0

1
0

文字

分享

0
1
0

原子理論是什麼?你夠了解原子嗎?——《科幻小說不是亂掰的:白日夢世界中的真實科學》上

時報出版_96
・2019/06/11 ・2663字 ・閱讀時間約 5 分鐘 ・SR值 547 ・八年級

來點原子理論吧?

你絕大部分是空曠的空間。是的,在那許多空間中有著所有的電子在你的身體裡與環繞在它們周圍的細胞核。因為數量多到如果所有的空間都被消滅,你會崩解成比一顆雀斑或是一隻螞蟻還小。

這不是關於原子唯一詭異的地方,當你接觸由原子所組成的任何東西時,你其實沒有碰到任何東西。而且,你可以接觸或被觸碰,雙手並沒有穿過你,你所感受到的是電磁力。

圖/maxpixel

以本書為例,電子行進你的指尖的原子軌道只會從這本書的電子感覺到排斥作用。你感受到的是一股排斥的力量,但你認為你感受到的是由你的強大的頭腦所作的決定。這是一件好事,你的雙手可能不想要用這本書打造一個分子,所以就排斥它。

事實上在摩擦的形式裡有一點化學結合。你不會想要這本書就從手上滑落,那就是說,原子的化學結合是件好事,它能夠結合物質。

原子間的激情碰撞。圖/pixabay

如果你用一把刀切了一片麵包,刀子其實沒有碰到麵包。刀子的原子推開麵包的原子。

這所有的一切都是因為電磁力的關係,它是宇宙裡的四大主要力量之一。這些力量負責所有粒子物理裡的標準模型,這個模型到目前為止是針對物質(粒子〉的基礎材料如何在我們的宇宙遊樂場裡互相合作的最佳解釋。

四種宇宙力量

  • 電磁—這種力量能把物質連接在一起,包括原子。太好了! 要感謝電磁力,才有光明。我們在宇宙所看到的每一樣東西都是來自電磁波。
  • 重力—有些人覺得重力交互作用很有意思,雖然重力是在標準模式裡,但它卻無法以此來解釋。
  • 弱核力(弱作用力)—這個力量是放射性衰變的原由。聽起來很無趣,但沒了它,就沒有太陽;所以也不會有你的出現。
  • 強核力(強作用力)—這個力量連接原子裡的原子核。如果沒有這個力量,在你以碳為主的身體裡的原子中帶正電質子會互相排斥。還好有這股強作用力將質子與中子一起綁在它們的原子裡的原子核中。

技術補充:這四種力量都有帶粒子,這些帶粒子就像是其它粒子間的使者。例如,一個光子(光的量子,是光的一個粒子的使用術語〉是電磁學的使者。當兩個電子靠近時,它們會送出光子的「走開」的訊息給對方。這個訊息是非常強大並且會把電子推開。

如果一股粒子力量存在於重力,它會默默地傳導。或者更糟的是,它會接受證人保護計畫與躲藏到連科學家都無法找到。而且為了要符合標準模式,它必須在所有物質上用盡所有力量。有些說法是指這有可能是重力子,是重力的量子化化身。重力子是量子力學的聖杯,如果它浮出檯面,科學家可能最後可以讓相對論與量子力學一致。

何謂原子?

每件事物都是由稱為原子的不可分割的粒子所組成。圖/pexels

這個問題的答案可能沒有你想像的那樣簡單。回到遠古時期(約西元前四百六十五年〉,希臘自然派哲學家德謨克利特(Democritus〉說過我們所觀察到的每件事物都是由稱為原子的不可分割的粒子所組成。(原子 atom 源自於希臘文 atomos,意思就是「不可分割」〉。他深信如果你一直將某件物品對半切開,一定會來到一個點是你將無法再切割它。

這些無法分割的基本粒子是組成存在於我們身邊的每個事物。德謨克利特定義了我們現在所叫的原子,但他既對也錯。他對的是每一個事物都是由原子組成,但它們不是最基本的,因為它們可以再拆解。你可能在中學或高中(或更早〉時學過,一個原子可以再分成帶負電的電子、帶正電的質子及不帶電荷的中子。

圖/wikimedia

所有一般正常的原子都有一個不帶電荷,意思是它們有著相同數量的電子及質子。沒有相等數量的電子及相對應數量質子的原子,我們稱為離子。不同的離子帶有不同的電造成原子結合成分子。這就是化學了。

特立獨行的氦原子

現在事情發展到這裡只會變得更詭異了。試想一個氦原子,這個「某樣東西」的小部分來自於兩個帶負電的電子繞著兩個帶正電的中子。(因為如此,這個原子就不帶電荷。兩個帶負電的電子抵銷了兩個帶正電的質子,它們的電荷是由於電磁力所產生的。〉

你曾經聽過關於異性相吸嗎? 這就是電磁力運作的方式。一個正電無法抵抗一個負電的充滿誘惑吸引力。並且,兩個志趣相投的負電是無法忍受一直膩在一起。根據這種直覺,氦原子是說不通的。首先,就我們所知道的磁鐵,難道電子不會摧毀帶正電的質子嗎?

