2

0
0

文字

分享

2
0
0

防曬乳讓你曬SUN不曬傷

活躍星系核_96
・2012/04/04 ・8407字 ・閱讀時間約 17 分鐘 ・SR值 591 ・九年級

文/國科會科技新聞寫作班第三組:范瀞文、許馨亞、陸子鈞

曝曬陽光下會使我們晒黑;過度的曝曬,甚至會晒傷。炎炎夏日,出門前,不論是為了避免晒黑,或者晒傷,除了帶遮陽的陽傘、墨鏡、長袖外衣之外,我們還可能會塗抹一層防曬乳。

防曬乳的歷史

防曬乳的概念,其實可以追溯到古埃及。在埃及這樣充滿日照的環境下,維持淺膚色非常困難,所以古埃及人的審美觀認為白皮膚較黑皮膚迷人。最近的考古研究,翻譯自莎草紙及墓碑的文字指出,古埃及人會混和不同液體後塗抹,防止皮膚晒黑。這些混合物像是米糠的萃取物,還有茉莉花、羽扇豆。而且其中有些成分甚至還被現代科學證實有某些實際的功效,像是茉莉花被認為能修復皮膚細胞受損的 DNA;而羽扇豆至今仍被用於美白 [6]。

第一個商業販售的防曬乳,在 1928 年的美國上市,由對胺基安息香酸(4-Aminobenzoic acid, PABA)、苯基水楊酸(Benzyl Salicylate)和苯基桂皮酸(Benzyl Cinnamate)混合而成。雖然當時防曬乳非常容易取得,但卻沒有被普遍使用。直到1930年代初期,一位化學家,也是後來黎萊雅(L’Oreal)的創辦人厄堅.徐勒(Eugene Schueller),才成功的推廣防曬乳,同時他也被認為是現代防曬乳的發明者。1940年代,美國一位藥商班傑明.格林(Benjamin Greene),在自家製造了紅色果凍狀的防曬乳,用他自己的禿頭測試後,便發送給二次大戰期間,上戰場的美國士兵使用。雖然這項產品不如現在我們看到的防曬乳一樣有效,而且容易弄髒衣物。但後來格林又進一步改良,讓防曬乳的配方更方便使用,還成立了夏波胴(Coppertone)防曬乳公司 [6]。

-----廣告,請繼續往下閱讀-----
雖然夏波胴於1944年成立,但直到1953年這張平面廣告才變得有名

夏波胴的成功,讓大眾比過去更不擔心晒傷,而且日光浴變得流行。雖然夏波胴成功地讓大家免於晒傷,但它卻無法有效抵擋紫外線。隨著日曬增加,皮膚癌的病例也增加了 [6]。

1962年,佛朗茲.格雷特(Franz Greiter)重新設計了一套方法,來估計防曬乳抵抗紫外線的能力,也就是我們現在熟悉的防曬指數,SPF(Sun Protection Factor)。很快地,提供不同程度的防曬,成為一樁大生意;1990年,美國境內花費了5億2千5百萬美金在防曬產品的製造 [6],而這趨勢仍在增加;根據國際癌症研究中心(The International Agency for Research on Cancer)的報告,1998年防曬乳及相關產品,市場估計有34億7千萬美金;2008年,歐睿國際顧問公司(Euromonitor International)消費策略調查,更估計防曬市場達到了69億美金![1]

防曬乳的原理

歷經過去七十多年來的發展,現在我們常見的防曬乳,透過物理性及化學性機制,達到防曬效果。

防曬乳多為白色,是因為主要的成份為鋅或鈦的氧化物,能有效反射陽光,屬於物理性防曬,不刺激皮膚。但鋅或鈦的氧化物卻非常黏稠,且不透明(你不會想讓全身都變「白色」吧?),不便於全身使用。拜化學技術發展所賜,能將鋅/鈦氧化物做成奈米層級的微粒,直徑約 1~100 奈米,約為頭髮直徑的五萬分之一[5],除了塗抹後呈透明之外,還能增加防曬效果[4]。

