2

2
5

文字

分享

2
2
5

用「光」就可以治療癌症?人類一百多年前就發現,讓不正常的細胞通通炸掉的療法——淺談光動力治療 PDT

Bei
・2022/08/03 ・2465字 ・閱讀時間約 5 分鐘

光動力療法,起源於 100 多年前

1903 年,諾貝爾獎得主 Niels Ryberg Finsen 發現照射紅外線可以預防天花的生成,而照射太陽中的紫外線可以治療皮膚結核病,此項發現也為光治療領域開啟了新的一個章節。

接著在 1950 年,科學家發現可以利用特定波長的光源來激發感光劑(Photosensitizer),且對細胞具有一定能力的破壞。

利用雷射進行的光動力療法。圖/維基百科

1966 年,科學家首次嘗試將光動力治療(photodynamic therapy, 以下簡稱 PDT)運用於腫瘤,一開始只是對感光劑可做為腫瘤細胞的螢光定位感興趣;一直到了 1975 年,科學家們發現利用感光劑定位的小鼠腫瘤,在特定波長的光源照射下可以被消除,且不會傷害到周圍正常的細胞組織

此後 PDT 成了在臨床上研究腫瘤治療的新方法。

PDT 的治療三要素

PDT 的三個要素為:感光劑 、光源(可以是雷射光或其他光源,例如 LED)、組織及細胞內的氧分子。PDT 必須在這三個元素共同的作用下才能達到治療的效果,缺一不可。

-----廣告,請繼續往下閱讀-----

首先,將感光劑加入組織細胞中,一開始所有的組織細胞都會吸收等量的感光劑,但在經過一段時間後,感光劑會從正常的細胞中被代謝,且累積在不正常增生的腫瘤組織(或惡化組織)中,之後再利用適合感光劑的特定波長光源激發感光劑,產生電子的能階變化,也就是電子從基態轉變成激發態,當能階恢復時,感光劑便能釋放出能量。

PDT 三要素之一:光源,激發感光劑使電子產生能階變化,便能釋放出能量。圖/維基百科

受釋放出的能量及光化學反應的影響,組織內的物質會產生氧化反應,進而生成對細胞具有毒性的自由基(free radicals),引起細胞毒殺作用,達到消除癌細胞的效果。就像把定時炸彈送到每個細胞上,但正常的細胞就會把它丟掉,不正常的細胞就會把它留在身上,直到引爆訊號發出,把所有帶著炸彈的不正常細胞都炸掉

由於 PDT 為非侵入性治療,臨床上將其與傳統的放療、化療結合使用,如此可以達到消除腫瘤組織,又不影響到周邊正常組織的效果,且因為是非侵入性的治療,也可以大幅降低術後產生的傷口感染與癒後不佳的情況。

日光性角化症——皮膚癌前病變

有 60% 的皮膚鱗狀細胞癌(squamous cell carcinoma, SCC),是由日光性角化症(actinic keratosis, AK)轉變而來。目前認為發病原因與長期陽光曝曬有關,且好發在中老年人。

-----廣告,請繼續往下閱讀-----

日光性角化症為肉眼觀察到的最早期之皮膚鱗狀細胞原位癌(squamous cell carcinoma in situ),因此在臨床治療上極具重要性。

皮膚鱗狀細胞癌通常由日光性角化症引起;皮膚表面通常有鱗,並常伴有潰瘍。圖/維基百科

日光性角化症如果放著不進行治療,將有相當高的機率會繼續惡化。

傳統上常見治療是利用冷凍、電燒、雷射或是手術切除等,然而若病人身體尚有多處皮膚癌病灶、大範圍病灶火這病灶邊界不清楚等情況,目前已有更新穎的治療方式——光動力療法

治療皮膚的新利器

由於皮膚為人體的最外層,光線容易照射,所以多數皮膚相關疾病很適合接受 PDT。

-----廣告,請繼續往下閱讀-----

目前普遍應用於日光性角化症的治療,並被美國食品與藥物管理局(FDA)核可為 PDT 的適應症,由近期的研究報告顯示,PDT 與傳統的冷凍療法的效果不相上下,但經由 PDT 治療後,對於皮膚外觀的破壞較小。

