0

1
0

文字

分享

0
1
0

原子理論是什麼?你夠了解原子嗎?——《科幻小說不是亂掰的:白日夢世界中的真實科學》上

時報出版_96
・2019/06/11 ・2663字 ・閱讀時間約 5 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

來點原子理論吧?

你絕大部分是空曠的空間。是的,在那許多空間中有著所有的電子在你的身體裡與環繞在它們周圍的細胞核。因為數量多到如果所有的空間都被消滅,你會崩解成比一顆雀斑或是一隻螞蟻還小。

這不是關於原子唯一詭異的地方,當你接觸由原子所組成的任何東西時,你其實沒有碰到任何東西。而且,你可以接觸或被觸碰,雙手並沒有穿過你,你所感受到的是電磁力。

圖/maxpixel

以本書為例,電子行進你的指尖的原子軌道只會從這本書的電子感覺到排斥作用。你感受到的是一股排斥的力量,但你認為你感受到的是由你的強大的頭腦所作的決定。這是一件好事,你的雙手可能不想要用這本書打造一個分子,所以就排斥它。

事實上在摩擦的形式裡有一點化學結合。你不會想要這本書就從手上滑落,那就是說,原子的化學結合是件好事,它能夠結合物質。

-----廣告,請繼續往下閱讀-----
原子間的激情碰撞。圖/pixabay

如果你用一把刀切了一片麵包,刀子其實沒有碰到麵包。刀子的原子推開麵包的原子。

這所有的一切都是因為電磁力的關係,它是宇宙裡的四大主要力量之一。這些力量負責所有粒子物理裡的標準模型,這個模型到目前為止是針對物質(粒子〉的基礎材料如何在我們的宇宙遊樂場裡互相合作的最佳解釋。

四種宇宙力量

  • 電磁—這種力量能把物質連接在一起,包括原子。太好了! 要感謝電磁力,才有光明。我們在宇宙所看到的每一樣東西都是來自電磁波。
  • 重力—有些人覺得重力交互作用很有意思,雖然重力是在標準模式裡,但它卻無法以此來解釋。
  • 弱核力(弱作用力)—這個力量是放射性衰變的原由。聽起來很無趣,但沒了它,就沒有太陽;所以也不會有你的出現。
  • 強核力(強作用力)—這個力量連接原子裡的原子核。如果沒有這個力量,在你以碳為主的身體裡的原子中帶正電質子會互相排斥。還好有這股強作用力將質子與中子一起綁在它們的原子裡的原子核中。

技術補充:這四種力量都有帶粒子,這些帶粒子就像是其它粒子間的使者。例如,一個光子(光的量子,是光的一個粒子的使用術語〉是電磁學的使者。當兩個電子靠近時,它們會送出光子的「走開」的訊息給對方。這個訊息是非常強大並且會把電子推開。

如果一股粒子力量存在於重力,它會默默地傳導。或者更糟的是,它會接受證人保護計畫與躲藏到連科學家都無法找到。而且為了要符合標準模式,它必須在所有物質上用盡所有力量。有些說法是指這有可能是重力子,是重力的量子化化身。重力子是量子力學的聖杯,如果它浮出檯面,科學家可能最後可以讓相對論與量子力學一致。

何謂原子?

每件事物都是由稱為原子的不可分割的粒子所組成。圖/pexels

這個問題的答案可能沒有你想像的那樣簡單。回到遠古時期(約西元前四百六十五年〉,希臘自然派哲學家德謨克利特(Democritus〉說過我們所觀察到的每件事物都是由稱為原子的不可分割的粒子所組成。(原子 atom 源自於希臘文 atomos,意思就是「不可分割」〉。他深信如果你一直將某件物品對半切開,一定會來到一個點是你將無法再切割它。

-----廣告,請繼續往下閱讀-----

這些無法分割的基本粒子是組成存在於我們身邊的每個事物。德謨克利特定義了我們現在所叫的原子,但他既對也錯。他對的是每一個事物都是由原子組成,但它們不是最基本的,因為它們可以再拆解。你可能在中學或高中(或更早〉時學過,一個原子可以再分成帶負電的電子、帶正電的質子及不帶電荷的中子。

圖/wikimedia

所有一般正常的原子都有一個不帶電荷,意思是它們有著相同數量的電子及質子。沒有相等數量的電子及相對應數量質子的原子,我們稱為離子。不同的離子帶有不同的電造成原子結合成分子。這就是化學了。