第二點,為什麼兩個帶正電的質子不會互相排斥呢?

兩個帶正電的質子不會互相排斥,大概是因為貓太可愛了(大誤。圖/pixabay

第一個問題的答案是電子的軌道因為波粒子二元性不會受到破壞。如果你不記得這個主題,那我們來複習一下:每一個事物都有自己的頻率波。從記憶圖像的觀點來說,可以將波想像成彈簧(從側面看,它像一道波浪〉。當一個電子接近其核心時,彈簧就會變得越來越緊直到某一個寬度是無法再做任何壓縮。這讓它們沒辦法進入原子核中。

為什麼在一個原子核裡的質子會結合在一起的這個問題的解答就是強核力。在一個非常短的距離,假設是一個原子核的寬度好了,其力量的強度遠超過試著要分開它們的電磁力。在這章插曲加碼篇,你會知道這些力量彼此間到底有多強的關聯性。

答案是宇宙大爆炸後約三十八萬年。第一個原子出現在我們的宇宙是氫與氦原子,是原子裡重量最輕的。比較重的原子一直到一百六十萬年後第一批恆星(團)形成後才出現。所謂的新手,也就是這些較重的原子(元素)像是鐵,一直到第一個超新星出現後才存在。越大的原子有可能越年輕。這是因為它們是從較輕的原子經過混合後所形成的。

 

 

 

——本文摘自《科幻小說不是亂掰的》,2019 年 3 月,時報出版

文章難易度
時報出版_96
151 篇文章 ・ 28 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

5
3

文字

分享

0
5
3
解析韋伯太空望遠鏡第一批影像背後的科學意義
EASY天文地科小站_96
・2022/07/14 ・4350字 ・閱讀時間約 9 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星

萬眾矚目的詹姆士韋伯太空望遠鏡,在經過半年的校準與測試後,終於公開了它拍攝到的第一批成果。這些五彩斑斕、美麗絕倫的照片究竟是什麼樣的天體,照片的背後又有哪些深藏的意義?就讓我們一起深入解密,韋伯的第一批照片吧!

韋伯望遠鏡是什麼?

詹姆士.韋伯太空望遠鏡是美國、歐洲與加拿大太空總署合作開發的新一代旗艦級紅外線太空望遠鏡,也是無數天文學家夢寐以求、能幫助人類破解許多未解天文迷團的利器。

韋伯的研發其實早從 1996 年就已經開始,但是由於開發時遇到諸多困難,導致嚴重的預算超支與進度延宕,這台耗資上百億美金的超級望遠鏡,直到去年年底才終於從法屬圭亞那發射中心,用一枚亞利安 5 號運載火箭發射升空,前往距離地球 150 萬公里的日地第二拉格朗日點。

拉格朗日點是什麼?

日地拉格朗日點一共有五個。當物體在這些點上,其受到來自太陽與地球的重力恰到好處,因此太空船只需要少量的燃料,就可以長期與地球和太陽保持穩定的相對位置,可謂是地球軌道附近的風水寶地。

而韋伯繞行的,是位於地球後方的第二拉格朗日點,簡稱 L2。之所以選擇這裡,是因為只有 L2 的位置剛好會讓地球、太陽、月亮都在同一側,而這三個星體正是天文望遠鏡的主要紅外線光害來源。位在 L2 的韋伯,就可以用它的遮陽帆一次把三顆星體全部擋住,認真凝望遠方而不受干擾,因此 L2 可以說是觀測宇宙的絕佳地點。升空的幾個月之間,韋伯已經完成一系列的儀器校準工作,一步步把望遠鏡調整到最佳狀態。

相比知名前輩「哈伯太空望遠鏡」,韋伯的優勢不只是擁有比哈伯大六倍的鏡面,更重要的是它是以紅外線為主力觀測波段。宇宙膨脹造成嚴重紅移,但哈伯望遠鏡的守備範圍主要是可見光,波長範圍是 90 – 2500 奈米,可說是鞭長莫及啊。

這時換上以波長 600 – 28500 奈米的紅外線為守備範圍的韋伯,就可以讓我們看到更遙遠、更古老的宇宙。此外,同一個天體在可見光和紅外線看起來,往往長得相當不一樣。這個強大的紅外線觀測能力,正是韋伯最引以為傲的武器。

