0

0
0

文字

分享

0
0
0

談物理課中的典範敘述-丁肇中的實驗物理——《科學月刊》

科學月刊_96
・2016/02/23 ・2848字 ・閱讀時間約 5 分鐘 ・SR值 557 ・八年級

簡宗奇/桃園市立南崁高中物理科教師。

01
1976 年諾貝爾物理獎得主丁肇中博士。 Source: wikipedia

能給電子一個大小嗎?

電子之為物,微乎其微;電子之小也難以詞敘,但其影響力能造就如此繽紛多彩的3C 產業,影響現代人類生活至深且鉅。不過當學生一問:「電子既然是基本粒子,那它有體積嗎?」「如果有體積,那半徑是多少?」倒還真的不容易回答;這是大哉之問,不管是看成是科學式或是哲學式的命題,要提出中肯而完整的答覆是有相當難度。我通常會以華裔諾貝爾物理獎得主丁肇中教授過去在這方面的實驗研究為例回應,並簡述一段粒子物理發展的歷程與故事。

丁肇中是來自臺灣在國際發光的實驗物理巨擘,近半世紀以來的成就已為學界崇高典範,同為華人都能深感光榮。從他身上可見其鮮明的人格特質,其堅毅卓絕的精神與窮究物理的睿智,更值得我們嚮往與學習。

1947 年間,由費曼、薛文格與朝永振一郎建立的量子電動力學主張電子是沒有體積的點狀粒子。但是在1964 年,美國哈佛大學與康乃爾大學的專家實驗結果否定了此一說法,他們利用高能光束照射電子的研究發現電子是有半徑的,且在10-13 至10-14 公分之間。

-----廣告,請繼續往下閱讀-----

對此一理論與實驗的衝突,丁肇中在1966 年用德國電子同步加速中心的機器以不同方法重做了此一實驗,最後證明電子的半徑小到不可量度,量子電動力學(QED)還是對的。30 年之後,他又利用歐洲共同核子研究所的LEP 加速器進行相同的實驗,靈敏度再提升了3 個數量級後結論依然不變:電子沒有體積,QED 正確無誤。

丁肇中藉此給了我們一個體會,這也是科學家應有的懷疑態度,不畏懼挑戰權威,永遠要保持獨立思考,「不要盲從專家的結論。」

在不疑處有疑

接著丁肇中就質疑,「同樣是基本粒子的夸克就只有三種嗎?」雖然當時以三種夸克的論點就已能解釋看到的所有現象;如要找尋新夸克,需要靈敏度更高的探測器,學界多半認為不可能也沒必要,因此他提出的計畫未受青睞、飽經挫折;經過多年的努力之後,才在美國布魯克海汶國家實驗室的AGS 加速器進行這項實驗計畫。這項實驗科技突破以往,其靈敏度高達百億分之一;他比喻,「如同在一座下雨的城市裡,每秒鐘有一百億個雨滴,其中只有一個是紅色的,而你要把它找出來」,可見其超高難度。

丁肇中相信自己的物理直覺,毫不膽怯地迎接挑戰,終於在1974 年間發現了由全新夸克組成的J 粒子;這項創舉證明了三種夸克論點是錯的,並且這種質量大、壽命長的同族粒子也都陸續現身;他因此獲得1976 年諾貝爾物理獎;而他在諾貝爾獎頒獎典禮中,突破慣例以中文演說的事蹟更是一段佳話。

-----廣告,請繼續往下閱讀-----

他以此為例鼓勵後進:「永遠對自己充滿信心,做自己認為是正確的事。」這是丁肇中給我們的第二種體會;科研工作一樣有險阻,自信心與智慧是勇往直前的動能。

「全力以赴,準備接受驚奇」

布魯克海汶國家實驗室的AGS 曾是在1950、60 年代最大的加速器,研究團隊曾經為了研究π 介子與質子的交互作用時,意外地發現2 種微中子與CP 對稱破缺;在70 年代規模最大的費米國家實驗室曾經為了探究微中子物理,結果發現的是第5 種、第6 種夸克;史丹福直線加速中心也曾經為了實驗檢證量子電動力學,結果也是出乎意表地找出了「部分子」、「τ 輕子」與「ψ 粒子」。

70 年代末期,丁肇中在德國電子與正電子對撞實驗室裡本來是要研究第6 種夸克的,最後意外地在偵測器中發現了新的粒子射流,後來他們稱之為「膠子」,這是傳遞強作用力的媒介物質,在量子色動力學(QCD)裡舉足輕重,其重要性自不待言。而這段研究歷程賦予了我們第三種體會:「對於意料之外的現象要有充分準備。 」丁肇中治學嚴謹,有精準的物理直覺,能掌握現象脈絡、洞察機先,也是這項偉大發現的重要關鍵。

接著在1980 年代,丁肇中持續在高能物理與基本粒子的領域發光發熱,領導並主持近20 個國家、600 多名科學家的大型國際合作計畫在歐洲共同核子研究所的LEP 中進行;其以高能的電子與正電子對撞後製造宇宙創生的能量狀態,試圖藉此追索真理的閃耀火光。其多項實驗結果確立了三代的基本粒子家族,確認電子與夸克是沒有內在結構、沒有體積的基本粒子,並且對標準模型的論證做出許多重要的貢獻。