特立獨行的氦原子

現在事情發展到這裡只會變得更詭異了。試想一個氦原子,這個「某樣東西」的小部分來自於兩個帶負電的電子繞著兩個帶正電的中子。(因為如此,這個原子就不帶電荷。兩個帶負電的電子抵銷了兩個帶正電的質子,它們的電荷是由於電磁力所產生的。〉

你曾經聽過關於異性相吸嗎? 這就是電磁力運作的方式。一個正電無法抵抗一個負電的充滿誘惑吸引力。並且,兩個志趣相投的負電是無法忍受一直膩在一起。根據這種直覺,氦原子是說不通的。首先,就我們所知道的磁鐵,難道電子不會摧毀帶正電的質子嗎?

-----廣告,請繼續往下閱讀-----

第二點,為什麼兩個帶正電的質子不會互相排斥呢?

兩個帶正電的質子不會互相排斥,大概是因為貓太可愛了(大誤。圖/pixabay

第一個問題的答案是電子的軌道因為波粒子二元性不會受到破壞。如果你不記得這個主題,那我們來複習一下:每一個事物都有自己的頻率波。從記憶圖像的觀點來說,可以將波想像成彈簧(從側面看,它像一道波浪〉。當一個電子接近其核心時,彈簧就會變得越來越緊直到某一個寬度是無法再做任何壓縮。這讓它們沒辦法進入原子核中。

為什麼在一個原子核裡的質子會結合在一起的這個問題的解答就是強核力。在一個非常短的距離,假設是一個原子核的寬度好了,其力量的強度遠超過試著要分開它們的電磁力。在這章插曲加碼篇,你會知道這些力量彼此間到底有多強的關聯性。

答案是宇宙大爆炸後約三十八萬年。第一個原子出現在我們的宇宙是氫與氦原子,是原子裡重量最輕的。比較重的原子一直到一百六十萬年後第一批恆星(團)形成後才出現。所謂的新手,也就是這些較重的原子(元素)像是鐵,一直到第一個超新星出現後才存在。越大的原子有可能越年輕。這是因為它們是從較輕的原子經過混合後所形成的。

-----廣告,請繼續往下閱讀-----

 

 

 

——本文摘自《科幻小說不是亂掰的》,2019 年 3 月,時報出版

文章難易度
時報出版_96
174 篇文章 ・ 34 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
探索自然知識的先行者:古希臘哲學家如何看待萬物的基本組成?——《世界史是由化學寫成的》
圓神出版‧書是活的_96
・2023/05/15 ・1970字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

古希臘哲學家中,不乏能精準測量天體位置的人,還有能運用幾何學知識來丈量土地的人。儘管他們尚未發展出「實驗」這項科學方法,但相對的,他們非常仔細觀察自然界發生的變化,並思考形形色色的問題,成為自然界和社會的知識探索者。

萬物皆由水組成

古希臘最早深入探索「萬物根源」的人是泰利斯(Thales)。他是個生意做很大的貿易商,曾搭船經由地中海,到埃及推銷橄欖油,是個見多識廣的人。

某天,泰利斯開始萌生疑惑:

世界上有數之不盡的萬象事物,都是由物質所構成的,而且物質的變化方式多得令人驚奇。雖說物質會不斷變化,卻並非無中生有,存在的東西也不可能完全消失;由此可知,物質是不生不滅的。無數物質不斷變化,但為什麼大家都是不生不滅的?

古希臘哲學家泰利斯(Thales of Miletus)。圖/wikipedia

泰利斯認為,所有物質必然是由唯一的「本原」所組成的,而他得到的答案就是水:

-----廣告,請繼續往下閱讀-----

水遇冷後凝結成冰,加溫之後就會恢復原狀;溫度繼續升高的水會成為水蒸氣,再冷卻後又會形成水滴。河川、海洋和地表的水,都會變成水蒸氣上升到空中、形成雲朵,雲又會降水成為雨和雪。水能如此千變萬化,不論怎麼變也不會消失殆盡。話說回來,金屬的變化、生物形體的變化,不也都和水一樣嗎?