皮膚容易被光線照射,多數相關疾病很適合接受 PDT,對外觀的破壞較小。圖/Pexels

PDT 在其他癌症的臨床應用

目前癌症治療方法,主要還是以手術切除、化學治療、放射線治療,或是合併療法,來破壞或抑制癌細胞,但治療成效有限,且時常伴隨著癌症的再次復發。所以近年來,科學家們積極尋找新的癌症輔佐性療法。

近十年來,PDT 已廣泛地應用來治療癌症腫瘤。因為光的穿透性,所以用來治療表淺性的腫瘤組織,如口咽部、食道、氣管和支氣管、胃、結直腸、泌尿道和腹腔等部位可以達到顯著療效,甚至根治;而位於較深層的腫瘤組織,也可以配合其他類型的治療來提高療效。

綜合來說,PDT 治療上的優點包含了:

-----廣告,請繼續往下閱讀-----
  1. 感光劑低毒性且安全,不會影響身體其他的正常部位。
  2. 感光劑及特定波長的光源,使 PDT 的治療上更具選擇性及專一性。
  3. 傳統的癌症療程,可能在反覆治療下,使病人產生抗藥性。
  4. 治療的傷口較傳統相治療小,可減少破壞組織完整性,且降低傷口癒合的感染機率。

但受到目前技術上的限制,PDT 目前最大的缺點除了治療價格昂貴外,光源的穿透性也使得 PDT 對於體積較大的腫瘤治療效果差,且第一代感光劑會滯留於皮膚,造成光過敏反應。

未來的發展希望:適用於多種疾病

PDT 的研究結合了光化學、光生物學、生物醫學工程學、藥學、基礎生物醫學和臨床醫學等多種領域。

近年來,配合新一代感光劑的開發,及光電生物科技的快速發展,加快了 PDT 臨床應用的研究速度,不僅癌症治療上有了新進展。應用在其他的醫療領域,如類風濕性關節炎(Rheumatoid arthritis)、心臟冠狀動脈阻塞(Coronary artery occlusion)、子宮內膜異位(Endomeriosis)、老人黃斑退化症(Macula degeneration)、乾癬症(Psoriasis)等相關的治療,也是值得讓人期待。

  1. 光動力療法-維基百科
  2. 對抗皮膚癌,光動力療法有效—台北長庚醫院皮膚科
  3. 治療皮膚癌的新利器——光動力療法—台北榮民總醫院皮膚科
  4. 光動力刀治療—新光醫療財團法人新光吳火獅紀念醫院
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
Bei
3 篇文章 ・ 1 位粉絲

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
死亡率最高的皮膚癌——黑色素瘤,標靶藥物提升治療成效
careonline_96
・2023/04/18 ・1659字 ・閱讀時間約 3 分鐘

70 多歲的老太太因為腳底的黑斑到皮膚科就診,原本看起來像瘀青,但是卻越來越大片,相當不尋常。切片檢查結果確認,這不是尋常黑斑,而是皮膚癌,更是惡性度很高的黑色素瘤。

高雄醫學大學附設中和紀念醫院皮膚科鄭詩宗醫師表示,因為已經出現轉移,屬於較晚期的黑色素瘤,除了接受手術治療,還需要全身性治療。

基因檢測發現患者的黑色素瘤具有基因突變,可以使用對應的標靶藥物。鄭詩宗醫師說,接受標靶治療後,病情受到控制,患者也持續接受治療,至今已超過 5 年。

黑色素瘤源自黑色素細胞,是死亡率最高的皮膚癌,鄭詩宗醫師說,「幾年前,台灣有針對轉移性黑色素細胞癌的病人做統計,當時第 4 期的 5 年存活率是 0,惡性度很高!」

-----廣告,請繼續往下閱讀-----

全身各處的皮膚都可能產生黑色素瘤,患者皮膚上可能出現黑色病灶、較怪異的痣、或指甲有出現黑線等。根據腫瘤型態,黑色素瘤具有不同類型,包括結節型、肢端痣型、表淺擴散型等。