-----廣告,請繼續往下閱讀-----

丁肇中在實驗物理方面的重要貢獻

20n

實驗力爭造物功

丁肇中在90 年代開始投入找尋反物質與暗物質的「國際太空反物質探索計畫──AMS 實驗(Alpha Magnetic Spectrometer)」。這項計畫是將人造的磁質譜儀送上太空用以偵測反物質與暗物質。前驅性計畫的AMS-01在1998 年由發現號太空梭載至太空進行了10 天實驗;AMS-02 則在2011 年由奮進號太空梭送上國際太空站,固定在太空站上執行長時間的偵測任務,是世界迄今唯一獲准在國際太空站進行的大型科學計畫。

03
探索宇宙反物質與暗物質的磁質譜儀AMS-02。 Source: AMS-02

AMS-02 由16 個國家、60 多所大學、600 多位科學家合同運作,臺灣包括中研院、中科院、中央大學、成功大學與國家太空中心都參與設計製造、校正觀測儀器與數據分析的任務。AMS-02 四年來蒐集的數據顯示在暗物質的闃黑當中已乍現曙光,其最新繪出的數據分布趨勢與暗物質理論模型的前半段極為相似,後續的研究發展可見樂觀與信心。他給我們的第四個體會是「要實現你的目標,最重要的是要有好奇心;要對自己正在做的事感興趣,而且要勤奮地工作。」

04
搭載AMS-02 的國際太空站。 Source: NASA

丁肇中縱橫物理世界數十年,他時以親歷的這四個科學實驗串起自己作為實驗物理學家的生涯;至今,他仍未休止,他壯行真理千山,實驗力爭造物功,仍在物理探索的最前沿奮進不懈;他鼓勵年輕人如果有志投身科學研究,要刻苦工作、不怕艱辛,應該打開眼界對科學發展的方向有明確的認識。

述說典範也是教學

「故事敘述」是後現代行政哲學裡,組織互動溝通與建立心智模式的行動策略之一,透過故事敘述的歷程可為促進系統思考、型塑共同願景與履行達成目標;此施之於教學亦然。科學史則是科學課程故事敘述的主要文本,必要時可以適時激發學生學習興趣,營造物理課堂的情意氛圍,啟動熱誠的學習行為,並且引人入勝。

-----廣告,請繼續往下閱讀-----

高中物理教科書鮮少提及華人的貢獻,主要是因為課程單元相關性之故,不過以其長年來在實驗物理的各項偉大成就來說,丁肇中仍然值得大書特書的。「真理隱乎幽微,而慧智窮究之」;我想這是仰止大師「雖不能至,而心嚮往之」的最佳寫照了!

述說一個科學歷程或故事,詮釋一個科學概念,融入一種情意教育,試著與人性良善特質兼容並蓄,讓物理往情性感知的一隅靠攏,使生硬的科學課程擁有勵志的元素,如此一來也許會更有意義;有人說這也是一種教育美學。

2016-02-cover〈本文選自《科學月刊》2016年2月號〉

延伸閱讀:

-----廣告,請繼續往下閱讀-----

親身體驗史上最大物理實驗—CERN OPENDAYS
研究基本粒子的理論學家—中央大學物理學系蔣正偉教授專訪

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

點此觀看我們的改版紀念MV!

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3704 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

8
3

文字

分享

1
8
3
從 J 粒子到宇宙射線——實驗物理學家丁肇中的研究之旅
研之有物│中央研究院_96
・2023/05/20 ・9459字 ・閱讀時間約 19 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 整理撰文/郭雅欣
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

丁肇中是享譽全球的物理學家,他的研究為現代物理學奠定了基礎,也讓他獲得 1976 年的諾貝爾物理獎。丁肇中是中央研究院院士,也是現任麻省理工學院的物理學教授。

歷經數十年實驗物理的研究之路,他用一次次的實驗結果打破原本的理論認知,為物理學開創了新的道路。

丁肇中如何從 J 粒子的發現,走到最前沿研究宇宙射線,探索宇宙的起源與未知?中研院「研之有物」梳理記錄丁肇中 2022 年在院內物理研究所的演講內容,介紹他在物理學領域的傑出成就以及科學家的體悟。

-----廣告,請繼續往下閱讀-----
丁肇中院士 2022 年 12 月在中研院物理所演講,題目為「我所經歷的現代物理和我的體會」。圖/中研院物理所

實驗是自然科學的基礎,理論如果沒有實驗的證明,是沒有意義的。當實驗推翻了理論後,才可能創建新的理論;理論是不可能推翻實驗的。過去 400 年來,我們對物質基本結構的了解,大都來自於實驗物理。」

中研院物理所於 2022 年 12 月 27 日舉辦了李水清講座,邀請到著名的實驗物理學家丁肇中,他以這段話做為整場講座的開端。

從丁肇中踏上實驗物理之路開始,至今已有 60 多年,這一路走來,丁肇中累積了許多突破性的成果,這些經歷也讓他獲得了豐富的人生體會。在這場講座中,丁肇中以「我所經歷的現代物理和我的體會」為題,一一細數這些成果及體會,在言談中展露出他對物理的熱情、堅持,以及永不磨滅的興趣與好奇心。