泰利斯推論,這些物質的型態和外形不論再怎麼變化,也不會完全消失,應該是因為所有物質都是由某個「本原」所組成的——不論構成的是金屬或生物。

後來泰利斯便把構成所有物質的「本原」命名為「水」。

值得注意的是,泰利斯所說的「水」,並不是指現代科學做為研究對象、做為物質的水,而是將變化不歇、變換型態後生成其他物質,並能再度回歸原初型態的萬物本原稱為「水」而已。這種思考的背景,可能來自於他曾到東方旅行,聽聞流傳在美索不達米亞的世界起源傳說、得知其故事中心就是「水」,才深受影響。

泰利斯的「水」,促使眾多學者開始思考萬物的「本原」(元素)為何。有人認為本原是「空氣」,經過壓縮和稀釋,分別形成水、土和火,進一步創造了自然界;也有人認為本原就是「火」,並將自然界比喻為「燃起、消失,無時無刻都在活動的火」。

-----廣告,請繼續往下閱讀-----

微粒組成萬物

對於「萬物根源」是什麼的問題,德謨克利特(Democritus)提出了名為「原子論」的主張。

和泰利斯一樣,德謨克利特曾周遊地中海沿岸,徒步觀察風土、歷史和文化迥異的各個國家裡,有什麼樣的自然環境與人民,並學習各國的學問和技術。他認為,創造萬物的「本原」存在於無數微粒中,而且這一顆顆粒子永遠不會毀滅。他將這些無法再分解得更小的微粒,以希臘語中意指「不可分割之物」「atomos」(原子)來命名。

德謨克利特還思考了另一項觀點,也就是「虛空」(什麼都沒有的空間),若改用現代科學的用語來說,就是「真空」。因為原子會占據空間、四處活動,所以必須要有提供給原子活動的「虛空」。

簡單來說,德謨克利特的原子論就是「萬物是由原子和真空所構成的,除此之外別無其他」。

-----廣告,請繼續往下閱讀-----
古希臘哲學家德謨克利特(Democritus)。圖/wikipedia

德謨克利特認為,無數原子在除了原子以外什麼都沒有的空間裡,激烈且毫不停歇地四處活動,互相撞擊、形成漩渦。有的原子雖然會和其他原子相連成一團,但這團東西總有一天會分解,恢復成原本四散的原子。只要改變原子的排列方式和組合,就能製造出不同種類的物質。萬物是藉由原子的組合而形成,就連火、氣、水、土也不例外。

據說德謨克利特寫了一系列共七十多部鉅著,但沒有一本流傳下來。由於他大膽主張,人類的靈魂也是由輕盈、活潑好動的原子組成,不會遵從神的指示,而是跟隨控制原子運動的自然定律;只要構成人類肉體的原子瓦解分散,人類的靈魂就會消失。也就是說,神並不存在。他因此遭到統治階層指控「試圖抹滅神的存在」,並飽受攻擊,與他有關的書籍全數遭到銷毀。我們之所以能認識德謨克利特的事蹟,主要是由於反對原子論的哲學家們,將他的思想記錄在自己的著作之故。

——本文摘自《世界史是化學寫成的:從玻璃到手機,從肥料到炸藥,保證有趣的化學入門》,2022 年 2 月,究竟出版,未經同意請勿轉載。

圓神出版‧書是活的_96
11 篇文章 ・ 2 位粉絲
書是活的,他走來溫柔地貼近你,他不在意你在背後談論他,也不在意你劈腿好幾本。 這是一種愛吧。 圓神書活網 www.booklife.com.tw

1

13
4

文字

分享

1
13
4
核融合發電有望實現?從美國 NIF 的最新研究看未來發展——《科學月刊》
科學月刊_96
・2023/05/13 ・3291字 ・閱讀時間約 6 分鐘

  • 張博宇/目前專研於高能高密度電漿、電漿推進、核融合等領域。

Take Home Message

  • 美國國家點火設施(NIF)在去年使用慣性控制核融合,首次在可控的核融合反應中,令能量的輸出大於輸入,朝核融合產能邁進了一大步。
  • NIF 將 2.05 百萬焦耳(MJ)的雷射能量注入靶材,經過核融合反應產生了 3.15 MJ 的能量,靶材增益為 1.5。但若將產生雷射能量的耗能考慮進去,則並沒有真正的能量輸出。
  • 臺灣各學校的物理系、核工系、電漿所其實都有學者針對核融合投入理論、模擬、實驗的研究,期望這次NIF的成果能推動相關領域進展。

