這一固定的「以太」而言;而愛因斯坦竟初生之犢不畏虎,開宗明義地謂不要爭辯了,我們將光在真空中的速度「公訂」為與發射體運動狀態無關的定值 c!幸運地,在「立即引起了我的熱烈關注」下,當時歐洲受人尊敬的理論物理學大師普朗克(Max Planck)立即在柏林大學開始講授相對論,並公開為愛因斯坦的抽象概念理論辯護!由於普朗克的影響,這篇愛因斯坦根本沒想到是「革命性的」、完全改變牛頓之時空觀念的論文終於與量子力學一起開創了近代物理學。

當然,我們現在知道實驗上已經證明了這一「公設」的正確性;愛因斯坦怎麼那麼「神」呢?

-----廣告,請繼續往下閱讀-----
愛因斯坦以大膽創新思維,突破常規,開創物理學新紀元。 圖/wikimedia

「光」逐流

第二次世界大戰結束後不久,愛因斯坦受邀在「在世哲學家圖書館」(Library of Living Philosophers)撰寫一篇知識分子自傳(註一)。在該《自傳筆記》(Autobiographical Notes)裡,愛因斯坦開張寫道:「我坐在這裡是為了在 67 歲時寫一些類似於我自己之訃文的東西」,然後以無與倫比的溫暖和清晰解釋了他的思想路徑:從年輕時對幾何的興趣,轉向馬克斯威、馬赫(Ernst Mach)、和波爾(Niels Bohr)等哲學、科學家對他自己之理論發展的影響。此書是愛因斯坦留給我們的唯一個人自傳筆記,為科學史上的一部經典著作。

在講述導致狹義相對論的發展時,愛因斯坦在《自傳筆記》中回憶道:

…..我在十六歲時就已經遇到了一個悖論:如果我以速度c(真空中的光速)追逐上一束光,我應該觀察到其電磁場將是靜止不前進,只是在空間上振盪而已。然而,無論是根據經驗,還是根據馬克斯威方程組,這現象似乎不存在。(因此)從一開始,我就直覺地清楚看到,從這樣一個觀察者的角度來看,一切都必須按照與相對於地球靜止的觀察者相同的定律發生。第一個觀察者如何知道或能夠確定他處於一快速、等速的運動狀態?從這個悖論中可以看出,狹義相對論的種子已經包含在內。

愛因斯坦如何解決這悖論呢?

一場風暴

愛因斯坦在瑞士專利局任職時,經常與「奧林匹亞學院」(Olympia Academy)的成員討論光速之謎。1905 年 5 月中旬,他突然想到光速之謎的答案就隱藏在用於測量時間的程序中,他回憶說:「我的腦海中掀起了一場風暴」。隔天一大早碰到一位工程師同事就迫不及待地告訴說:「我已經徹底解決了這個問題。對時間概念的分析是我的解決方案:時間不能是絕對的,時間和訊號速度之間存在著密不可分的關係。」

-----廣告,請繼續往下閱讀-----

在風暴中,愛因斯坦匆匆忙忙地在數週內完成了那革命性的狹義相對論論文。在此讓我們看看為什麼他認為「時間和訊號速度之間存在著密不可分的關係」。

愛因斯坦同步程序

要測量光速,必須讓光訊號在已知距離內從一個位置跑到另一個位置,然後透過起點和終點的時鐘讀數之差異來確定傳播時間。因此用於測量傳播時間的時鐘必須同步,否則它們之讀數差異將毫無意義。可是我們卻需要利用光速來同步化兩個不同地方之時鐘,這顯然是「雞生蛋、蛋生雞」的循環邏輯問題。

愛因斯坦的風暴就是他終於想出了可以避免循環邏輯的同步化假想實驗:在 tA 時從 A 發出一道光線,當它在 tB 到達 B 時立刻讓它反射回去,於 t’A 時到達 A;如果

則我們稱 A、B 兩地的時鐘精確地同步化了。例如 A 在 1:00 發出光信號,1:10 收到反射回來的光信號,如果 B 收到光信號的時刻是 1:05(或者將它調到 1:05),那麼 A、B 兩地的時鐘便是同步。今天的物理學家將此方法稱為「愛因斯坦同步程序」( Einstein Synchronization Procedure )。

-----廣告,請繼續往下閱讀-----

光速定值的「公

愛因斯坦接著說:「另外,根據經驗,我們進一步要求

為普適常數(真空中的光速)。」這是根據經驗計算光在兩點間之平均速度的方法,毫不起眼,但卻隱藏著一個非常不尋常的「陰謀」?