做實驗不盲從專家:證明電子沒有體積

1965 年丁肇中前往德國的大型粒子物理學研究機構「德國電子加速器」(DESY)進行第一個實驗工作,目的是證明「電子沒有體積」。為什麼要做這個實驗呢?因為當時科學家對電子有無體積的問題出現了爭議。

根據理查.費曼(Richard Feynman) 、朱利安.施溫格(Julian Schwinger)和朝永振一郎在 1948 年提出的量子電動力學理論(Quantum Electrodynamics,簡稱 QED),電子是沒有體積的,當時所有的實驗都證明了 QED 理論的完備性,他們三人也因此獲得 1965 年的諾貝爾物理獎。

-----廣告,請繼續往下閱讀-----

可是在 1964 年時,哈佛大學和康乃爾大學的科學家和專家耗費多年心思,進行兩個不同的實驗,卻得出與 QED 相反的結論——量子電動力學是錯誤的,電子是有體積的,半徑是 10-13~10-14 公分。這個結論是兩個不同實驗團隊的成果,也因此受到物理界人士的認可和重視。

當時剛獲得博士學位的丁肇中,決定用不同方法來測量電子半徑。丁肇中回憶:「那個時候沒有人相信我能做出這個實驗,更沒有人支援我。」所以在 1965 年,丁肇中決定離開美國,到德國新建的 DESY,利用這個周長 320 公尺的加速器,產生能量 75 億電子伏特的光,打到儀器上,以測量電子的半徑。

在德國八個月後,丁肇中的實驗結果證明量子電動力學是正確的:電子真的沒有體積,它的半徑小於 10-14 公分。我們可以說:在當年實驗可及的範圍內,電子半徑為零(consistent with zero)。這推翻了當初康乃爾大學與哈佛大學備受重視的實驗結果。

丁肇中:「我的第一個體會就是:做實驗不要盲從專家的結論。」

縱軸是正負電子對產生率的實驗結果和 QED 理論預測的比值,橫軸是到電子中心的距離,代表電子半徑大小。圖/研之有物(資料來源/丁肇中)

證明宇宙新物質—— J 粒子

1965 到 1970 年間,丁肇中在 DESY 做了他的第二個實驗,這是一系列和光子、重光子相關的實驗。光子的質量為 0,當時已經知道有三種重光子,它們的質量約為 8 億~10 億電子伏特(eV/c2),其他的特徵則與光子一樣。

-----廣告,請繼續往下閱讀-----

丁肇中表示,在高能情況下,重光子與光子應該可以互相轉化,只是機率很低。要找到互相轉化的事例,實驗裝置必須能辨識出一億分之一的發生事例,後來他也成功完成了這項困難的實驗。

之後,丁肇中還想解決另一個問題:「為什麼所有的重光子質量都和質子的質量相近,都是 10 億電子伏特左右?」為了尋找更重的重光子,丁肇中決定到美國布魯克黑文國家實驗室(Brookhaven National Laboratory)的質子加速器上,做一個更加精密的探測器。

要找到高質量的重光子,必須每秒鐘輸入一萬億個高能量質子到探測器上,這會徹底破壞探測器,也會對工作人員造成危險。所以,丁肇中發展的新探測器不但必須非常精確,還必須是在非常強的放射線下,能正常工作的儀器。

因此輻射遮蔽相當重要,如下圖。藍色部分是磁鐵,黃色部分是大型探測器,為了保護探測器,在中心放射線周圍包裹了厚厚的水泥,黑色區塊部分是遮蔽材料,例如鈾、鉛和肥皂(含水可吸收中子),放在水泥周圍遮蔽輻射,位置會依實際需求做改動。此外,圖中 A0、 A、B、C、a、b、S 等黑色線段都是小型探測器。

-----廣告,請繼續往下閱讀-----

這個實驗的遮蔽材料總共用了 5 噸鈾 -238、100 噸的鉛、 5 噸的肥皂,以及 1 萬噸的水泥。整個實驗設施的最外圍,還會堆上大量的水泥塊,保障工作人員安全。

新探測器必須非常精確,還必須在非常強的放射線下遮蔽輻射,避免影響儀器。圖中藍色部分是磁鐵,黃色部分是大型探測器;黑色區塊部分是遮蔽材料,例如鈾、鉛和肥皂,放在水泥周圍遮蔽輻射,位置會依實際需求而變動。此外,圖中 A0、 A、B、C、a、b、S 等黑色線段都是小型探測器。圖/研之有物(資料來源/丁肇中)

高質量的質子碰撞,可以增加新粒子產生的機率,但其他無關事例產生的機率也同樣會提高。丁肇中形容,尋找高質量的重光子就像是:

「在臺北下雨的時候,每秒鐘會降下 100 億顆雨滴,其中有一顆的顏色不同,你必須在 100 億顆裡面把它找出來。」

可想而知,物理界都不看好這個實驗,因為理論物理學家認為,現有理論已「足夠」解釋現象,找高質量的重光子物理意義不大;實驗物理學家則認為,沒有人能做出如此困難的實驗。