作為深具儀式感的第一批科學影像,韋伯這次公布的影像分別對應四個主要科學主題:早期宇宙星系演化恆星的生命循環系外行星

1. 早期宇宙—— 星系團 SMACS 0723 與重力透鏡效應

星系團 SMACS 0723。圖/Webb Space Telescope

畫面中心黃白色的天體,是由成百上千的星系共同組成的星系團 SMACS 0723。在韋伯之前,哈伯太空望遠鏡就曾經花費數個禮拜的時間拍攝這個星系團。然而擁有更大鏡面、更精良儀器的韋伯,僅用了 12.5 個小時就拍出了解析度更高、畫面品質更好的照片,讓我們看到許多以前難以辨識的黯淡星系。可見哈伯與韋伯在觀測能力上的差距。

對天文學家來說,圖中最令人興奮的其實不是前景壯闊的星系團,而是後方這些經過重力透鏡扭曲和放大的小小星系們。星系團龐大的質量扭曲了周圍的時空,讓整個星系團好像一塊巨大的放大鏡一樣,可以偏折和聚焦通過的星光,稱為「重力透鏡效應」。

當星系團後方更遙遠、更古老的星系發出的光線通過星系團時,就會被星系團的重力透鏡效應偏折和聚焦,形成而圖中無數弧形的扭曲影像。

紅圈為照片上受重力透鏡影響的區域之一,可以看到星系被拉長。

這些仍在襁褓中的小小星系,往往正在快速的孕育新的恆星,或是互相合併,因此有著混沌不規則的形狀。離我們越遠的星體發出的光,需要越長的時間才能到達我們的眼中。因此研究這些遙遠且古老的星系,能幫助天文學家理解宇宙早期的模樣。

2. 星系演化——史蒂芬五重奏(Stephan’s Quintet)

上一張照片讓我們認識星系的起源,這張「史蒂芬五重奏(Stephan’s Quintet)」則可以讓天文學家更仔細地研究星系內的複雜結構,以及星系與星系之間的交互作用。

史蒂芬五重奏(Stephan’s Quintet)。圖/Webb Scape Telescope

正如其名,「史蒂芬五重奏(Stephan’s Quintet)」是由五個視覺上相當靠近的星系所組成。但其實最左邊的這個星系(NGC7320)與另外四者並無關聯,只是從地球上看剛好位在天空中差不多的位置而已。

圖片中偏向黃白色,感覺如絲綢般順滑的部分是在近紅外線波段拍攝,主要顯示的是星系中恆星的分布;而醒目的橘紅色,則是來自中紅外波段的資料,展示的是星系中的高溫塵埃,以及星系中的氣體高速對撞時產生的震波(Shock wave)。

除了影像,韋伯還使用光譜儀仔細檢視了影像中右上方的星系(NGC 7319)中心,因為那裏有一顆比太陽重 2400 萬倍的超大質量黑洞,正在吸食周遭的氣體,並在過程中釋放巨大的能量。

藉由觀察光譜的細節,韋伯可以分辨出像是氬離子、氖離子或是氫分子等等化學組成,甚至知道氣體的溫度、運動速度這些從一般照片難以辨識的資訊。

史蒂芬五重奏就像一個天然的實驗場,讓天文學家研究星系演化的詳細過程。

3. 系外行星——WASP-96 b 的大氣光譜

這一張照片可能是整批影像中,視覺上最不起眼的一張,它是系外行星 WASP-96 b 的大氣光譜。

WASP-96 b 的大氣光譜。圖/Webb Scape Telescope

最近 20 多年來,人類對太陽系以外行星的認識越來越多。截至今日,人類已經發現超過 5000 顆系外行星。然而,以現有的觀測技術,天文學家通常只能用一些間接的方法,測量它們的質量、半徑、軌道週期等粗略的特性。想知道這個行星是否適合生命生存,就不能少了行星大氣層的化學組成和溫度資訊。

那要怎麼取得行星的大氣資訊呢?當行星通過恆星跟地球中間時,恆星的一部分星光將會通過行星的大氣層,並被行星的大氣吸收。吸收的多寡和波段,取決於行星大氣層的溫度和化學組成等特性。此時,天文學家就可以藉由分析光譜中的各種特徵,去回推行星大氣層的性質。

圖片中的白點,即是韋伯實際觀測 WASP-96 b 時取得的光譜資訊。而藍色的線,則是天文學家認為最貼合觀測數據的理論模型。

根據這個觀測結果,天文學家計算出 WASP-96 b 的大氣溫度約為 725°C,大氣中明顯有著水氣,並推測可能還有雲和霾存在。未來進一步的分析和觀測,將為世人揭開更多系外行星的神祕面紗。