鄭詩宗醫師指出,亞洲人的黑色素瘤常長在腳底、手掌、指甲下方,早期黑色素瘤有時候看起來像瘀血,但是瘀血通常會在 1、2 週內消散,黑色素瘤卻會逐漸擴大。

如果發現自己或家人的皮膚有異常,務必及早就醫,把握治療時機。

較早期的黑色素瘤可以利用手術治療,鄭詩宗醫師說,若黑色素瘤已轉移至淋巴結或肝臟、肺臟、腦部等遠端器官,便需要接受全身性治療,例如標靶治療、免疫治療、化學治療等。傳統化學治療對黑色素瘤的效果較差,且副作用較強。

-----廣告,請繼續往下閱讀-----

相較於化學治療,標靶治療的作用機轉較精準,若使用相對應的標靶藥物,能發揮較好的治療成效,且副作用較少,因此建議進行基因檢測,以擬定個人化的治療計畫。鄭詩宗醫師說,研究發現有多種基因突變與黑色素瘤相關,較常見的有 B-RAF、N-RAS、KIT 等。

在使用一線標靶藥物後,黑色素瘤可能逐漸產生抗藥性,鄭詩宗醫師表示,在二線治療也有標靶藥物可以使用,能精準抑制癌細胞提升治療成效,達到較高的反應率和較長的疾病無惡化存活期。若符合條件,健保已有給付標靶治療的藥物。

標靶治療雖然不一定會讓腫瘤完全消失,但是能夠避免腫瘤持續惡化。鄭詩宗醫師說,「第三期黑色素瘤的患者在接受手術後,建議要接受輔助治療,有助於穩定病情,減少進展至第四期的機率。」

貼心小提醒

黑色素瘤是死亡率很高的皮膚癌,其預後與期別有很大的關係,越早發現,治療效果越好。大家要留意身上的痣、黑斑、胎記,並定期觀察外觀變化。

-----廣告,請繼續往下閱讀-----

觀察的時候,請利用 A-B-C-D-E 口訣,「A」形狀是否對稱(Asymmetry),「B」邊緣是否規則(Border),「C」顏色是否均勻(Color),「D」軸徑是否超過 0.6 公分(Diameter),「E」外觀是否持續變化(Evolving)。

若對皮膚病灶有任何疑問或發現皮膚上有難癒合的潰瘍、指甲出現黑線,務必及早就醫,讓醫師進一步評估喔!

  • 本衛教資訊由台灣諾華協助刊登
-----廣告,請繼續往下閱讀-----

2

2
5

文字

分享

2
2
5
用「光」就可以治療癌症?人類一百多年前就發現,讓不正常的細胞通通炸掉的療法——淺談光動力治療 PDT
Bei
・2022/08/03 ・2465字 ・閱讀時間約 5 分鐘

光動力療法,起源於 100 多年前

1903 年,諾貝爾獎得主 Niels Ryberg Finsen 發現照射紅外線可以預防天花的生成,而照射太陽中的紫外線可以治療皮膚結核病,此項發現也為光治療領域開啟了新的一個章節。

接著在 1950 年,科學家發現可以利用特定波長的光源來激發感光劑(Photosensitizer),且對細胞具有一定能力的破壞。

利用雷射進行的光動力療法。圖/維基百科

1966 年,科學家首次嘗試將光動力治療(photodynamic therapy, 以下簡稱 PDT)運用於腫瘤,一開始只是對感光劑可做為腫瘤細胞的螢光定位感興趣;一直到了 1975 年,科學家們發現利用感光劑定位的小鼠腫瘤,在特定波長的光源照射下可以被消除,且不會傷害到周圍正常的細胞組織

此後 PDT 成了在臨床上研究腫瘤治療的新方法。

PDT 的治療三要素

PDT 的三個要素為:感光劑 、光源(可以是雷射光或其他光源,例如 LED)、組織及細胞內的氧分子。PDT 必須在這三個元素共同的作用下才能達到治療的效果,缺一不可。

-----廣告,請繼續往下閱讀-----

首先,將感光劑加入組織細胞中,一開始所有的組織細胞都會吸收等量的感光劑,但在經過一段時間後,感光劑會從正常的細胞中被代謝,且累積在不正常增生的腫瘤組織(或惡化組織)中,之後再利用適合感光劑的特定波長光源激發感光劑,產生電子的能階變化,也就是電子從基態轉變成激發態,當能階恢復時,感光劑便能釋放出能量。