邏輯告訴我們:如果我們用另一毫不起眼的 tB 定義去測單方向的光速(A 到 B或 B 到 A),其值一定是 c ( 註二 )!因此愛因斯坦說:「…我們根據定義確定,光從 A 傳播到 B 所需的時間等於光從 B 傳播到 A 所需的時間。」也就是說愛因斯坦在這裡從「平均速度」及「愛因斯坦同步程序」的定義,魔術般地導入了他的公設:光在任何方向的速度都是一樣的 c 值!

為什麼這是個「陰謀」呢?在愛因斯坦的假想實驗中,我們既然不需要知道光的速度,為什麼不用聲音呢?答案很簡單:因為我們知道聲速會受到 A、B 兩點與空氣之相對速度的影響;如果風從 A 吹到 B,那麼 B 收到聲音的時間將比愛因斯坦之 tB 早! 可是那時候幾乎所有的物理學家都相信光是在「乙太」中傳播的(見後),愛因斯坦怎麼知道光速不會受到 A、B 兩點與「乙太」之相對速度的影響?

-----廣告,請繼續往下閱讀-----
愛因斯坦透過同步程序巧妙定義光速,避開了「乙太」的影響。圖/wikimedia

歷史上最「失敗」的實驗

在「近代物理的先驅:馬克斯威」裡,筆者提到曾被評選為有史以來第三大物理學家馬克斯威用簡潔數學方程式━「馬克斯威方程式」━闡釋了當時已知的電磁現象。1865 年,馬克斯威透過其方程式導出電磁波的存在,並證明光事實上就是一種電磁波!光既然是一種波動,那像水波及聲波一樣應該有傳播的媒體(介質),物理學家開始尋找這一稱為「乙太」的媒體,並測試地球在這一媒體中的運動狀態。

這些實驗中最有名的是後來被稱為歷史上最「失敗」的實驗:1887 年,邁克爾森(Albert Michelson)與莫利(Edward Morley)用光干涉儀測量地球與乙太的相對運動速率。邁克爾遜和莫利預計會發現:分道揚鑣的兩道光束在不同時間回到探測器,從而可以計算出地球在乙太中的運動速度。但他們非常失望地發現:無論光向哪個方向傳播,它總是以相同的速度移動,因此下結論説:如果乙太存在,地球與乙太的相對運動速率為零!他們認為這有兩種可能的解釋:(1) 在地球表面之乙太被地球拖著走;或 (2) 根本沒有乙太(參見「乙太存在與否的爭辯」)。但更簡單的解釋應該就是愛因斯坦的不要爭辯「公設」;可是誰敢提出這種違反常識的論調呢?或許只有當時還是默默無聞的瑞士專利局小職員吧?

可是愛因斯坦回憶說:「在我自己的發展中,邁克爾遜的結果並沒有(對我)產生很大的影響。我甚至不記得當我寫第一篇關於這個主題的論文時(1905 年),我是否知道它。」然而愛因斯坦也在許多場合中曾經反覆使用「可忽略不計」、「間接」、「非決定性」等詞彙來形容邁克爾遜實驗對他思想的影響…。看來「愛因斯坦當時是否知道邁克爾遜實驗結果」這個問題將永遠是個懸案。但可以肯定的似乎是:即使愛因斯坦知道邁克爾遜的結果,它對愛因斯坦理論的起源貢獻應該是非常小和間接的,絕對不是他發現相對論的主要推動因素。

事實上前面提到:愛因斯坦根本可以不需要知道,因為在他的時鐘同步程序下,光速一定是定值,與實驗結果或「乙太」是否存在無關。相反地,如果愛因斯坦清楚不用時鐘同步化的邁克爾遜-莫利實驗,那風暴可能就不會產生了!