-----廣告,請繼續往下閱讀-----

利用防曬乳的成份中,分子間的作用力,吸收紫外線的能量,屬於化學性防曬。化學防曬的有效成分很多種,對胺基安息香酸是從 1920 年代起,至今仍被使用的其中一種,因為它能有效隔絕UVB,但無法隔絕UVA。二甲氨苯酸戊酯(Padimate A)是 PABA 的酸化延伸物,能吸收紫外線,避免皮膚晒傷,但因為它曝曬在陽光下,會刺激皮膚 [7],1989 年在歐洲被禁止,美國食品藥物管理局(Food and Drug Administration, FDA)也不准許使用。桂皮酸鹽 (cinnamate)、鄰胺基苯甲酸類(Anthranilates)和水楊酸也被使用來隔絕UVB,值得注意的是,桂皮酸鹽不適合對肉桂過敏的人使用。甲基水楊酸(Homomenthyl Salicylate, HMS) 是另一個也被廣泛使用的化合物,但僅能提供有限的防曬效果。而用來隔絕 UVA 則會使用像是羥基苯酮(oxybenzone)或二苯甲酰甲烷(dibenzoyl methane)的苯甲酮類化合物 [6]。

為什麼我們會曬傷?

曝曬過量的紫外線,使得皮膚組織受到破壞,就是晒傷。晒傷的症狀是皮膚會紅腫,嚴重時甚至會起水泡。

水上及雪地活動者,因為水面及雪會反射陽光,更容易晒傷。而高山活動者,也因為高山的大氣層較平地稀薄,紫外線較強,需要特別注意防曬。此外,淺膚色較深膚色的人缺少黑色素提供的保護,也比較容易晒傷。此外, 紅斑性狼瘡、紫斑症的病人,會對光較敏感。 藥物也會影響光敏感性。正服用四環黴素、利尿劑、鎮定劑或磺胺劑(泌尿道感染用藥)的病人,也較易晒傷 [19]。

晒傷在短期內會痊癒,但過度曝曬陽光,長期累積的傷害會加速皮膚老化、產生皺紋,甚至引起皮膚癌、黑色素腫瘤。雖然塗抹防曬乳能有效避免晒傷,不過仍沒有有力的證據支持能預防皮膚癌的發生 [1]。(20240902編註:到目前為止,尚無嚴格的人類證據顯示防曬霜能預防主要類型的皮膚癌:皮膚黑色素瘤 (cutaneous melanoma, CM) 和基底細胞癌 (basal cell carcinoma, BCC)。然而,防曬霜確實能減少日光性角化病 (actinic keratoses) 和復發性鱗狀細胞癌 (squamous cell carcinoma, SCC) 的發病率。)

-----廣告,請繼續往下閱讀-----

如果晒傷了,第一步需要補充身體因為日曬而流失的大量水份。接著藉由毛巾或冰袋濕敷,除了可先替皮膚補充水分外,低溫也可減緩發炎反應。

保濕降溫後,可以擦鎮定皮膚的保養品。現在已有含甘草、燕麥、蘆薈等鎮定成分的曬後保養品上市。

不要任意塗抹凡士林、藥膏或含酒精的化妝水。 台北市立萬芳醫院皮膚科主治醫師劉紹毅解釋,這些藥品也許會帶來一時滋潤或涼快的感覺,暫時解除症狀,卻無法改善發炎。若有長水泡的情形,則建議求診 [19]。

[除了人類,其他動物會晒傷嗎?]

認識防曬係數

要避免晒傷,就需要選擇適當的防曬係數,提供足夠的防曬效果。不同的紫外線波長,有不同的防護指標。對UVB則有日光保護係數-SPF(Sun Protection Factor)。UV-A因為對皮膚傷害可達真皮層,且為慢性累進的傷害,所以難以建立國際公認,目前防曬乳針對UV-A的保護效果,並沒有像UV-B有SPF為國際公認標準,不同的國家有不同針對UV-A表示方法,包括:PA、PFA、IPD、 PPD、IPF、UVA-PF。

-----廣告,請繼續往下閱讀-----

SPF來自於比較有無擦防曬產品的皮膚,經過強烈陽光曝曬後,皮膚產生紅斑所需時間之比值,是一個很客觀的標準。SPF適用於每個人。平時評估自己皮膚被曬紅的時間,乘以不同的SPF係數等於防禦時間的延長倍數。例如:在未有任何防曬措施的情形,你的皮膚約10分鐘就會被曬紅,使用SPF50的防曬品,則可延緩到500分鐘後,才會有被曬紅的現象;即10分鐘乘以50倍。

表示防護UVA的PA(Protection Grade of UVA )指數,是指UVA於表皮即刻產生黑色素的防護程度;也表示防曬黑指數,屬於日係標準。PA+可延緩皮膚曬黑時間2~4倍;PA++,表示可延緩皮膚曬黑時間4~8倍;PA+++,則可延緩皮膚曬黑時間8倍以上。