-----廣告,請繼續往下閱讀-----

在排除萬難的堅持之下,1974 年丁肇中就在實驗中發現了新的粒子「J 粒子」,它的壽命比已知的粒子長一萬倍。丁肇中說:「這個發現的重要性,就等同於我們到深山裡發現了一個偏僻的村子,村民不是一百歲,而是一百萬歲,也就是這些人和普通人類是不一樣的。」

換句話說,這證明了宇宙中有新的物質存在,理論必須修正。

當時科學界流行三夸克模型,也就是用三種夸克基本粒子來解釋質子和中子的狀態,而 J 粒子的發現,證實了還有第四種夸克「魅夸克」(Charm quark)的存在。

這段歷程讓丁肇中有了第二個體會:

-----廣告,請繼續往下閱讀-----

「做基礎研究要對自己有信心,做你認為正確的事,因為自然科學的發展基本上是多數服從少數,不要因為大多數人反對而改變你的興趣。」

意外的發現——膠子

1970 年代,丁肇中的第三個實驗,是在德國正負電子對撞機(PETRA)上做的,PETRA 是當時能量最高的正負電子對撞機,可讓 300 億電子伏特的正負電子對撞。丁肇中在實驗過程意外發現膠子的存在。

膠子是人眼不可見的基本粒子,是自然界基本作用力「強作用力」的傳遞媒介(Force carrier)。根據現在的標準模型(Standard Model),我們知道原子核裡面有質子和中子,質子和中子是由數個夸克組成,而膠子可以在夸克之間傳遞強作用力,讓夸克束縛在一起。

從原子到夸克的示意圖,膠子是夸克之間的「強作用力」傳遞媒介,用彈簧形狀示意。(為求圖片精簡,仍使用三夸克模型)圖/研之有物(資料來源/丁肇中)

那麼,丁肇中是如何發現膠子的呢?

物理中用來描述強作用力的理論是量子色動力學(Quantum Chromodynamics),根據理論預測,一個正電子和負電子碰撞時會產生能量,大部分是轉變成一對夸克和反夸克(兩個噴柱)。偶爾會產生夸克、反夸克和一個膠子(三個噴柱)。

-----廣告,請繼續往下閱讀-----

在丁肇中的實驗中,透過大量的測量,發現正負電子對撞後,果真出現了許多三噴柱的事例,這三個噴柱現象的數量與分布和量子色動力學是符合的,這個實驗結果證明了膠子的存在。

「我們最初做實驗的時候,並沒有想到會發現膠子。最初做實驗目的是繼續尋找電子的半徑。」丁肇中說。因此這個實驗帶給丁肇中的第三個體會,就是:

「對於意外的現象,要有充分的準備。」

大型國際科學合作:L3 實驗

丁肇中的第四個實驗,是 1982~2003 年在歐洲核子研究中心(CERN)進行的 L3 實驗。他們以周長 27 公里的加速器,將對撞的正負電子能量增加到 1000 億電子伏特,碰撞時的溫度是太陽表面的 4000 億倍,也是宇宙誕生最初的 1000 億分之一秒時的溫度,「我們是在實驗室內製造宇宙剛開始的情況。」丁肇中說。

這個實驗的目的是尋找宇宙中最基本的粒子,解答關於宇宙中各種粒子的問題,包括宇宙中有多少種電子?電子有多大?為什麼找不到電子的體積?電子能不能分成更小的粒子?現在有人說最基本的粒子是夸克,夸克到底有幾種?夸克有多大?能不能分成更小的粒子?

這次的國際合作實驗,有美國、蘇聯 、中國、臺灣、歐洲等 19 個國家,共約 600 名科學家共同參加。實驗的規模很大,每個國家也各司其職。

實驗的最外層重達 1 萬公噸的磁鐵,以及探測器中 300 公噸的鈾,都來自蘇聯;用於探測高能粒子和高能射線的鍺酸鉍晶體(簡稱 BGO),原本全世界年產量只有 4 公斤,經由中國上海矽酸鹽研究所研發成功,生產了 12 公噸,用於這項實驗中;臺灣與義大利、瑞士的團隊共同研發矽微條軌跡探測器,測量粒子位置的解析度可達 5 微米,中央大學團隊也參與了數據分析。

L3 的實驗前後進行了 20 年,發表了 300 篇相關論文。丁肇中總結出以下結論:

  1. 宇宙中只有三種不同的電子和六種不同的夸克。
  2. 電子是沒有體積的,它的半徑小於 10 -17 公分。
  3. 夸克也是沒有體積的,它的半徑小於 10 -17 公分。
  4. 所有的實驗結果都和電弱理論符合,電弱理論是描述電磁力和弱作用力的理論。

「很不幸的,所有的結果都和電弱理論符合。」丁肇中說:「當一個實驗和理論有衝突的時候,才能學到新的東西,把理論推翻掉。假如實驗結果和理論符合,那麼學到的東西就很少。所以對我來說,L3 並不是成功的實驗。」