4. 恆星的生命循環——「南環狀星雲」與「船底座大星雲(Carina)」

最後兩張照片都與恆星的生命循環有關。正如人會有生老病死,恆星也是一樣。

恆星一般誕生在巨大分子雲中,氣體在重力吸引下逐漸塌縮、升溫並點燃核融合,成為一顆恆星。

當小質量的恆星步入晚年,其結構容易變得不穩定,最終將自己的外層氣體拋射出去,形成美麗的行星狀星雲,也將氣體吐回到星際空間中,成為下一代恆星的養分。氣體都拋射完之後留下的核心,就是白矮星。

各位現在看到的,是暱稱「南環狀星雲」的行星狀星雲,左右兩張圖分別於近紅外線與中紅外線拍攝。

南環狀星雲。圖/Webb Scape Telescope

我們可以看到,左圖中的影像比右圖要更清晰一些,這是因為在相同的望遠鏡口徑下,波長越短所能達到的理論解析度就越高。

有趣的是,在左圖中看起來位於星雲中心的明亮恆星,其實並不是行星狀星雲的核心。真正的核心其實是在其左下方,一顆被塵埃包裹著的黯淡白矮星。在近紅外線波段的影像中,這顆白矮星幾乎淹沒在隔壁恆星的炙烈星芒之中。

但在中紅外波段,由於恆星的亮度相對降低,包裹著白矮星的塵埃發出的光就變得清晰可見。再次展示即使是同一個天體,使用不同的波段進行觀測,往往可以看到不同的東西。

最後這片壯麗的宇宙山崖,則是位於「船底座大星雲 Carina」西北角的 NGC3324 恆星形成區。在這裡,源自星雲中無數初生恆星所發出的炙烈輻射、恆星風與噴流,吹散、游離了星雲中原有的濃密氣體與塵埃。交織出這片壯闊而複雜的結構。

船底座大星雲(Carina)。圖/Webb Scape Telescope

這張照片一共結合了這六個不同的濾鏡的影像拍攝而成。每個濾鏡涵蓋的波段各不相同,代表的物理意義也不一樣。比如(F090W、F200W、F444W)這三個寬帶濾鏡,分別在影像中按照波長順序,以藍色、綠色和紅色這三原色呈現,為照片打下骨幹。而在此之上,照片的製作團隊又疊上青色代表氫原子的(F187N)濾鏡影像,以黃色代表氫分子的(F470N)濾鏡影像,以及用橘色代表甲烷和多環芳香烴的 (F335M) 濾鏡影像,為照片再添更多的細節。

想要將這麼多個波段的影像全部結合起來,仔細調整讓細節更加突出,最終呈現出一張如此絢麗又震撼的照片,是非常不容易的。這展示了韋伯太空望遠鏡不僅在科學上相當重要,在藝術上也價值非凡。

最後別忘了,以上只挑選介紹了第一批資料中最具代表性的幾張,更多關於五個目標的照片和光譜,可以在韋伯的官網上找到。而這批照片,又只是韋伯未來二十年服役生涯中,前兩個月的小試牛刀而已。韋伯的時代,才剛剛要開始!

EASY天文地科小站_96
21 篇文章 ・ 751 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

1

12
9

文字

分享

1
12
9
為什麼在下雨天時,你不會被雨滴狠狠痛扁?
若芽_96
・2022/04/21 ・5518字 ・閱讀時間約 11 分鐘

下雨天的時候走在路上,天氣涼涼的,聽著雨聲的感覺非常好。但是你有沒有想過,為什麼雨滴會從天上掉下來?

「啊!就像蘋果會掉到地面一樣,會受到重力的作用嗎?」你可能會這麼說。

好,那我們這邊就來帶大家算一下,一滴雨從高空落到地面,純粹只有受到重力時,應該是什麼樣子的感覺吧!

只有受到重力作用雨滴的運動分析

當不考慮空氣阻力時,由高空落下的物體全程會受到重力加速度值 g 的作用,而因為地表的重力加速度約為定值,以海平面且緯度 45º 為標準,其數值為 9.8m/s2 [1]。因此雨滴從高空落下時,可以視為一個單純的等加速度運動,而這個運動我們又稱之為自由落體

假設雨滴是靜止落下且受到重力加速度值 g 作用,即可根據等加速度運動公式,求得雨滴從高度 h 自由落下時的末速度值:

然而,在探討雨滴落下的末速度之前,我們必須對於雲的分類以及大致上的高度有一個基本的了解,才能比較明確地知道我們要探討的雨滴大概是從什麼樣的高度落下來的。

氣象學家 Luke Howard 於 1803 年中的著作《論雲的變形》(The Essay on the Modification of Clouds)中,按照不同雲的形狀、組成、形成原因,將雲分為 10 大雲屬,並且將這 10 大雲屬劃為三個雲族,分別為:位於距地表 6,000 至 7,000 公尺的高雲族,位於距地表 2,000 至 6,000 公尺的中雲族,以及位於距地表 0 至 2,000 公尺的低雲族[2]。另外,則還有橫跨了三個不同雲族高度的直展雲族,常常造成短暫但是相當豐沛的降雨量[3]