另外,PFA(Protection Factor of UVA)則是特別針對UVA中的UVA-2(波長 320nm ~ 340nm)評估。PFA2~4,輕度防護,有效防護時間為2~4倍;PFA4~8,中度防護,有效防護時間為4~8倍;PFA大於8,高度防護,有效防護時間為8倍以上。

IPD(Immediate pigment darkening),評估在照射UVA後,黑色素的光氧化及細胞分佈的改變。目前此系數已經非常少見。

-----廣告,請繼續往下閱讀-----

PPD(persistent pigment darkening)則是評估照射UVA24小時後,持續性的曬黑。和PFA一樣分三等級,例如:一般人曬10分鐘的太陽會有持續性的曬黑出現,則PPD8的防曬,可以延長為80分鐘才被曬黑(PPD8=10分鐘X8倍=80分鐘)。和IPD都屬於歐系標準。

IPF(Immune protection factor)和UVA-PF(UVA-protection factor)是評估皮膚免疫細胞抑制能力;數值越高表示UVA對皮膚中免疫細胞抑制越少,即越安全。

塗抹防曬乳的風險

雖然塗抹防曬乳能預防晒傷,但有些科學家卻警告潛在的風險。

舉例來說,奈米級的鋅/鈦氧化物微粒除了能增加防曬效果之外,其實也被廣泛添加於化妝品、藥錠、塗料……等等商品中;據估計,每年工業生產約兩百萬噸的氧化鈦。但鋅/鈦氧化物微粒在人體中,卻非常穩定,很難被分解。若透過皮膚進入人體,也可能因為尺寸小,容易游移在體內任何位置,甚至進入細胞,破壞染色體結構,影響健康 [10]。不過目前缺乏有力研究證實,因此仍有許多爭議。

-----廣告,請繼續往下閱讀-----

根據一篇2011年發表在《自然》(Nature)的研究,日本的研究團隊發現,30 及 70 奈米大小的氧化鈦微粒,經由靜脈注射到懷孕母鼠體內,將進入胎盤,對幼鼠產生神經毒性,且影響發育 [2]。然而,該研究是利用靜脈注射直接進入鼠體,也有科學家,像是洛杉磯加州大學(University of California, Los Angeles: UCLA)的放射腫瘤專家羅伯特‧斯奇(Robert Schiestl)認為,人類皮膚的角質層,能有效阻擋微粒透過皮膚進入體內 [10];就算微粒進入體內,也未必有如此高的劑量。此外,雖然老鼠是被廣泛使用的實驗動物,但畢竟和人類仍有許多差異,舉例來說:懷孕母鼠的卵黃囊,扮演重要的角色,而人類的卵黃囊卻沒有太多功能 [3]。

另外,也有研究指出,誤食防曬乳讓鋅/鈦氧化物奈米微粒進入腸道,也可能對人體產生毒性。根據《科學日報》(Science Daily)2010 年的一則報導,毒理學家飛利浦.莫斯(Philip Moos)和其他研究人員,將氧化鋅微粒施加在大腸細胞株中,結果發現,奈米級的微粒是其他大顆微粒毒性的兩倍;根據實驗劑量推算,大約誤食2公克的防曬乳,便能達到毒性劑量。但由於該實驗是使用分離於人體外的細胞株,忽略了實際上若誤食防曬乳,在通過消化道的分解過程中,可能會使微粒的毒性降低 [5]。

化學性防曬物質也可能滲透皮膚,進入體內,對細胞造成傷害。根據加州大學河濱分校(University of California, Riverside)的報導,該校的化學家凱莉.漢生(Kerry M. Hanson)發現,防曬乳中的化學防曬物質,若滲入表皮後可能會傷害細胞。