這個首次的大型國際合作經驗,也為丁肇中帶來了第四個體會:要領導一個國際合作,要選科學上最重要的題目,引起參加國際科學家的最大興趣。對貢獻大的國家要有優先的認可,使之得到國際上的公認,才能得到參加國政府長期的優先支援。

「要領導一個國際合作,要選科學上最重要的題目。」

國際太空站照片,阿爾法磁譜儀(AMS-02)位於國際太空站一側, 如右側紅圈處。圖/European Space Agency

史上創舉:阿爾法磁譜儀上太空

丁肇中的第五個實驗目前仍在進行中,那就是位在國際太空站上的阿爾法磁譜儀(Alpha Magnetic Spectrometer,AMS)。

AMS 目標是研究宇宙射線的特性和起源。帶電的宇宙射線有質量,會被地球表面上 100 公里厚的大氣層吸收,所以我們無法在地面上研究帶電宇宙射線的電荷、動量等性質。這就是為什麼必須把一個磁譜儀放在外太空。

磁譜儀內含有磁鐵,當宇宙射線進入磁譜儀,會因為磁鐵的影響而偏轉軌跡,不同的粒子會留下不同的軌跡,因此根據偏轉的軌跡,就可以分辨出是哪一種宇宙射線粒子。在此之前,從來沒有人會把一個超大磁鐵放到太空站上。

國際太空站照片,阿爾法磁譜儀(AMS-02)正在收集宇宙數據,於 2011 年 5 月 19 日安裝完成。圖/NASA

丁肇中說,原因非常簡單,「大家都知道指南針的原理。當指南針放在太空站上,一端向北、一端向南,很快就會讓太空站失去控制。」為此,AMS 團隊設計了一個特殊的環形磁鐵,從外觀看就像一個木桶,它的磁場不會洩露,「AMS 做過兩次飛行,第一次是用太空梭載運到軌道上運行十天,就回到地面,驗證了這個實驗的可行性。第二次才送到太空站上。」丁肇中說。

AMS 也是一個國際合作的科學計畫,參與的團隊來自世界各地,臺灣也包括在內。對於如何挑選合作夥伴,丁肇中特別提到:「這個實驗很困難,是一個沒有人做過的實驗,你一定要專心。所以參加的人通常只做這個實驗。」

NASA YouTube 頻道對 AMS 磁譜儀的簡介。圖/NASA

AMS 獲得了很多的支援,2008 年,美國參議院和眾議院甚至通過了一條法律,在當時希望盡量減少太空飛行的時空背景下,要求美國政府為 AMS 增加一次太空梭飛行任務,把磁譜儀送到國際太空站上去。

自從 2011 年 5 月升空至今,AMS 在太空中順利地運行,值得一提的是,由臺灣製造的電子系統非常成功,丁肇中說:「整個電子系統包括 650 個微處理器 、30 萬個訊號通道。最值得驕傲的是,至今已經 11 年了,沒有一個是壞的 。

AMS 的訊號經由 NASA 通訊衛星傳遞,每日 16 小時由位在 CERN 的控制中心負責監控。在歐洲的夜間時段,則轉到中山科學院的亞洲控制中心監控,實現全年無休,每日 24 小時的監控。

「一開始做實驗的時候,我並沒有想到,太空站在太空中一定要不斷運行,這樣向心力與引力才會平衡。」丁肇中說:「這就表示我們沒有週六、週日,沒有中秋節也沒有過年,每天都要嚴格地監控著。」

丁肇中院士於 2013 年 5 月講述 AMS 首次研究成果。圖/NASA

科學研究的競爭只有第一,沒有第二

這 11 年來,AMS 獲得了許多和現有理論不符合的結果,帶來了對宇宙全新的認知。AMS 第一個成果是探索宇宙中電子與正電子的來源。

目前推測電子和正電子來源有三種可能性:宇宙線(含有質子和氦)與星際物質之間的碰撞、脈衝星產生、再來是暗物質的碰撞。圖/研之有物(資料來源/丁肇中、Wiki)

根據 AMS 目前的成果,關於電子的來源,宇宙線碰撞產生的電子佔比極低,顯然不是主要來源。從數據來看,電子主要是由兩個未知來源的冪律譜數據疊加而得,目前仍缺乏理論解釋冪律譜的來源。所謂的冪律譜,就是能譜隨著能量的某次方變化。

至於正電子的來源,如下圖所示,低能量的正電子主要來自宇宙線的碰撞,高能量正電子的分布則大致與暗物質理論相符合,丁肇中表示,「到 2030 年,AMS 的數據誤差會更縮小,」屆時就能真正證明高能正電子是否來自暗物質碰撞,「這是一個非常重要的目標。」

另一方面,AMS 也從數據推論出高能量正電子的來源很可能不是脈衝星,所以更意味著暗物質才是高能量正電子的主要來源,後續期待更多數據的佐證。

除了探索電子來源之外,AMS 也檢視了正電子的來源。低能量的正電子主要來自宇宙線的碰撞,高能量正電子的分布則大致與暗物質理論相符合,有待更多數據驗證。圖/研之有物(資料來源/丁肇中)