國際氣象組織所提供的基本雲的分類標準對照圖。圖/世界氣象組織[2]

按照國際氣象組織所提供的分類,以及 Luke Howard 的定義,天空中主要的降雨來源為積雨雲(cumulonimbus)以及雨層雲(nimbostratus),降雨來源以雨層雲較為常見,且其雲底多為 1,200 公尺以下。故我們這邊計算雨滴的高度時,便以 1,200 公尺作為高度的參考依據。

因此,當一滴雨從高空落下,代入前述自由落體公式,即可計算出雨滴理論上應該要有的末速度:

根據上述的計算式子可以知道,當雨滴從高處落下時,如果沒有任何的空氣阻力,雨滴落到地面的速度大約會是 153 m/s。

對於這個數字沒有感覺嗎?那這邊簡單地計算給你看一下,讓你有點 fu。但是在這個計算之前,首先我們要先對於雨滴的大小有個概念。

依照 2009 年的相關研究[4]顯示,小雨滴在降落時幾乎是圓形,可是隨著體積越大,就會變得越扁平,受到空氣的影響也會越明顯。當雨滴達到特定的大小時,就會被切割為較小的雨滴,也因此最大的雨滴直徑會被限制在 6 mm 左右。

而按照另一個研究[5]對於雨滴粒徑的分布探討,發現雨滴的直徑多數是落在 0.5 mm 至 4 mm 之間,也就是半徑 0.25 mm 至 2 mm 之間。

不同大小的雨滴受到空氣影響的形變研究示意圖。圖/Wikipedia [6]

這邊先姑且不論雨滴本身的化學成分所帶來的密度差異,以及落下過程中的密度和質量變化。因此我們可以簡單的利用密度、質量和體積的關係式,假設有一顆雨滴的成分皆為水,密度為 1 g/cm3,半徑 2 mm,且為均勻球體的情況下,計算這顆雨滴的質量如下:

接著,我們利用牛頓第二運動定律動量衝量的概念,來計算平均一顆雨滴所造成的衝擊力大小。這邊,我們假設你是淋雨的狀態,雨滴跟你的腦袋接觸的時間大約為 0.001 秒,且雨滴最後會完全靜止在你的腦袋上,也就是末速度為 0。

此時,造成雨滴會有速度變化的作用力有二,一為雨滴所受到的重力、二為腦袋給雨滴的正向力。根據牛頓第三運動定律,腦袋給雨滴的作用力,與雨滴給腦袋的作用力,為「作用力與反作用力」之間的關係。

那我們要怎麼知道雨滴對於腦袋的衝擊力有多少呢?

根據前面的假設,我們假設腦袋給雨滴的作用力使用變項為 N,可以列式如下:

雖然我們前面說,在計算正向力 N 時,應該要將重力納入考量,不過實際計算後會發現雨滴本身重量也不算大,相較之下,後面的重力項是可以忽略的,因此計算出來的衝擊力約為 0.52 kgw。

嗯?你說你還是沒有感覺嗎?再說白話一點好了,這個重量就差不多是一瓶 500 ml 的礦泉水壓在你身上的感覺。這只是單一顆雨滴,平常在下雨的時候絕對不可能只有一顆雨滴。一瓶礦泉水壓在身上其實是有感覺的,那很多雨滴下在身上,等同於很多很多瓶礦泉水壓在身上,那肯定也是非常有感。

修但幾勒,這個結論跟我們平常淋雨的感覺完全不同吧!那到底問題出在哪裡?

其實雨滴不只受到重力的作用

雨雲本身存在於大氣層的對流層內,而對流層內充滿很多空氣分子。當雨滴在這些空氣分子所形成的「流體」裡面移動的時候,會使得雨滴本身除了受到重力以外,還會額外受到空氣阻力(drag force)的作用。

在流體動力學中,在流體中移動的物體會受到一個和運動方向相反的阻力。這個阻力來自流體,會存在於兩個流體層之間,或者是流體與固體之間。可是,這和以往我們所學的固體和固體之間的摩擦力不同,因為物體在流體中受到的阻力其實是和物體移動的速度有關[7][8]

物體在流體中所受到的阻力,會受到物體大小、形狀、特性,以及流體性質的影響。阻力方程式(drag equation)概括了這些因素,描述如下[7]

其中,ρ 為流體的密度(如果是在空氣中,則是空氣的平均密度)、A 為物體在流體中的有效面積、v 為物體在流體中之速度;CD 則是阻尼係數,是一個沒有因次的數字,一般來說會跟物體的形狀以及雷諾數(Reynolds number)有關。