-----廣告,請繼續往下閱讀-----

時鐘同步化與光速無關

測量單方向光速實際上並不需要同步化的兩個時鐘(即沒有循環論證的問題)。例如 A、B 兩地皆在赤道上,A 在 1:00 發出光信號,B 在收到光信號後等 12 小時再發射回去,如果 A 在收到 B 光信號的時間是 13:04,那麼因為地球 24 小時自轉一次的關係,AB 距離除以 0.02 便是光單方向(相對於宇宙)的速度。在這一個實驗中,A、B 兩地的時鐘根本不必要同步化,只要它們的精確度是一樣就可以了。

人類早在 18 世紀初就已經知道如何製造相當精確及穩定的時鐘:哈里森(John Harrison)是英國的一名木匠,自學了鐘錶製作;在 1720 年代中期,他設計了一系列卓越的精密長殼時鐘,其精確度已經高達一個月僅差一秒(註三)。我們可以將兩個 Harrison-IV 時鐘在 A 處校正,然後慢慢(原則上無限地慢)將其中一個移到它處,不但可以用它來同步化這些地點的時鐘,還可以用來直接測量單方向的光速。

還有,首次確鑿證明地球在動的布拉德利(James Bradley)早在 1729 年就已經透過「星光像差」(stellar aberration)測得高達 0.4% 精確度的光速;而發明「傅科擺」(Foucault pendulum)來證明地球在自轉的傅科(Léon Foucault)則在1862年透過旋轉鏡與單鐘測得 0.6% 精確度的光速。

馬克斯威方程式也告訴我們,不需要使用任何時鐘,透過測量自由空間的磁導率和介電常數即可間接計算光速,完全避開愛因斯坦的循環論證邏輯。事實上馬克斯威 1865 年就是用這兩個實驗數據計算出電磁波的傳播速度為每秒鐘 310740000 公尺,接近當時光速的(傅科)實驗值。馬克斯威認為這不會是巧合,謂:「我們幾乎無法避免這樣的結論:光存在於同一介質的橫向波動中,這是電和磁現象的原因」,因此他預測光是一種電磁波。

-----廣告,請繼續往下閱讀-----

上面這些說明了 20 世紀黎明前,科學家就已經知道了:時間(校時)和訊號速度之間並不存在著密不可分的關係。事實上愛因斯坦更應該知道,因為當他被問到是否站在牛頓的肩膀上時,他回答說:「不,是站在馬克斯威的肩膀上!」所以不知道愛因斯坦是否故意沒想到這些,以便透過陰謀來創造相對論?在今天,愛因斯坦那篇沒有任何參考資料的相對論論文是不可能被接受發表的!

愛因斯坦的規定

在愛因斯坦同步程序下,無論光的實際速度是多少,光速測量起來總是定值 c。難道愛因斯坦不知道這「魔術」充滿了漏洞嗎?一個可能的解釋是 19 世紀末電報線和鐵路將整個歐洲連接成一個巨大的網絡,為了以確保訊息、乘客、和貨物的順利流動,同步時鐘是非常實際的考慮;愛因斯坦是專利局電訊操作設備的技術專家,負責審查時鐘同步的網路電磁設備之專利申請,因此他一定在思考時鐘同步問題,加上經年累月地為光速所困,似乎很自然地便往這牛角尖裡鑽。

愛因斯坦或許因長期研究時鐘同步問題,導致忽視光速測量的漏洞。圖/wikimedia

我們知道魔術是騙人耳目與大腦的,不能用在科學上。光速是可以量的,怎麼可以根據定義確定(光從 A 傳播到 B 所需的時間等於光從 B 傳播到 A 所需的時間)?因此在其 1916 年之科普《相對論:狹義理論與廣義理論》一書中,愛因斯坦辯說:「(假設 M 在 A、B 兩處之正中間)實際上光需要相同的時間穿過路徑 AM 和穿過路徑 BM,這既不是關於光之物理性質的假設(supposition)、也不是假說(hypothesis,註四),而是我可以根據自己的自由意志做出的規定(stipulation),以便得出同時性的定義(註五)」。換句話說,愛因斯坦認為光速恆定是一種「規定」,與物理無關,無需解釋其真偽(註六)。且聽「創相對論紀 1:3」道來:

19 世紀中旬馬克斯威創造了馬克斯威方程式。大地充滿了乙太;深淵的裡面測不出地球的運動;愛因斯坦的靈運行在其中。愛因斯坦說,「讓光速為定值」,於是光就依定值傳播。愛因斯坦看見定速是好的;愛因斯坦將定速與乙太分開。

圖/作者提供

結論

從上面的分析看來,愛因斯坦這「光速為定值的規定」似乎是建基於錯誤的認知上,所以顯然愛因斯坦其實沒有那麼神

-----廣告,請繼續往下閱讀-----

開玩笑的,事實上愛因斯坦是筆者佩服的極少數科學家之一!在「思考別人沒有想到的東西──誰發現量子力學?」一文裡,筆者指出:當普朗克還一直在努力地想讓他的量子解釋能容於古典力學時,愛因斯坦已認識到量子不連續性是普朗克黑體輻射理論的重要組成部分!也只有愛因斯坦能看出波思(Satyendra Bose)一篇被英國名物理雜誌退稿、題為「普朗克定律及光量子的假設」的重要性,開創了量子統計力學!更奇怪的是:他被證明是錯的「EPR 悖論(EPR Paradox)」竟推動了許多如量子密碼學、量子計算機、量子資訊理論、量子遠程傳送等的研究;而他自認是一生中最大錯誤的「宇宙論常數」則成為研究近代宇宙的主要工具。……因此筆者總覺得愛因斯坦雖然像常人一樣犯錯,但對物理卻具有一般人所沒有的第六感!或許愛因斯坦心裡早就預感光速應該是定值(註七),其同步程序只是設計出來「證明」光速恆定的妙計?

雖然以卓越教學而備受讚賞的慕尼黑大學理論物理學教授薩默費爾德 ( Arnold Summerfeld ) 曾於 1907 年對愛因斯坦的公設提出「微辭」,但現在物理學家從未公開批評該相對論公設,只是默默地屏棄此一公設,改採將光速恆定作為可以實驗驗證的物理定律(經驗基礎):光速恆定不是規定,而是根基於實驗的自然界基本定律。

如果光相對於愛因斯坦的速度永遠為c, 那麼他將永遠無法隨「光」逐流看到光駐波,愛因斯坦不但終於解決了他16歲時所迷惑的悖論,還開創了相對論!

註釋

(註一)《世哲學家圖書館》系列的第七卷(Paul Arthur Schilpp編輯,美國紐約市 MJF Books 出版,2001 年元月一日重印版)。單行本:《阿爾伯特·愛因斯坦:哲學家-科學家》(Albert Einstein: Philosopher-Scientist;Open Court,3rd edition,December 30, 1998)。

(註二)筆者讀過多次愛因斯坦同步程序,從沒想到被騙;視而不思,真是書呆子一個!

(註三)2023 年初可攜帶型的商業原子鐘精確度高達 10-11%。

(註四)大英百科全書:科學假設是對自然界中觀察到的現像或一組狹窄現象提出初步解釋的想法。

(註五)參見『不用數學就可以解釋──相對論的著名想像實驗「雙胞胎悖論」』。

(註六)這種不顧物理的隨心所欲「規定」使筆者想到了波爾於 1913 年提出的:「電子雖然如行星繞日,但它的軌道卻不能隨便,而必須適合一個新的條件,即量子條件(quantum condition)。在這種軌道條件下的電子是穩定的,它可不服從電磁理論,因此也就不須放射出電磁波。」波爾輕而易舉地用「規定」的方法解決了拉塞福 ( Rutherford ) 原子模型與電磁理論的衝突(參見「原子的構造」)。當然,波爾原子模型的成就不只解決這衝突而已,它事實上解釋了當時存在的部份光譜問題,推動了新力學的迅速發展。同樣地,愛因斯坦的規定不只提出了「同時」是相對的觀念,還開創出一個新的力學。

(註七)用兩個簡單的公設就可推導出當時已知的洛倫茲轉換方程式(Lorentz transformation)、時間膨脹(time dilation)、洛倫茲—傅玆久拉空間收縮(Lorentz-FitzGerald contraction )等公式,這絕對不可能是一個巧合。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
44 篇文章 ・ 58 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

101
2

文字

分享

0
101
2
時間與空間的顛覆!如何用簡單的方式了解「相對論」?——《物理角色圖鑑》
azothbooks_96
・2024/09/16 ・2086字 ・閱讀時間約 4 分鐘

時間不再絕對?牛頓與愛因斯坦的時間觀差異

川村老師,請用簡單的方式告訴我「相對論」是什麼?