AMS 的第二個重要成果,是探索宇宙射線的特性和起源。

宇宙射線分為一級、二級宇宙射線。一級指的是在恆星裡經過核融合產生,然後在恆星爆炸的過程中被加速到高能量的射線,包括氫、氦、碳、鐵等。二級宇宙射線是一級宇宙線和星際物質相撞產生的,包括鋰、鈹、硼、氟等。

AMS 發現,一級宇宙射線可以依據剛度(動量除以電荷)的變化分成兩種,第一種包括氦、碳、氧、鐵,第二種則包括氖、鎂、矽、硫。而二級宇宙射線也分為兩種剛度變化:鋰、鈹、硼隨著剛度的變化是一樣的,氟則是另外一種變化。

宇宙中有各式各樣的宇宙射線,可是它們隨著剛度的變化卻是有限的,「這是不可想像的現象,」丁肇中說:

「所有宇宙射線的實驗結果都與理論不符合——所有目前的理論都是錯誤的。」

AMS 將繼續工作到 2030 年,在那之前,AMS 的探測器會升級,讓接收度提升三倍。AMS 將在宇宙這個最廣袤的實驗室中,持續收集數據,尋找自然界中存在,而我們未曾想到、也不曾發現的現象,改變我們對宇宙的認知。

「我的大多數實驗都受到很多人的反對。理由是實驗沒有物理意義、實驗非常困難,不可能成功。」丁肇中說:「可是過去 45 年來,很多優秀的科學家,包括臺灣的李世昌院士和張元翰教授[註],對實驗做出很重要的貢獻。實驗結果改變了我們對宇宙的認知。每一個實驗都發展新的儀器,讓實驗成功。」

丁肇中以自身的最後一個體會,為整場講座下了一個總結:

「自然科學的研究,是具有競爭性的,只有第一名,沒有第二名。」畢竟,「沒有人知道誰是第二個發現相對論的。」

最後,「研之有物」也收錄了在該場演講的尾聲,中央研究院物理所的李世昌院士與丁肇中院士的精彩對談,他們是合作多年的朋友,在問答之間,我們也能更瞭解丁院士如何看待實驗物理,節錄摘要如下。

李世昌院士(左)與丁肇中院士(右)對談。圖/中研院物理所

Q:您到母校密西根大學的時候 ,起初是想要鑽研理論物理,但為什麼後來改朝實驗物理的方向進行?

我起初其實是學機械工程,但當時還沒有電腦,必須自己畫圖,而我一條線都畫不直,所以我的老師建議我改念數學或物理。而就像李院士說的,我一開始選擇了理論物理,但後來,發現電子自旋的喬治.烏倫貝克(George Uhlenbeck)教授給了我啟發。

烏倫貝克說:「如果重來一次,我會選擇當個實驗物理學家,而不是理論物理學家。」我問他為什麼,他說:「對物理真正有影響力的理論物理學家,一隻手的指頭就數得出來。但做實驗得到的每一個結果,都是對物理、對人類知識有貢獻的。」我和他談完之後,就在他的辦公室外走來走去,然後告訴他:「You are right, I’m leaving you.」(在場聽眾笑)

Q:剛才演講中,您強調科學需要打破現有理論才會進步。但是我跟您工作這麼多年,看到您經常徵詢有名的物理學家意見,也有邀請理論物理學家參加 AMS 實驗組的大會。因為您對理論不會完全相信,所以想請問您在什麼情況下 ,會覺得要跟這些理論物理學家談一談?

我通常在進行大型實驗之前 ,會找幾個人談一談。 一個是實驗物理學家沃爾夫岡.帕諾夫斯基(Wolfgang K. H. Panofsky),他在史丹佛大學做了一個兩公里長的直線加速器,對技術及理論都非常了解。還有一個人是理查.費曼(Richard Feynman),我和費曼相熟是因為我證明了他的理論是對的。

此外包括史蒂文.溫伯格(Steven Weinberg) 、謝爾登.格拉肖(Sheldon Glashow)等物理學家,我也會跟他們談我的實驗。通常我都是已經想好實驗以後,再聽聽他們的意見作為參考,不過我從來不照他們所說的去做。

Q:您曾經說過,如果人是依據自己有什麼能力,再來選擇研究的課題,這是最笨、最愚蠢的,應該先看一個題目有沒有重大影響力來決定。如果自己的能力不足,可以找別人合作。請問您在做完 L3 實驗之後,是如何選擇現在正在進行的 AMS 實驗?

當時我已經做了很多加速器的實驗,我想下一步,應該挑一個大家都認為不可能的實驗,所以就挑了一個到太空去做的實驗,也就是 AMS。我從來沒有做過太空實驗,我們組裡也沒有一個人有太空相關的經驗,所以過去的經驗是沒有意義的。

當我和美國政府提出 AMS 實驗時,美國能源部反對。他們認為我從來沒做過太空實驗,而且太空實驗非常非常貴。為了證明實驗的價值,我要求他們成立評審委員會,成員必須是世界第一流的科學家 、美國科學院院士以及拿過諾貝爾獎的人。

這是因為第一流科學家眼光比較遠,能夠看到將來。後來委員會成立,成員包括許多天文物理學家。經評審後,他們認為這是很重要的實驗。最後我們就在 NASA 展開了 AMS 實驗。

Q:發表的實驗結果一定要正確,這是您最重視的一件事。在發現 J 粒子的時候,從您看到訊號到最後決定發表,隔了很長的時間。有人說如果您早一點發表,Burton Richter 可能就沒有機會和您共同得到諾貝爾獎。您對於實驗的結果,是如何決定發表的時機?