當防曬乳覆蓋的表面較薄時,化學物質滲入皮膚造成的氧化傷害較大。研究團隊建議要塗抹足夠的防曬乳,避免紫外線引發光化學反應,使滲入皮膚的防曬乳產生活性氧化物。

研究中,漢生選了三種美國食品衛生局認可,也廣泛被使用的紫外線隔絕物:甲氧基肉桂酸辛酯(Octylmethoxycinnamate)、二苯甲酮(Benzophenone-3)和奧克立林(Octocrylene),塗抹在皮膚組織表面,並利用螢光顯微鏡測量活性氧化物(Reactive Oxygen Species, ROS)程度。活性氧化物指高活性的分子,會對生物造成氧化傷害,導致老化。結果發現,當防曬乳覆蓋的表面較薄時,化學物質滲入皮膚造成的氧化傷害較大。研究團隊建議要塗抹足夠的防曬乳,避免紫外線引發光化學反應,使滲入皮膚的防曬乳產生活性氧化物。報導中,另一位化學家克里斯多福.巴丁(Christopher Bardeen)也表示:「皮膚癌症協會(Skin Cancer Foundation)也建議要經常補充塗抹防曬乳,尤其是游泳或流汗之後,避免紫外線讓滲入皮膚的防曬物質對細胞造成氧化傷害。」[8]

-----廣告,請繼續往下閱讀-----

不正確地使用防曬乳,反而會使增加黑色素瘤發病的可能。奧特.波尼爾(Autier P. Boniol)在 2007 年發表的研究中,回顧分析防曬乳使用者的行為,發現塗抹了防曬乳的人,會比未塗抹的人待在陽光底下的時間多了 19~39%;而使用高防曬係數防曬乳的人,會比使用低防曬係數的人,待在陽光底下的時間多了 19~25%,這可能反而增加了皮膚癌或黑色素瘤的發生風險。同時他們也發現,大多人只塗抹了建議用量的二分之一到四分之一,可能無法提供有效的防護效果 [9]。

雖然根據防曬乳的建議劑量塗抹,能避免晒傷,但也有科學家認為,每天塗抹良好防曬效果的防曬乳,可能會抑制維他命D的合成,進而影響健康。陽光中的 UVB 波段的紫外線,能讓促進人體自行合成維他命D,而它對健康體的貢獻也被廣泛研究,像是抵抗疾病、骨質生成、抗癌、免疫調節……等生理功能有關。但由於許多人塗抹防曬乳會少於建議用量,所以缺乏有力的研究證實塗抹防曬乳會抑制維他命D的合成 [1]。

防曬乳對生態環境的影響

防曬乳中人工合成化學物質,如果因為像是浮潛、游泳……等水上活動,帶入水中,可能會對水中生物造成不良影響,衝擊生態環境。

也許有些人會懷疑,在浩瀚的海洋中加入一兩滴防曬乳會造成什麼影響嗎?2008年,義大利的科學家羅伯特.道南伐洛(Roberto Danovaro)指出,防曬乳中的常見的化學防曬成分,可能會誘發潛藏在與珊瑚共生的蟲黃藻(zooxanthellae)中的病毒開始繁殖,在宿主蟲黃藻死亡後,大量的病毒便釋放到海洋中。一旦蟲黃藻死亡,和它共生的珊瑚也就無法存活,最後導致我們熟知的「珊瑚白化」現象。

道南伐洛的研究團隊,調查了三大洋的珊瑚礁,結果顯示,即使是微量的防曬乳,也能在短短的四天內喚醒病毒,引起珊瑚白化。而含有防曬乳的海水中,病毒的數量是不含防曬乳的海水的15倍!他們估計,全世界每年有四千到六千公噸的防曬乳,因為泳客而帶入海洋中;約有10%的珊瑚白化,是防曬乳污染所造成。

圖左為活珊瑚,因為有藻類共生,所以呈現不同的顏色。圖右為白化的珊瑚,共生藻類已經死亡。(Photograph courtesy Department of Marine Science, Polytechnic University of Marche, Ancona, Italy)

然而,佛羅里達理工學院(Florida Institute of Technology)的珊瑚專家羅伯特.沃斯克(Robert van Woesik)卻質疑這項研究中的珊瑚白化,也可能是因為該區域內,人類活動頻繁產生的塑膠污染造成,防曬乳不是主要的元兇。但他仍擔心人造化學物質,有引起珊瑚白化的風險。沃斯克認為,道南伐洛的研究中顯示,病毒並不會隨著污染劑量增加而增加,反倒比較類似「開關」的概念-只要一有防曬乳存在海水中就會誘發大量的病毒 [11]。

除了化學防曬物質會傷害珊瑚之外,也有研究指出物理防曬物質(主要是鋅/鈦氧化物奈米微粒)會影響水蚤(Daphnia magna)的發育及行為 [12] [13]。而水蚤是水域生態系中,其他大型生物的重要食物來源。以食物鏈的觀點,如果像是水蚤這類小型動物死亡,勢必會減少大型動物的食物來源,或者使毒素藉由生物放大效應(bioamplification),危害食物鏈頂端的生物-包括人類。