PDT 三要素之一:光源,激發感光劑使電子產生能階變化,便能釋放出能量。圖/維基百科

受釋放出的能量及光化學反應的影響,組織內的物質會產生氧化反應,進而生成對細胞具有毒性的自由基(free radicals),引起細胞毒殺作用,達到消除癌細胞的效果。就像把定時炸彈送到每個細胞上,但正常的細胞就會把它丟掉,不正常的細胞就會把它留在身上,直到引爆訊號發出,把所有帶著炸彈的不正常細胞都炸掉

由於 PDT 為非侵入性治療,臨床上將其與傳統的放療、化療結合使用,如此可以達到消除腫瘤組織,又不影響到周邊正常組織的效果,且因為是非侵入性的治療,也可以大幅降低術後產生的傷口感染與癒後不佳的情況。

日光性角化症——皮膚癌前病變

有 60% 的皮膚鱗狀細胞癌(squamous cell carcinoma, SCC),是由日光性角化症(actinic keratosis, AK)轉變而來。目前認為發病原因與長期陽光曝曬有關,且好發在中老年人。

-----廣告,請繼續往下閱讀-----

日光性角化症為肉眼觀察到的最早期之皮膚鱗狀細胞原位癌(squamous cell carcinoma in situ),因此在臨床治療上極具重要性。

皮膚鱗狀細胞癌通常由日光性角化症引起;皮膚表面通常有鱗,並常伴有潰瘍。圖/維基百科

日光性角化症如果放著不進行治療,將有相當高的機率會繼續惡化。

傳統上常見治療是利用冷凍、電燒、雷射或是手術切除等,然而若病人身體尚有多處皮膚癌病灶、大範圍病灶火這病灶邊界不清楚等情況,目前已有更新穎的治療方式——光動力療法

治療皮膚的新利器

由於皮膚為人體的最外層,光線容易照射,所以多數皮膚相關疾病很適合接受 PDT。

-----廣告,請繼續往下閱讀-----

目前普遍應用於日光性角化症的治療,並被美國食品與藥物管理局(FDA)核可為 PDT 的適應症,由近期的研究報告顯示,PDT 與傳統的冷凍療法的效果不相上下,但經由 PDT 治療後,對於皮膚外觀的破壞較小。

皮膚容易被光線照射,多數相關疾病很適合接受 PDT,對外觀的破壞較小。圖/Pexels

PDT 在其他癌症的臨床應用

目前癌症治療方法,主要還是以手術切除、化學治療、放射線治療,或是合併療法,來破壞或抑制癌細胞,但治療成效有限,且時常伴隨著癌症的再次復發。所以近年來,科學家們積極尋找新的癌症輔佐性療法。

近十年來,PDT 已廣泛地應用來治療癌症腫瘤。因為光的穿透性,所以用來治療表淺性的腫瘤組織,如口咽部、食道、氣管和支氣管、胃、結直腸、泌尿道和腹腔等部位可以達到顯著療效,甚至根治;而位於較深層的腫瘤組織,也可以配合其他類型的治療來提高療效。

綜合來說,PDT 治療上的優點包含了:

-----廣告,請繼續往下閱讀-----
  1. 感光劑低毒性且安全,不會影響身體其他的正常部位。
  2. 感光劑及特定波長的光源,使 PDT 的治療上更具選擇性及專一性。
  3. 傳統的癌症療程,可能在反覆治療下,使病人產生抗藥性。
  4. 治療的傷口較傳統相治療小,可減少破壞組織完整性,且降低傷口癒合的感染機率。

但受到目前技術上的限制,PDT 目前最大的缺點除了治療價格昂貴外,光源的穿透性也使得 PDT 對於體積較大的腫瘤治療效果差,且第一代感光劑會滯留於皮膚,造成光過敏反應。

未來的發展希望:適用於多種疾病

PDT 的研究結合了光化學、光生物學、生物醫學工程學、藥學、基礎生物醫學和臨床醫學等多種領域。

近年來,配合新一代感光劑的開發,及光電生物科技的快速發展,加快了 PDT 臨床應用的研究速度,不僅癌症治療上有了新進展。應用在其他的醫療領域,如類風濕性關節炎(Rheumatoid arthritis)、心臟冠狀動脈阻塞(Coronary artery occlusion)、子宮內膜異位(Endomeriosis)、老人黃斑退化症(Macula degeneration)、乾癬症(Psoriasis)等相關的治療,也是值得讓人期待。