我們是在 1974 年 8 月看出有 J 粒子的訊號,本來打算在 10 月時發表,但我想稍微等一等,看能不能看到更高能量的粒子,所以才等到 11 月。當時我並不知道別人可以用正負電子對撞機來做這個實驗。直到 11 月 11 日,我到史丹佛大學去,才知道伯頓·里克特(Burton Richter)帶領的 SLAC 國家加速器實驗室團隊也發現了一樣的事情。

至於 AMS 的成果,我一直提醒大家記住一件事,我們花了 20 年的時間準備這個實驗,在接下來的半個世紀,我想很可能沒有人會再像我們這麼笨,再放一個磁譜儀到太空中,所以如果發表了什麼結果,一定會影響整個物理研究的方向,所以要特別小心謹慎。

註解

  • 註:李世昌院士現為中研院物理所兼任研究員,張元翰現為中研院物理所特聘研究員。

延伸閱讀

  1. Mars, K. (2022). About AMS-02. NASA. 
  2. Spry, J. (2021). A $2 billion particle detector stars in new Disney Plus docuseries “Among the Stars”: Q&A with principal investigator. Space.com. 
  3. AMS Collaboration, Aguilar, M. A., . . . Zuccon, P. (2021). The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven yearsPhysics Reports894, 1–116. 
  4. AMS Collaboration, Aguilar, M. A., . . . Zuccon, P. (2019). Towards Understanding the Origin of Cosmic-Ray PositronsPhysical Review Letters122(4). 
  5. Lindley, D. (2016). Landmarks—The Charming Debut of a New Quark. Physics. 
  6. SciShow. (2012). Strong Interaction: The Four Fundamental Forces of Physics #1a [Video]. YouTube. 
  7. Samuel C.C. Ting. MIT Physics. 
  8. Samuel C. C. Ting | The Alpha Magnetic Spectrometer Experiment. (n.d.). AMS-02.space.
  9. Samuel C.C. Ting Facts. (n.d.). NobelPrize.org. 
  10. Samuel C.C. Ting Nobel Lecture. (n.d.). NobelPrize.org. 
  11. 張忻郁(2021)。〈【丁肇中獲頒諾貝爾物理獎40週年專題】丁肇中院士介紹〉(張元翰編),《科學 Online》。
  12. 國立成功大學-數位演講網(2018)。〈20150813 丁肇中探索宇宙中的基本結構和宇宙的起源 [影片]〉,《YouTube》。
  13. 臺大科學教育發展中心 CASE(2016)。〈【大師演講】丁肇中院士獲頒諾貝爾物理學獎40週年:我所經歷的實驗物理 [影片]〉,《YouTube》。 
  14. 簡宗奇(2016)。〈談物理課中的典範敘述-丁肇中的實驗物理——《科學月刊》〉,《PanSci 泛科學》。
  15. 張瑞棋(2015)。〈發現「J 粒子」──丁肇中生日|科學史上的今天:1/27〉《PanSci 泛科學》。
  16. Musser, G.(2011)。〈反物質之眼〉(甘錫安譯),《科學人知識庫》。
  17. 郭雅欣(2011)。〈上太空找反物質〉,《科學人知識庫》。
-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3619 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
原子理論是什麼?你夠了解原子嗎?——《科幻小說不是亂掰的:白日夢世界中的真實科學》上
時報出版_96
・2019/06/11 ・2663字 ・閱讀時間約 5 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

來點原子理論吧?

你絕大部分是空曠的空間。是的,在那許多空間中有著所有的電子在你的身體裡與環繞在它們周圍的細胞核。因為數量多到如果所有的空間都被消滅,你會崩解成比一顆雀斑或是一隻螞蟻還小。

這不是關於原子唯一詭異的地方,當你接觸由原子所組成的任何東西時,你其實沒有碰到任何東西。而且,你可以接觸或被觸碰,雙手並沒有穿過你,你所感受到的是電磁力。

圖/maxpixel

以本書為例,電子行進你的指尖的原子軌道只會從這本書的電子感覺到排斥作用。你感受到的是一股排斥的力量,但你認為你感受到的是由你的強大的頭腦所作的決定。這是一件好事,你的雙手可能不想要用這本書打造一個分子,所以就排斥它。

-----廣告,請繼續往下閱讀-----

事實上在摩擦的形式裡有一點化學結合。你不會想要這本書就從手上滑落,那就是說,原子的化學結合是件好事,它能夠結合物質。

原子間的激情碰撞。圖/pixabay

如果你用一把刀切了一片麵包,刀子其實沒有碰到麵包。刀子的原子推開麵包的原子。

這所有的一切都是因為電磁力的關係,它是宇宙裡的四大主要力量之一。這些力量負責所有粒子物理裡的標準模型,這個模型到目前為止是針對物質(粒子〉的基礎材料如何在我們的宇宙遊樂場裡互相合作的最佳解釋。