去(2022)年 12 月,美國能源部(Department of Energy, DOE)、DOE 所屬的國家核安全管理局(National Nuclear Security Administration, NNSA)、勞倫斯利佛摩國家實驗室(Lawrence Livermore National Laboratory, LLNL),以及 LLNL 所屬的國家點火設施(National Ignition Facility, NIF)召開了一場記者會。

在記者會中,他們共同宣布在實驗中實現增益值(gain)大於一的結果,意即實現了第一次在可控的核融合(controlled nuclear fusion)反應中,輸出的能量大於輸入的能量,朝核融合產能邁進了一大步。然而,這項結果是否代表著核融合發電即將被實現?

產生能量的核融合反應

在核融合反應中,若兩個較輕的原子核可以融合成一個較重的原子核,且反應之後的總質量減少,那麼根據愛因斯坦(Albert Einstein)質能互換的關係(E = mc2),減少的質量將會轉換成能量。

-----廣告,請繼續往下閱讀-----

最容易產生的核融合反應是將氫(1H)的兩個同位素氘(2H,或稱為 D)及氚(3H,或稱為 T)的原子核融合,產生一個 α 粒子(即氦原子核,4He)加一個中子(neutron, n),同時產生 17.6 百萬電子伏特(MeV)的能量:

D+ T+ α2+ n ——公式一

在公式一的核融合反應中,兩個帶有正電的原子核必須互相靠近才能融合在一起。然而,兩個帶正電的粒子互相具有排斥力,而且愈靠近排斥力就愈大。因此,除非這兩個粒子互相靠近的速度快到排斥力無法阻止它們相撞,核融合才能發生。除此之外,還必須要考量到庫倫散射(Coulomb’s scattering)的現象——若兩個帶正電的原子核沒有正面對撞,則兩者會因為排斥力的原因轉向——更增加了兩者靠近的難度。

因此,只能把氘與氚氣體加熱到高溫,長時間侷限這些高溫的燃料,讓極少數高速的原子核有機會互相靠近並發生核融合反應、產生能量。但即便是最容易發生的氘加氚核融合反應,也需要將燃料加熱到 50 千電子伏特(keV,約為 5.8 億 ℃)才能有最高的反應速率。

-----廣告,請繼續往下閱讀-----

有什麼方法可以將燃料加熱到所需要的溫度呢?看回公式一,氘與氚的核融合產物中具有能量為 14.1 MeV 的中子,及 3.5 MeV 的 α 粒子。我們可以讓高能的中子將能量攜出後再轉換為電能,但讓帶有較少能量的 α 粒子保留在系統中加熱燃料。因此普遍實現核融合產能的系統,目標都是將燃料加熱到溫度約 10 keV(約為 1 億 ℃),讓核融合產生的 α 粒子能繼續加熱燃料。

帶來重大進展的核融合研究

目前國際間研究的核融合反應主要可分為磁場控制核融合(magnetic confinement fusion)與慣性控制核融合(inertial confinement fusion),NIF 去年的實驗便是使用間接驅動(indirect-drive)的慣性控制核融合。

在這次的實驗中,當 2.05 百萬焦耳(megajoule, MJ)的雷射能量注入環空器(hohlraum)1並加熱中間的球殼靶材後,經過核融合反應產生 3.15 MJ 的能量,意即靶材增益(target gain)約為 3.15 / 2.05 = 1.5,是人類首次在可控的核融合反應中,輸出的能量大於輸入的能量。

然而,若將產生 2.05 MJ 的雷射能量考慮進去,需要耗掉的能量約為 300 MJ;換言之,這次實驗的真正能量增益(energy gain)約為 3.15 / 300 ≈ 0.01,並沒有真正的能量輸出。

-----廣告,請繼續往下閱讀-----

不過,NIF 使用的是 90 年代的雷射技術,它的建造目的是為了國防研究所需,因此並不是最適合核融合的研究場域,在雷射技術上還有很大的進步空間。再者,回顧 NIF 從 2011 年開始進行的核融合實驗,歷經了超過十年終於第一次實現靶材產生的能量超過了雷射的能量,對 NIF 而言可說是向前邁進了一大步。

更重要的是,在去年的實驗中,靶材都進入了 α 粒子能夠繼續加熱燃料的燃燒電漿(burning plasma)範圍,是過去核融合研究從未達到的條件,只要稍微最佳化實驗條件便能讓輸出能量有顯著的提升。因此,這次的重大突破顯示了核融合的可行性並非天方夜譚。