  1. 光動力療法-維基百科
  2. 對抗皮膚癌,光動力療法有效—台北長庚醫院皮膚科
  3. 治療皮膚癌的新利器——光動力療法—台北榮民總醫院皮膚科
  4. 光動力刀治療—新光醫療財團法人新光吳火獅紀念醫院
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
Bei
3 篇文章 ・ 1 位粉絲

0

0
0

文字

分享

0
0
0
別擦防曬乳去游泳?可能會分解出致癌物!?
florinn
・2017/08/02 ・2250字 ・閱讀時間約 4 分鐘 ・SR值 538 ・八年級

夏日炎炎,太陽每天都熾熱得嚇人,大多數人都會擦防曬乳,以阻擋紫外線,減少對皮膚的危害。不過,一則近期的研究指出,擦防曬乳其實也有可能會對皮膚造成負面的影響,該研究發現,各家廠商愛用的防曬成分──亞佛苯酮(Avobenzone、Butyl Methoxydibenzoylmethane),與含氯分子的水(例如泳池水)接觸並照射紫外光之後,會產生有危害的化學物質。

圖/chezbeate@Pixabay

為何亞佛苯酮為什麼能獲得各家防曬乳廠商的青睞呢?這就要從防曬乳怎麼保護你的肌膚開始說起了。

防曬乳就是你的防護罩

從太陽而來的紫外線,依據波長可以分為紫外光A(UVA,波長320-400奈米)和紫外光B(UVB,波長280-320奈米)和紫外光C(UVC,波長100-280奈米)三種。其中UVC則在臭氧層就幾乎被消耗殆盡,只有UVA和UVB有辦法穿透大氣層抵達地表,而能夠到達地表的紫外光又以UVA為主。

-----廣告,請繼續往下閱讀-----

圖/防曬乳讓你晒SUN不晒傷

皮膚曬紅或是曬傷的主因是皮膚照射了UVB區段的紫外線;而UVA對皮膚穿透力高,可以到達真皮層,UVA也是皮膚老化和罹患皮膚癌的主因之一。

塗上防曬乳,就像是在皮膚上塗上一層防護罩,這層防護罩可以阻隔紫外線,皮膚沒有接收過量的紫外線,就不會產生傷害了。而根據阻隔紫外線的方式,可以將防曬乳分為兩種:一種是直接把照在皮膚上的紫外光反射掉,另一種則是把照到皮膚上的紫外光吸收。

反射紫外光的方法屬於物理性防曬,是把一些金屬氧化物塗在皮膚表面,直接反射紫外光,例如:二氧化鈦或氧化鋅;而吸收紫外光的方法就屬於化學性防曬,這類方法是把一些會吸收紫外光的有機分子塗在皮膚表面,它們會吸收紫外光,並把吸收的能量以熱能或其他方式釋放出來。

-----廣告,請繼續往下閱讀-----

長期以來,人們較注重曬傷的防護,因此目前多數的化學性防曬成分都是以吸收UVB的波段為主(各種不同防曬成分對應的紫外光波段,可以參考這篇)。以美國來說,常用於阻擋吸收UVA的成分只有化學性的亞佛苯酮以及物理性的氧化鋅,而亞佛苯酮可以吸收幾乎全波段UVA,自然就成為重要的防曬乳成分。

廣泛使用的亞佛苯酮,有機會分解成有毒的小分子

亞佛苯酮本身其實並沒有毒性。它在1973獲得專利,於1978、1988分別被歐盟和美國FDA核准使用後,且因為這個分子能吸收幾乎整個波段的UVA的特性,很快地便成了各廠牌的防曬相關用品的成分清單裡的一分子,大多數的防曬相關用品中都可以找到它的蹤跡。