然而,防曬物質是否會直接影響到像是魚之類較大型的脊椎動物,則還有待更多的研究證實。為此,國立海洋生物館的研究員陳德豪,將不同濃度的氧化鈦奈米微粒加入斑馬魚(Danio rerio)胚胎所處的水中,並觀察斑馬魚發育過程的孵化率、死亡率、畸形率和孵化後的游泳能力是否會受到微粒的影響。

結果雖然只有游泳能力受到影響,但陳德豪認為,過去有學者研究發現,氧化鈦微粒對腦部腦部發育的影響,可能反映在行為能力上,而他的研究結果也符合這論點。雖然斑馬魚沒有畸形或死亡,但不能肯定微粒不會對海洋中的脊椎動物造成傷害 [20]。

生物放大效應

在生物體內不易分解的有害物質,經由食物鏈,會隨著營養階層增加而提高在高階捕食者體內的濃度。

舉例來說,海洋中的生產者-像是藻類,如果攝取了0.04ppm的有害物質,而且沒有分解,那初級消費者-像是蝦,取食藻類後就會在體內累積0.23ppm的有害物質;若有害物質又沒被分解,則會在二級消費者-小魚體內累積2.07ppm,最後在海鳥體內累積到13.8ppm;一般而言,有害物質濃度會在每個營養階級間放大九至十倍。或許起初水中的有害物質濃度,不能直接傷害大型動物(像是例子中的海鳥),但藉由食物鏈的放大效應,卻可能累積到有害濃度,人類也位在營養階層高階,不能忽視問題的嚴重性。

防曬乳的未來

幾十年來,科學家一直在努力增加防曬乳的防曬效果、安全性、實用性。雖然現在的防曬乳已經非常方便,但研發的腳步卻沒有停止。

舉例來說,蝦紅素(astaxanthin)是一種普遍存在於蝦、蟹、鮭魚、藻類……等海洋生物體內的色素,能對抗氧化壓力,有潛力成為輔助防曬效果的明日之星。夏威夷的一名醫生羅伯特.察爾斯(Robert Childs)就將蝦紅素製作成一種稱為「百奥斯汀」(Bio Astin)的藥丸。服用後,蝦紅素能吸收皮膚因為照射紫外線所產生的活性氧化物,而且效果是維他命E的五百倍;維他命A的十倍,還能減少因為晒傷引起的發炎反應。

雖然百奧斯汀絕對比防曬乳防水(因為是用吃的而不是塗抹),而且不用定期補充塗抹,不過察爾斯強調,它並非萬能,要得到完全的防曬保護,仍需要配合其他措施,像是穿著防曬衣物、使用太陽眼鏡、塗抹防曬乳……等 [14]。

從自然界中尋找新的防曬材料也是一個方向-常春藤(English Ivy)爬根上的奈米微粒,或許能使防曬乳更安全且防曬效果更佳。

田納西大學(University of Tennessee)的生物醫學工程助理教授,張銘俊(Mingjun Zhang,音譯)博士,一天在院子裡看著兒子玩耍時,突然想到一個問題:「為什麼常春藤能緊緊地爬在圍籬上?」於是他開始研究常春藤的爬根。2010年,他發現爬根上佈滿了奈米級的微粒,而且比防曬乳所添加的金屬微粒大小還均勻。張銘俊和其他研究人員進一步發現,常春藤微粒抵擋紫外線的效果,至少是金屬微粒的四倍;也因為是天然物質,較易被人體分解,對腦部及肝臟的毒性遠比金屬微粒小。此外,常春藤微粒較黏濁,若添加在防曬乳中,比起現今的防曬乳,更不會因為流汗或游泳而需要補充塗抹 [15]。

另外,也有廠商賦予防曬乳防曬以外的附加功能,像是「不傷害海洋生態」、防蚊蟲或防止水母螫傷。

防曬乳如何避免水母螫傷?