臺灣的核融合相關研究發展

核融合研究本身是一個複雜的系統,在科學上及工程上都有許多的挑戰,許多名字上並沒有「核融合」的研究,其實也都間接與核融合相關。以這次的慣性控制核融合為例,相關的研究就包含了雷射技術、靶材製作技術、粒子量測技術、高速攝影技術等。

若以磁場控制核融合來說,也包含了高溫超導、微波技術、高壓脈衝技術、粒子加速器等科技。當然,最重要的就是電漿科學、電漿加熱、電漿量測技術等研究,因為任何材料在高溫的條件下,都會變成電漿態。 

-----廣告,請繼續往下閱讀-----

在臺灣各個學校的物理系、核工系、電漿所分別都有 1~2 位老師在研究電漿相關的領域,尤其成功大學的太空與電漿科學研究所,更有針對核融合投入理論、模擬、實驗的研究。然而,相較於國外蓬勃發展核融合的環境相比,臺灣投入核融合研究的人數仍然明顯不足。

期盼這次NIF的實驗成果,能夠吸引更多臺灣的學生及研究人員投入核融合的相關研究,更刺激政府、民間團體投入更多的資源在核融合研究上。

兩種不同的核融合方式

當物質被加熱到 1 億 ℃ 時,原子內部帶負電的電子便會脫離帶正電的原子核,形成帶負電的電子及帶正電的原子核混合在一起的狀態,稱為電漿(plasma)。我們可以利用帶電粒子的特性侷限高溫的電漿,目前廣泛被研究的核融合反應可分為磁場控制核融合與慣性控制核融合,它們的原理有哪些不同?

磁場控制核融合

-----廣告,請繼續往下閱讀-----
熱核融合反應器。圖/科學月刊。

其中一種方式便是藉由稱為「托卡馬克」(tokamak)的環形容器產生核融合。透過環磁場線圈及延著環形方向的電漿電流(plasma electric current),在環磁場線圈的內部形成一個扭曲但繞著環磁場線圈的螺旋磁力線(helical magnetic field),讓電漿不斷延著螺旋磁力線移動,被侷限在環磁場線圈形狀的真空腔中但不與真空腔的腔壁接觸。

最後,再將電漿加熱到 10 keV的溫度。此核融合的方式能透過磁場將低密度(接近真空)的電漿侷限在真空腔中上百秒或更久的時間,讓高溫的氘、氚原子核有機會互相靠近並發生核融合反應。

慣性控制核融合

慣性控制核融合是利用電漿本身的「慣性」來侷限電漿。由於粒子本身的質量不等於零,所以離開系統需要時間,只要燃料在離開系統前反應完畢,那是否被持續侷限就不重要了。

因此,慣性控制核融合必須將氘與氚的燃料加熱到近 10 keV,並壓縮到高壓力(約千兆大氣壓,gigabar)及高密度,讓粒子間碰撞的頻率在極高的密度下大幅度提升,增加核融合發生的頻率。因此僅需要將系統維持/侷限在奈秒(ns)內,同樣能將燃料燒完。

-----廣告,請繼續往下閱讀-----

慣性控制核融合可分為直接(direct drive)或間接驅動,不過兩種驅動方式都是為了快速加熱球殼外層。當球殼中心的氘及氚溫度達到 10 keV 時,核融合反應便會從中心開始發生,產生的能量可以由內而外藉由核融合反應燃燒球殼。

因為球殼本身的慣性向外推,因此產生能量。圖/科學月刊。

球殼內部在前述的過程中因為壓縮產生高壓,外部的雷射也會停止使得外部的壓力減少,因此球殼又會被向外推。然而,因為球殼本身的慣性,被向外推較為耗時,因此只要向外燃燒球殼的速度大於球殼被向外推的速度,便能將整個球殼再被外推前燃燒殆盡,產生能量。

註解

  • 〔註 1〕環空器是一種腔壁與腔內達到輻射熱平衡的空腔,在慣性控制核融合實驗中燃料球會被放入環空器,再於環空器兩端孔洞射入雷射提供能量。
  • 〈本文選自《科學月刊》2023 年 4 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 1
科學月刊_96
249 篇文章 ・ 3412 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。