而雷諾數則是在流體動力學之中,流體慣性力(inertial force)和黏性力(viscous force)的比值,用來預測流體狀態的無因次物理量。對於不同的流體來說,雷諾數會有很多不同的表達方式,但一般來說都會包含流體的密度(density)、黏滯性(viscosity)、流體的流速,以及特徵長度或尺寸。

最基本的雷諾數可以表示如下[9]

其中,ρ 為流體的密度,v 為流體的平均流速、D 為特徵長度,而 μ 則為流體的黏滯性。

雷諾數低的時候,流體會呈現層流(laminar flow)的狀態。流體分子會在每一層中平順流動,相鄰層之間就像堆疊的紙牌,鮮少或甚至幾乎沒有混合,當然也不會產生漩渦[10]

相反地,在雷諾數高的時候,流體則是會呈現紊流(turbulent flow)的狀態,流體的流速跟壓力沒有一定的變化規律,流體分子也沒有明顯的平行層,很常會互相混合在一起[11]

圖 a 為層流的流線示意圖,而圖 b 則為紊流的流線示意圖。圖/SimScale [12]
黏滯力是一種流體受到外來作用力所產生的阻力,來源為液體內部的摩擦力。黏度較高的流體比較不容易流動,黏度較低的流體反之。本圖為不同黏性的流體所呈現出來的狀態模擬。左邊為黏性低的流體、右邊則為黏性高的流體。圖/Wikipedia [13]

扯遠了扯遠了,我們還是繼續回到原本的阻力方程式。

根據實驗觀察,在雷諾數較高,也就是流體的密度較大、流速較快,而且黏滯性較小時,阻力係數可以幾乎視為定值。此時,阻力就會跟流體流速的平方成正比,公式如下:

而在雷諾數低,也就是流體密度較小、流速較慢且黏滯性較大時,阻力係數會和雷諾數的倒數成正比,因此我們結合雷諾數本身的定義以及阻力方程式,就可以知道「在雷諾數較低時,阻力與流速之間的關係為線性關係」,公式如下:

依照前面講過的阻力方程式和流速之間關係的背景知識,讓我們回到最一開始遇到的雨滴問題。

之前在分析雨滴的受力時,只有考慮到重力的作用,計算出雨滴自 1200 m 高的雨雲雲底落到頭上時,速度約為 153 m/s。在考慮到空氣阻力時,由於阻力與雨滴的運動方向恆相反,因此我們可以將雨滴的質量先以 m 作為變項,假設雨滴為正球形且半徑為 R,繪製雨滴所受到的力圖如下:

雨滴所受到的力。圖/筆者親繪

因為空氣阻力恆與物體運動的速度反向,而雨滴在落下的時候,速度一定是向下的,加速度也向下,故空氣阻力會向上。

阻力方程式中的 A 是投影的等效面積,在球形的雨滴中,即為上圖斜線部分,可以用半徑 R 和圓面積的公式來計算。此時,我們利用牛頓第二運動定律計算雨滴運動過程中所受到的加速度量值,來觀察雨滴運動的情形:

如果今天的流體狀況是屬於高雷諾數的情況(流體的密度較大、流速較快且黏滯性較小)時,則前述的式子可以下表示,並計算出加速度的關係式:

反之,如果是低雷諾數的情形(流體的密度較小、流速較慢且黏滯性較大),則前述的式子可以下表示,也順手計算出加速度的關係式:

從前面的兩條化簡式子,可以看出雨滴掉落時,不論雷諾數如何,速度漸大都將造成阻力漸大,並使得加速度漸小。當達到一定的速度時,雨滴就不再會有加速度,而是改以等速度的方式落下。此時,雨滴所具有的速度即終端速度(terminal velocity, vt)。在終端速度時,我們可以知道雨滴所受到的重力與拖曳力達到力平衡,因此可以根據不同的雷諾數而列式。高雷諾數的情況下所計算出的終端速度如下:

低雷諾數的情況下所計算出的終端速度如下:

我們這邊以高雷諾數的流體情形來考量大氣中的情況,與前面的條件相同假設,也就是雨滴為半徑是 2 mm 的正球體,雨滴密度主要成分為水,因此密度為 1000 kg/m3,而阻尼係數這邊我們根據雨滴的形狀和經驗公式簡單取 0.6 來概略估算[14]

利用高雷諾數的情況計算終端速度實際值時,會需要流體的密度。在這裡,我們討論的對象是空氣中的雨滴,故理想上(當然,這是很理想的情況下)可以使用理想氣體方程式來求出於 1 大氣壓、20ºC 時候的空氣密度,來代入終端速度的公式。

代入我們目前空氣的條件,也就是 1 大氣壓、20ºC 的情形,而這邊務必將所有單位都轉為 SI 制,加上理想氣體常數,此時使用的是 8.314。其中,M 為空氣的分子量,我們這邊使用 28.97 g 配合以上的條件代入計算[15]