水母會螫傷人,其實元兇是水母觸手上的刺細胞(nematocyst)。刺細胞是一種特殊的細胞,具有一支毒刺,平時收縮在細胞內,而同時細胞充滿了高張的水壓。當水母觸手接觸獵物時,啟動了刺細胞上的「開關」,高張的水壓便把毒刺彈出-就像彈簧刀一樣,攻擊獵物,並把毒液注入,使獵物麻痺。被水母螫傷可能會疼痛、劇癢、發炎、水腫,嚴重時可能會組織壞死,甚至休克 [16]。為此,尼達利雅科技公司(Nidaria Technology Ltd.)委託史丹福醫學院(Stanford University School of Medicine, Stanford)的研究團隊開發防水母螫傷防曬乳。研究團隊在防曬乳中添加一種粘多糖(Glycosaminoglycan),化學結構非常相似於水母自身的帶有的成分。當刺細胞的感受器,接觸到防曬乳中的粘多糖,會誤以為是接觸到自己,而不是獵物,就不會觸發毒刺彈出,也就能達到避免螫傷的效果 [17]。

正確使用防曬乳

防曬係數的測定標準為,皮膚上每平方公分的面積,必須塗抹兩毫克的厚度。研究顯示,一般人僅塗抹一毫克,甚至只有零點五毫克的厚度,即使擦了SPF50的防曬乳液,也等於只有SPF2.7~7.1,可見得塗抹厚度影響防曬效果甚大。塗抹不均勻也會影響防曬效果,因此2003年版的皮膚科Fitzpatrick教科書建議,塗抹兩層的防曬乳液,可以較為均勻及提供較好的防護。另外,一般建議每兩至三個小時需要再次的補擦防曬乳。一則在2001年的美國皮膚科醫學會雜誌報告指出,曬乳液必須在外出前15~30分鐘塗抹防;當游泳、用毛巾擦、過度流汗及摩擦後,需再次的補擦防曬乳液,以可以得到較佳的防曬效果。影響UVA的防護效果,最大的變因是塗抹的厚度(占72%),其次是塗抹是否均勻(占16%),防曬品吸收UVA的效果影響最小(占12%)。雖然選了很好的防曬乳液,如果沒有正確的使用,防曬效果仍會大打折扣。除了塗抹防曬乳液外,要避免紫外線傷害,還需要做到儘量避開上午十點到下午三點的太陽,以及外出時多戴寬邊帽、撐傘、穿著織的較密及深色的長袖衣服,以加強防護。美國皮膚科醫學會建議做到ABC三點:A(Avoid)就是避免紫外線的照射,所以早上十點至下午三點紫外線最強的時段,盡量不要出門;B(Block)就是阻斷紫外線的照射,因此每天塗抹防曬乳液仍是十分必須的;C(Cover)就是遮蔽,外出時盡量使用傘帽子或是長袖衣物來遮蔽皮膚。

結論

塗抹防曬乳能有效阻擋紫外線,避免皮膚晒傷。然而,目前沒有防曬乳能同時有效阻擋UVA及UVB(20240902編註:市面上已有多款可同時阻擋 UVA 與 UVB)。再者,目前缺乏有力的科學證據證明,防曬乳能有效預防皮膚癌或黑色素瘤的發生(20240902編註:到目前為止,尚無嚴格的人類證據顯示防曬霜能預防主要類型的皮膚癌:皮膚黑色素瘤 (cutaneous melanoma, CM) 和基底細胞癌 (basal cell carcinoma, BCC)。然而,防曬霜確實能減少日光性角化病 (actinic keratoses) 和復發性鱗狀細胞癌 (squamous cell carcinoma, SCC) 的發病率。)。另一方面,塗抹防曬乳對健康有潛在的風險,而且也可能會危害自然環境。雖然科學家仍對此爭論,尚待更多的科學研究證明。但不論如何,防曬乳本來就不該被視為唯一的防曬措施,必須配合其他方法,像是穿著長袖衣物、配戴太陽眼鏡;最重要的,是減少陽光的曝曬。