圖/《物理角色圖鑑》

老師:狹義相對論源自相對性原理(Principle of relativity,指物理定律〔Physical law〕適用於所有以等速直線運動的物體) 與光速恆定原理。根據這個理論,時間是相對的,依不同觀察者而有所差異。牛頓力學中的時間是絕對的,愛因斯坦則認為,可依不同的觀察者位置對時間進行不同定義。

圖/《物理角色圖鑑》

老師:之前在討論「力」時,也提過離心力。離心力是「慣性力」的一種,慣性力指物體在加速運動時感受到的與加速方向相反的力。置身在沒有窗戶的電梯中,當電梯向上加速,電梯內的人會受到向下的慣性力(譯注:因看不到外面,使得他無法判斷電梯的運動情況)。若加速度為 g,物體質量為 m,則物體所受慣性力為 mg,與在地面所受的重力 mg 相同。愛因斯坦無法區別這兩種 mg 的差異,所以視為等效。但無論慣性力的方向為何,物體都會往向量合成後的視重力場方向掉落。

時間在任何地方都固定不變嗎?

世界上最快的速度是光速。物體的移動速度若接近光速,它的時間進程就會變慢。也就是說,在接近光速的太空船上,時間會變得悠長。而且,接近光速的物體長度會朝行進方向收縮。

物體只要具有質量,即使在靜止狀態依然擁有能量(其能量 E mc2,稱為靜止能量(Rest energy)。

-----廣告,請繼續往下閱讀-----

提到光的運動,我們已經知道光的路徑會彎曲。

1919 年,天文學家觀測到恆星發出的光線在經過太陽附近時被偏折,這種現象稱為「重力透鏡效應」(Gravitational lens),有助於了解黑洞等宇宙中質量分布的情況。此外,天體物理學家也觀測到時間的延遲。簡而言之,接近地面的時鐘行進速度會比高處的時鐘慢,GPS 也是依據這種效應來進行校正。

圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

時間

牛頓力學中的「時間」(也就是我們一般理解的時間)和相對論中的時間大異其趣。牛頓在《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica,1687)中,假設空間是均勻平坦的;從過去到未來,在任何地方都平均延伸。在牛頓力學中,全宇宙的時間一致。

但相對論否定了這一點。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

光速恆定原理指出,光的速度是固定不變的。這種狀況下,空間中不同地點發生的兩件事,對某個觀測者來說是同時發生,但對另一參考系的觀測者而言則非同時發生。也就是說,時間的前進速度並非在任何地方都相同。因此,時間和空間不能視為各自獨立的兩回事,應該一體化,視為四維空間(時空,Spacetime)。

不過,這是指物體移動速度接近光速時的情況。日常生活中,使用過去的時間觀不會有任何問題。

黑洞

黑洞(Black hole)是一種天體,因為密度極高,重力極強, 不只物質,連光都會被吸進去,無法逃逸。天體是宇宙中所有物體的總稱,具體來說,指太陽、恆星、行星、星團、星雲等。從相對論來看,黑洞周圍空間是扭曲的。照以下方式想像應該會比較容易理解:

把重物放在一大塊展開的薄橡皮布上,放置處就會凹下去,而這塊凹陷會影響到周圍。同樣的,黑洞所在之處會發生猛烈的空間扭曲,經過附近的天體會被極強的重力吸引,落入其中,連光也難逃魔掌。

-----廣告,請繼續往下閱讀-----

銀河系有許多黑洞,但具體數字不詳。2019 年,一個跨國研究計畫團隊首次拍攝到黑洞的「影子」,掀起一陣討論熱潮。

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。