將前述所得到的空氣密度數值,結合前面的其他條件,代入高雷諾數情況的終端速度公式,即可計算終端速度:

由計算結果可以知道,當考慮到空氣阻力時,雨滴會以 8.52 m/s 的終端速度落下,比起之前純粹考慮重力時,求出的 153 m/s 來說小了非常多,是原本的二十分之一。按照牛頓第二運動定律,這樣的雨滴打到腦袋時,對於腦袋瓜的正向力也會減為原本的二十分之一。如此一來,就比較像我們平常淋雨的情況了。

由前面的計算過程,我們可以明白從高空落下的雨滴不只有受到重力。能夠讓我們下雨天走在路上不被雨滴狠狠槌死的最重要因素,其實就是空氣阻力的功勞。同時,我們可以知道,造成雨滴落下的運動過程並非等加速度,而是變加速度運動。利用牛頓第二運動定律得出加速度的關係式後,也知道速度越來越大,加速度就會越來越小。在加速度為 0 時,則會以終端速度等速落下。

最後,讓我們來感謝空氣阻力,讓每一個人在下雨天的時候都能安心走在路上。

註解

所有討論 1
若芽_96
1 篇文章 ・ 2 位粉絲
因為人生想要追求知識跟技能樹的全開,而遊走在物理、法律、職業安全衛生、數位行銷、數據分析等各種不同領域的人。下一個領域會去哪呢?我也不知道,不過持續不停向前這是絕對必要的。個人網站:https://wakame.tw

5

1
2

文字

分享

5
1
2
八爪博士 4ni!?《蜘蛛人》裡的人造太陽或將問世?(下)
科學大抖宅_96
・2022/04/14 ・3339字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

說明:此篇文章原本乃為泛科學 Youtube 影片所寫,經簡化之後,拍攝成〈缺電、輻射、核廢料有解嗎?「核融合發電」有可能嗎?〉和〈最受期待的核融合發電在哪裡?能源數據誰在膨風?〉兩部作品。又,本文並不針對核融合的技術性問題多做解釋,而是想用最少的字數,讓讀者瞭解核融合發展的全貌與大致進程。同時,此文主題也跟「世界是否應該採用核能發電」、「臺灣是否該使用核能發電」、「台灣是否該重啟核四」無關;這是三個完全不同的問題,核融合發電跟現有的核能發電技術也有所不同,無法一概而論。

核融合發電的最低要求

現實中,不管使用什麼方法進行核融合,都需要消耗大量的能量。如果產生的能量比消耗的能量還少、或者只大一點,那麼就沒有商業發電的價值。在討論核融合發電時,我們需要知道「融合能量增益因子」(Fusion energy gain factor)這個詞彙;它常用符號 Q 來表示,代表的是核融合反應爐產出的能量,和為讓反應爐運作所輸入能量的比值:

Q=Pfus/Pheat= 核融合反應爐產出的能量/為讓反應爐運作所輸入的能量

換句話說,如果 Q=1,表示核融合反應產出的能量,和輸入反應爐的能量相等,稱為損益平衡(breakeven)——當然,在這種狀況下,沒有多餘的能量能夠拿來發電。而且,再考慮到核融合反應產出的能量,並不可能全部都被收集並拿來維持反應爐的運作,一般認為,Q 的最低限度也要大於 5,才有機會收入與支出平衡。對核融合發電來說,Q 是越高越好,代表有更多比例的產出能量可作為發電之用,也是所有研究單位努力的目標。

核融合發電的現實

就 2022 年的現在來說,實際上還未有 Q 大於 1 的核融合反應爐出現。但我們確實會在科技新聞中,看到一些聲稱做出重大突破、輸出能量大於輸入能量的研究出現,這是怎麼回事呢?

2014年權威期刊Nature上的新聞提及,有研究團隊成功在核融合過程中產生多於輸入的能量。圖/截圖自 Nature

原因之一是,有些單位在設計實驗的時候,因為許多考量,僅使用氘做燃料,而非目前主流核融合發電使用的氘氚混合燃料;而根據僅使用氘的實驗結果,就可以在理論上推估,若使用氘氚混合燃料可以達到的 Q 值。這樣子推估出來的數字,目前最高記錄是日本的 JT-60 實驗,得到 Q=1.25。