參考資料

  1. M Berwick. 2011. The Good, the Bad, and the Ugly of Sunscreens. Clinical Pharmacology & Therapeutics 89 1, 31–33.
  2. Kohei Yamashita, et al. 2011. Silica and Titanium Dioxide Nanoparticles Cause Pregnancy Complications in Mice. Nature Nanotechnology 6, 321–328.
  3. Jeffrey A. Keelan. 2011. Nanotoxicology: Nanoparticles Versus the Placenta. Nature Nanotechnology 6, 263–264
  4. Amanda S. Barnard. 2011. One-to-one comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. Nature Nanotechnology 5, 271 – 274.
  5. American Chemical Society (2010, April 7. Evidence that nanoparticles in sunscreens could be toxic if accidentally eaten. ScienceDaily. Retrieved August 26, 2011, from http://www.sciencedaily.com­ /releases/2010/04/100407110824.htm
  6. Random History ( APR. 28, 2009) Protecting Your Skin The History of Sunscreen
  7. Knowland, John; McKenzie, Edward A.; McHugh, Peter J.; Cridland, Nigel A. (1993). “Sunlight-induced mutagenicity of a common sunscreen ingredient.”. FEBS Letters 324 (3): 309–313
  8. UCR Newsroom: Sunscreens Can Damage Skin, Researchers Find. August 29, 2006.
  9. Philippe Autier, Mathieu Boniol, Jean-François Doré. 2007. Sunscreen use and increased duration of intentional sun exposure: Still a burning issue. International Journal of Cancer. 121, 1: 1-5.
  10. UCLA Newsroom: Nanoparticles used in common household items cause genetic damage in mice. November 18, 2009.
  11. National Geographic News: Swimmers’ Sunscreen Killing Off Coral. January 29, 2008
  12. Xiaoshan Zhu et al. 2007. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. Journal of Nanoparticle Research 11, 1: 67-75
  13. SARAH B. LOVERN and REBECCA KLAPER. 2006. DAPHNIA MAGNA MORTALITY WHEN EXPOSED TO TITANIUM DIOXIDE AND FULLERENE (C60) NANOPARTICLES. Environmental Toxicology and Chemistry. 25, 4: 1132–1137
  14. Science Daily: Sunscreen In A Pill [November 1, 2007]
  15. Science Daily: Nanoparticles in English Ivy May Hold the Key to Making Sunscreen Safer and More Effective [July 25, 2010]
  16. 李志宏、張中興。民國八十九年八月一日。水母接觸性皮膚炎。高醫醫訊月刊第二十卷第三期。
  17. Alexa Boer Kimbal et al. 2004. Efficacy of a Jelly fish Sting Inhibitor in PreventingJelly fish Stings in Normal Volunteers. Wilderness and Environmental Medicine, 15: 102 108.
  18. Virginia Morell. 2010. Whales Get Sunburns, Too. Science.
  19. 顧景怡。2001。 曬傷了怎麼辦?。康健雜誌33期。
  20. Te-Hao Chen, Yen-Hsin Wang, Yu-Hwan Wu. 2011. Developmental exposures to ethanol or dimethylsulfoxide at low concentrations alter locomotor activity in larval zebrafish: Implications for behavioral toxicity bioassays. Aquatic Toxicology. 102: 162-166.
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
活躍星系核_96
778 篇文章 ・ 129 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
雀斑為何只在陽光下現形?揭開「太陽之吻」的秘密
F 編_96
・2024/12/23 ・2340字 ・閱讀時間約 4 分鐘

F 編按:本文編譯自 Live Science

在夏日豔陽下,許多人臉上、肩膀上,甚至手臂上,會冒出一點點咖啡色小斑點,人們常親切地稱它們為「太陽之吻」。這些雀斑(freckles)在日光充足的季節裡愈顯活躍,等到秋冬時節太陽不再那麼刺眼時,顏色又逐漸淡去,甚至幾乎消失不見。

為什麼雀斑會選擇在陽光猛烈時現形?其實,雀斑的成因不僅與紫外線(UV)有關,也與我們皮膚深層的色素細胞、基因遺傳以及日常防曬觀念息息相關。

雀斑是什麼?

所謂「雀斑」,在皮膚科領域中比較常被稱為「日曬斑」或「褐斑」的一種,但嚴格來說,依據皮膚科專家的分類,可將「雀斑」區分為兩大類:

  1. 小雀斑(Ephelides):一般人在談論「雀斑」時,多半指的就是這類。它們常呈現為細小且淺棕色,通常散落於臉部、肩膀、手臂等長期曝曬陽光的部位,夏天時較為明顯,冬天會逐漸淡化。
  2. 曬斑型老人斑(Solar Lentigines):又稱「日光性黑斑」或「年齡斑」,形狀可能較大,顏色較深,常分布於長時間曝曬的肌膚區域,如臉部、手背等。它們不會像小雀斑那樣隨季節改變顏色或變淡,而是隨著年齡與累積日曬逐漸加深。

紫外線如何誘發雀斑?