亞佛苯酮在含氯分子的水中,可能產生的分子。圖/研究團隊2016年發表的論文

雖然說分子本身無毒,但有研究者在去年(2016)發表的研究中發現,在有水分存在的情況下,亞佛苯酮也會如其他的防曬分子一樣,被紫外光照一照就分解、失去功能了。研究人員也好奇,如果在游泳池裡面使用含有亞佛苯酮的防曬乳的話,會發生什麼事,他們實驗結果顯示,在游泳池水的環境裡,亞佛苯酮如果被紫外光照射,就有機會和水中的氯氣分子反應,產生兩種含氯的衍生物(單氯和雙氯衍生物,如上圖的A和C)。

-----廣告,請繼續往下閱讀-----

他們今年(2017)五月發表的研究又近一步的發現,分子C(兩個氯)會比分子A(一個氯)或亞佛苯酮(沒有氯),更容易因為照到紫外光而分解。而且他們發現,分解後產生的小分子是含氯的苯乙酮分子、含氯的苯甲酸,以及含氯的酚類,這些都是已知對人體有一定程度危害的物質。

目前,研究人員正繼續研究在氯化或溴化的淡水或海水中,亞佛苯酮可能產生的反應。如果將海水氯化或溴化後,亞佛苯酮能分解出來的小分子,種類會更多樣化;又如果亞佛苯酮在含有銅離子的水中(銅鹽可用作游泳池的殺藻劑),則會生成含溴仿(Bromoform),這個分子會對肝、腎或神經系統造成影響。

別擦防曬乳去游泳,就不用太過擔心

事實上,在衛福部食藥署2016年7月公告的「化粧品含有醫療或毒劇藥品基準」中,有明列限制亞佛苯酮在化妝品類產品中的添加量必須要低於5%。而且常用來阻擋UVB的成分(例如:octinoxate、octocrylene)都能幫助穩定亞佛苯酮分子,雖然讓吸收UVA的能力降低,但比較不容易分解。

更重要的是,要產生這項研究所說的有毒分子,需要的條件是讓亞佛苯酮與含有氯分子的水接觸,才有機會產生。日常生活中體表流的汗並沒有可以進行反應的氯分子,必須要擦防曬乳去游泳,才能產生這些危害物質,而且池水也會把這些分子連同防曬乳一併帶走,所以我們其實不需要太擔心毒物會直接透過皮膚進入身體,比較大的問題反而會是水的污染(不過大部分的游泳池都禁止擦防曬乳下水,所以其實也不用太憂心啦)。

-----廣告,請繼續往下閱讀-----

在台灣,除了低濃度的純二氧化鈦(物理性)防曬以外,噴霧型奈米二氧化鈦和化學性防曬,都必須先向衛福部食藥署申請許可,所以如果你還是有點擔心自己使用的防曬乳的話,除了看瓶身標示,確認成分之外,你也可以到衛福部食藥署的含藥化妝品許可的查詢頁面,看看自己使用的產品申請許可,還有它的成分是什麼喔!

原始文獻:

  1. Transformation of avobenzone in conditions of aquatic chlorination and UV-irradiation, Water Research (2016), Polonca Trebše et al., DOI: 10.1016/j.watres.2016.05.067
  2. Stability and removal of selected avobenzone’s chlorination products, Chemosphere (2017), Cheng Wang et al., DOI: 10.1016/j.chemosphere.2017.04.125

資料來源:

  1. Sunscreen creams break down into dangerous chemical compounds under the sunlight, Phys.org
  2. How do the chemicals in sunscreen protect our skin from damage? ,  Phys.org

延伸閱讀:

-----廣告,請繼續往下閱讀-----
  1. 2017 最新防曬產品第三方檢測彙整圖表與評比 – MedPartner 美的好朋友
  2. 物理性防曬和化學性防曬到底哪個好?關鍵5點讓你秒懂!防曬全攻略4 – Med美的好朋友 
  3. Sunscreens: An overview and update, Journal of the American Academy of Dermatology, (2011) Sambandan, Divya R. et al., DOI: 10.1016/j.jaad.2010.01.005
-----廣告,請繼續往下閱讀-----
florinn
8 篇文章 ・ 4 位粉絲
曾任泛科學實習編輯,是個從學術象牙塔逃離的化學系、化學所學生。比起做實驗,更喜歡分享科學故事、聽科學趣聞,寫科普文的目的就是希望能和大家一起領略科學的力與美。