另外一種情形,則是對輸入能量的定義有所不同。舉例來說,2013 年,BBC 刊載報導,表示位於美國加州的國家點火設施,達到「核融合反應的里程碑」,「透過核融合反應所釋出的總能量超過由燃料所吸收的總能量——這是在世上所有的核融合設施中,第一次辦到。」然而,在該實驗中,雷射對裝有核融合燃料膠囊的金屬空腔標靶(稱為「環空器」,hohlraum),輸入了 1 百 80 萬焦耳的能量,最後僅產出約 1 萬 4 千焦耳的核融合能量;換算起來,Q 值為 0.0077。但是,根據計算,雷射輸入的能量當中,只有1萬焦耳真正在燃料膠囊的核心起作用,促成了核融合發生——從這個角度來說,也是一種「核融合反應所釋出的總能量超過由燃料所吸收的總能量」,但總有作弊之嫌。

目前,融合能量增益因子的最高紀錄,是由美國國家點火設施所創下,於 2021 年達到的 0.7,由 1 百 90 萬焦耳的雷射能量,獲得1百35萬焦耳的核融合能量。只是,這樣的計算方式仍然有個問題:若要產生具有 1 百 90 萬焦耳能量的雷射,我們事實上必須使用到遠超其上的能量——如果要拿來發電,這個能量消耗也是必須考慮進去的。

目前最受期待的核融合設施

在近未來之內,最接近商業發電的核融合設施,應屬位在法國南部的國際熱核融合實驗反應爐(International Thermonuclear Experimental Reactor,ITER)。它是跨國出資、合作的核融合設施,成員包括歐盟、印度、日本、中華人民共和國、俄羅斯、韓國和美國,目前仍在建造中,預計於 2025 年開始進行初步電漿測試,並於 2035 年進行氘和氚的核融合實驗。

2020年ITER空照。圖/wikipedia

根據一般說法,ITER 產出能量的功率會達到 5 億瓦特,但只需要五千萬瓦特的能量輸入功率,亦即,融合能量增益因子 Q 會高達 10。這聽起來很不錯,似乎可以作為商業發電之用,或者至少很接近商業發電的目標了。是這樣嗎?

But,人生最重要就是這個 But,5 億瓦特的能量輸出功率,是指核融合反應釋出的能量,而非實際上能夠獲得的電力;有很大一部份比例的能量,都會在轉換成電力時漏失。同時,五千萬瓦特的能量輸入功率,也只是整間電廠營運需求的一部份——根據 ITER 的報告,運作整間電廠約需要 4 億 4 千萬瓦特的能量功率。換言之,儘管 ITER 應該會是近未來 Q 值最高、最成功的核融合設施,但距離商業發電,仍然有一段差距。這也是目前全球的科學家在努力克服的問題。

自己在家做出核融合反應爐?

儘管核融合發電於現實中仍存在許多問題。但是,我們卻也偶爾會看到,媒體大肆渲染,某某青少年在自家做出小型核融合反應爐的新聞,難道全球科學家都被不世出的天才青少年打臉了嗎?

媒體上對青少年自製核融合反應爐的報導。圖/截圖自ETtoday

這類所謂自製的核融合反應爐,大體來說,就是將氘氣引入真空容器內,再利用高電壓使其互撞,並在過程中藉由測得中子,推論核融合反應存在。然而,雖然核融合反應會產生中子,但測到中子並不表示就一定是核融合反應。高速的氘原子互撞,就算沒有成功融合,仍然可能經由其他作用產生中子

另一方面,就算真的有零星的核融合反應出現,其能量產出效率必定極低,輸入的能量遠大於輸出的能量。我們可以說,要人工地讓核融合反應發生,在現代並不是問題;如何讓輸出大於輸入,且持續穩定運作,才是主要的問題。

科學的進步與成功,事實上仰賴許多前人的鋪路,後人才能在前人的基礎上順利抵達終點。如果沒有知識的累積,就期待一蹴可及、出現某個天才打臉所有人,完成前無古人的成果,雖然很有戲劇性,但幾乎是不可能的事情,現代科學研究尤其更是如此。

我們是否將見證歷史性的一刻?

核融合作為未來可能的能源選項之一,無疑是值得研究的課題。過程中花費的金錢與人力縱然可觀,但天下沒有不勞而獲的事,總是要嘗試了,才會知道結果怎麼樣。人類的科學文明,就是這樣不斷地在諸多失敗和成功下,累積成現在的成果。

核融合研究,多年下來有著長足的進步,距離商業發電的目標越來越近。儘管目前看起來,核融合發電距離實用化,還有一段距離,而還要多久才能克服這最後一哩路,也很難說。但搞不好,或許數十年之內,我們就有機會目睹人類能源的歷史性突破。

美國能源部科學家最近發表的統計。橫軸為年代,縱軸則是核融合裝置的效率指標。最上面的黑色和棕色水平線條,則是商業發電需要達到的目標。在數十年來,由不同顏色實線代表的核融合裝置,已有了長足的進步。圖/Progress toward fusion energy breakeven and gain as measured against the Lawson criterion

參考資料

所有討論 5
科學大抖宅_96
35 篇文章 ・ 1108 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/