皮膚中的色素,主要由名為「黑色素細胞」(melanocytes)的細胞製造,這些細胞負責產生「黑色素」(melanin)。在平時的皮膚狀態下,黑色素會平均分布在表皮中,讓每個人擁有自己獨特的膚色。當皮膚受到紫外線刺激時,為了保護深層細胞免於 UV 傷害,黑色素細胞會增加黑色素的產量,試圖將危險的 UV 射線「散射」出去,避免它穿透至更深層皮膚,造成 DNA 損傷。

-----廣告,請繼續往下閱讀-----

雀斑之所以出現,便是由於某些區域的黑色素細胞比其他區域更為活躍,在相同的日曬條件下產生了相對大量的黑色素,並集中在特定區塊,於是就形成我們肉眼可見的「小斑點」。

雀斑由黑色素細胞局部活躍產生,黑色素集中形成肉眼可見的小斑點。圖/envato

為什麼夏天雀斑特別明顯?

夏天日照時間長、紫外線指數通常也偏高,使黑色素細胞生產更多色素,故那些先天對紫外線較敏感、或具遺傳傾向產生雀斑的人,臉上就更容易冒出小斑點。等到秋冬日照減少、紫外線較弱時,這些黑色素細胞的活躍度也會跟著下降,皮膚的代謝作用會逐漸將多餘色素淡化,於是原本在夏天特別明顯的雀斑又慢慢變得不顯眼,甚至接近消失。

然而,並不是所有雀斑都會隨季節消長。同樣受到紫外線影響的「日曬型老人斑(Solar Lentigines)」,就不會像小雀斑那樣在冬天退色,因為它是長期日曬累積造成的色素沉澱,隨著年紀增長與皮膚細胞多次受紫外線傷害,這些斑點往往會持續存在或顏色更加深。

遺傳與膚質的影響

事實上,並非每個人都會長雀斑。它在一定程度上和基因有關。膚色白皙且天然黑色素較少的人,更容易受到紫外線的影響,而產生或加深雀斑。尤其歐美血統者,其遺傳基因裡常見 MC1R 基因變異,導致毛髮顏色較淺、膚色偏白,也就更容易「曬出」雀斑。而亞洲人中,若父母一方有雀斑基因,也可能遺傳給下一代。

-----廣告,請繼續往下閱讀-----

「太陽之吻」與健康有關嗎?

雀斑本身是無害的,不會直接演變成皮膚癌。然而,它們的出現代表皮膚曾經受到過紫外線的刺激,若人們在相同條件下沒有做好防曬,長期累積的 UV 傷害可能導致細胞 DNA 損傷,讓皮膚老化、皺紋提早出現,甚至提高罹患皮膚癌的風險。因此,有雀斑的人不必過度擔心,但是也應該將之視為一種提醒,提醒自己需要加強日常的防曬措施。

雀斑無害,但還是要注意紫外線帶來的傷害。圖/envato

如何區分「日曬斑」與「老人斑」?

  • 日曬斑(ephelides):經常出現在皮膚較薄或常曬太陽的部位,如臉頰、鼻梁,夏天加深、冬天減淡。
  • 老人斑或曬斑(solar lentigines):較大、顏色較深,容易出現在手背、臉部。隨年齡增長、不會隨季節變淡。

如果皮膚上出現斑點且有快速變化,或顏色、形狀突變的情況,最好就醫檢查,以排除皮膚癌等風險。因為某些黑色素瘤或癌前病變,在早期也可能長得類似咖啡色斑點,必須由專業醫師進行鑑別診斷。

想要保護皮膚?防曬是關鍵

想要減少雀斑的生成或避免它們顏色變深,防曬是最有效的手段之一。無論是否有雀斑,紫外線皆會加速皮膚老化和傷害,因此建議做好以下幾點:

  1. 使用防曬產品:選擇符合自身膚質且 SPF 值足夠的防曬乳,並在外出前 15 至 20 分鐘均勻塗抹,並於戶外活動每 2 小時補塗一次。
  2. 配戴帽子與太陽眼鏡:多重物理隔離,可以更有效地保護臉部與眼周脆弱的肌膚。
  3. 善用遮陽工具:如陽傘、遮陽布等,減少直接曝曬在刺眼陽光下的時間。
  4. 避開強烈日曬時段:若時間允許,儘量在上午 10 點以前或下午 4 點以後再從事戶外活動,降低紫外線的曝曬量。

雀斑之所以容易在夏日高調現身,歸根究柢都是皮膚為了抵禦紫外線所做的「自衛行動」。面對這些「太陽之吻」,我們無需過度恐慌,因為它們本身無害;但也不該放鬆警惕,畢竟皮膚細胞受到紫外線傷害的警訊往往比想像中更容易被忽視。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。