-----廣告,請繼續往下閱讀-----

四種宇宙力量

  • 電磁—這種力量能把物質連接在一起,包括原子。太好了! 要感謝電磁力,才有光明。我們在宇宙所看到的每一樣東西都是來自電磁波。
  • 重力—有些人覺得重力交互作用很有意思,雖然重力是在標準模式裡,但它卻無法以此來解釋。
  • 弱核力(弱作用力)—這個力量是放射性衰變的原由。聽起來很無趣,但沒了它,就沒有太陽;所以也不會有你的出現。
  • 強核力(強作用力)—這個力量連接原子裡的原子核。如果沒有這個力量,在你以碳為主的身體裡的原子中帶正電質子會互相排斥。還好有這股強作用力將質子與中子一起綁在它們的原子裡的原子核中。

技術補充:這四種力量都有帶粒子,這些帶粒子就像是其它粒子間的使者。例如,一個光子(光的量子,是光的一個粒子的使用術語〉是電磁學的使者。當兩個電子靠近時,它們會送出光子的「走開」的訊息給對方。這個訊息是非常強大並且會把電子推開。

如果一股粒子力量存在於重力,它會默默地傳導。或者更糟的是,它會接受證人保護計畫與躲藏到連科學家都無法找到。而且為了要符合標準模式,它必須在所有物質上用盡所有力量。有些說法是指這有可能是重力子,是重力的量子化化身。重力子是量子力學的聖杯,如果它浮出檯面,科學家可能最後可以讓相對論與量子力學一致。

何謂原子?

每件事物都是由稱為原子的不可分割的粒子所組成。圖/pexels

這個問題的答案可能沒有你想像的那樣簡單。回到遠古時期(約西元前四百六十五年〉,希臘自然派哲學家德謨克利特(Democritus〉說過我們所觀察到的每件事物都是由稱為原子的不可分割的粒子所組成。(原子 atom 源自於希臘文 atomos,意思就是「不可分割」〉。他深信如果你一直將某件物品對半切開,一定會來到一個點是你將無法再切割它。

這些無法分割的基本粒子是組成存在於我們身邊的每個事物。德謨克利特定義了我們現在所叫的原子,但他既對也錯。他對的是每一個事物都是由原子組成,但它們不是最基本的,因為它們可以再拆解。你可能在中學或高中(或更早〉時學過,一個原子可以再分成帶負電的電子、帶正電的質子及不帶電荷的中子。

-----廣告,請繼續往下閱讀-----

圖/wikimedia

所有一般正常的原子都有一個不帶電荷,意思是它們有著相同數量的電子及質子。沒有相等數量的電子及相對應數量質子的原子,我們稱為離子。不同的離子帶有不同的電造成原子結合成分子。這就是化學了。

特立獨行的氦原子

現在事情發展到這裡只會變得更詭異了。試想一個氦原子,這個「某樣東西」的小部分來自於兩個帶負電的電子繞著兩個帶正電的中子。(因為如此,這個原子就不帶電荷。兩個帶負電的電子抵銷了兩個帶正電的質子,它們的電荷是由於電磁力所產生的。〉

你曾經聽過關於異性相吸嗎? 這就是電磁力運作的方式。一個正電無法抵抗一個負電的充滿誘惑吸引力。並且,兩個志趣相投的負電是無法忍受一直膩在一起。根據這種直覺,氦原子是說不通的。首先,就我們所知道的磁鐵,難道電子不會摧毀帶正電的質子嗎?

-----廣告,請繼續往下閱讀-----

第二點,為什麼兩個帶正電的質子不會互相排斥呢?

兩個帶正電的質子不會互相排斥,大概是因為貓太可愛了(大誤。圖/pixabay

第一個問題的答案是電子的軌道因為波粒子二元性不會受到破壞。如果你不記得這個主題,那我們來複習一下:每一個事物都有自己的頻率波。從記憶圖像的觀點來說,可以將波想像成彈簧(從側面看,它像一道波浪〉。當一個電子接近其核心時,彈簧就會變得越來越緊直到某一個寬度是無法再做任何壓縮。這讓它們沒辦法進入原子核中。

為什麼在一個原子核裡的質子會結合在一起的這個問題的解答就是強核力。在一個非常短的距離,假設是一個原子核的寬度好了,其力量的強度遠超過試著要分開它們的電磁力。在這章插曲加碼篇,你會知道這些力量彼此間到底有多強的關聯性。

-----廣告,請繼續往下閱讀-----

答案是宇宙大爆炸後約三十八萬年。第一個原子出現在我們的宇宙是氫與氦原子,是原子裡重量最輕的。比較重的原子一直到一百六十萬年後第一批恆星(團)形成後才出現。所謂的新手,也就是這些較重的原子(元素)像是鐵,一直到第一個超新星出現後才存在。越大的原子有可能越年輕。這是因為它們是從較輕的原子經過混合後所形成的。

 

 

 

——本文摘自《科幻小說不是亂掰的》,2019 年 3 月,時報出版

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。