0

0
0

文字

分享

0
0
0

道爾吞誕辰 │ 科學史上的今天:09/06

張瑞棋_96
・2015/09/06 ・1031字 ・閱讀時間約 2 分鐘 ・SR值 483 ・五年級

-----廣告,請繼續往下閱讀-----

【科學史上的今天】9/6——道爾吞誕辰(John Dalton, 1766-1844)

老人顫抖的手在記錄本上吃力地寫下今天的天氣、溫度、濕度和氣壓,才滿意地闔上本子。他自二十一歲開始,五十七年來每天記錄當天氣象資料,數十年如一日,從不間斷。

只是他已經很多年沒記錄雨量了;自從八、九年前兩度中風後,他就不方便進出屋外取放量筒。老人想起第一次測量雨量的情景,不禁嘴角微笑。他 15 歲時到親戚辦的學校幫忙,第二年來了一位雙眼失明的果夫(John Gough)老師。他朗讀書報給果夫聽,博學的果夫則教他語文、數學與自然科學,也包括測量大氣與其它實驗方法。也因為果夫的推薦,並幫他把氣象紀錄整理成冊,他才得以在 27 歲時至曼徹斯特的一所學院教書。

而他直到此時才發現自己原來有色盲,而於 1794 年發表他的第一篇論文,也是關於科學史上第一篇探討色盲的論文;他沒料到後來自己的名字竟就用以稱謂色盲症(Daltonism)。

-----廣告,請繼續往下閱讀-----

1800 年,他失去了教職,於是乾脆自己開辦私塾,同時針對他當年觀測氣象時,發現的「飽和蒸氣壓」現象展開實驗。他發現氣體溶入水中的量與空氣中的氣體含量有固定的比例關係,而不同氣體在水中溶解的比例關係卻各不相同。他因此思考不同氣體是否由不同粒子組成,而且粒子的數量與重量也各不相同?

經過無數實驗,他於 1803 到 1805 年間陸續發表後來被稱為「原子論」的學說,主張每種元素都是由不可再分割的原子組成;同一元素的原子完全一樣,不同元素有不同性質與重量的原子;不同元素形成化合物時,其原子是以簡單整數比結合而成。

他還設計了各種原子的符號,一顆顆小小的圓形圖案多美麗啊,他不懂世人為何要採用瑞典化學家貝吉里斯(J. J. Berzelius)所建議的,使用字母作為元素符號,一點美感都沒有。還有一個法國人蓋呂薩克(Joseph Gay-Lussac)也讓他相當不滿,竟然指他的實驗有誤,說水的氫氧比例不是 1:1。

無論如何,他仍堅信自己才是對的。他不管外界紛擾,繼續做他的實驗,繼續為私塾的學生上課,直到健康不佳才終止;他突然想起 1837 年最後一屆的畢業生中,有位叫焦耳的學生雖然調皮卻蠻聰明的,不知現在如何了?

-----廣告,請繼續往下閱讀-----

老人回過神來,將氣象紀錄的冊子收好,上床就寢。第二天一早,照顧他生活起居的僕侍發現他倒在床邊地板,已無氣息。1844 年 7 月 27 日,以原子論改變現代化學的道爾吞中風過世,享年 77 歲。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 946 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

7
1

文字

分享

0
7
1
醞釀兩千年才誕生的「原子論」,源頭竟然是古希臘哲學?——《奇怪的生物知識增加了》
聚光文創_96
・2021/10/08 ・2059字 ・閱讀時間約 4 分鐘

  • 作者/蘇仁福、曾明騰
  • 繪者/Oliver Wei、卡斯威爾

此原子非彼原子

俗話說:「眼見為憑」,除了民間習俗或是崇拜超自然的宗教信仰以外,面對於無法親眼所見的事物,人們普遍抱持著懷疑與不信任的態度,過去的科學研究也是如此。

前面兩章的故事告訴我們,早期的科學,就是專注於眼前看得到、摸得到的明確對象。隨著科學技術的進步,時至今日,科學家們卻是反其道而行,投身於肉眼看不見的微觀世界中,發掘其中的蛛絲馬跡。

「原子」(atom),是組成物質的最小單位。

舉凡我們身上穿的衣服、呼吸的空氣,甚至是代步的交通工具,這一切的一切,都是由「原子」——這是在我們生活中看不見、摸不著卻又確實存在的東西——所構成。

-----廣告,請繼續往下閱讀-----

若是你認為書寫所使用的「原子筆」(ballpoint pen)跟這裡的「原子」是一樣的話,那可就是「張飛打岳飛,打得滿天飛」啦!

萬物起源

原子的概念,是距今兩千四百年前左右,由希臘哲學家德謨克利特(Democritus)所提出。

德謨克利特認為,宇宙中有無限多個質點,它們無法被進一步分解或是破壞。萬事萬物,都是由一大堆(究竟有多少他也不知道)、非常微小(小到多小他也莫宰羊)的質點所組成。

他將這些質點稱為「原子」,或者又叫「不可分割的東西」。他認為,正是因為這些原子的大小不一,形狀也不盡相同,造成世間萬物的存在型態、顏色、味道等種種不同。

-----廣告,請繼續往下閱讀-----

或許在德謨克利特的眼中,我們這些麻瓜口中的物質與空間,根本就是原子和虛空。

圖/聚光文創提供

同樣的哲學時代,另一位希臘哲學家恩培多克利(Empedocles),則依據當時人們對化學較為粗淺的認知,提出了自己的原子理論。

恩培多克利認為,物質是由「火、氣、水、土」這四大元素所組成。這四大元素會依據不同的成分與比例混合,構成這個大千世界裡的萬事萬物。

圖/聚光文創提供

用現代的眼光來看,這些與原子相關的學說或理論,根本可以算是神作——這艱澀難懂的程度,恐怕也只有神才能夠通盤理解了——更別提,當代人受教育的比例不高,不夠通俗易懂的話,還真沒有多少人能夠消化。

-----廣告,請繼續往下閱讀-----

正因為如此,原子論被古代哲學家棄置一旁。在之後,歐洲陷入了一段宗教狂熱的黑暗時期,一直到十九世紀,科學研究才再次登上世界的大舞臺。

曼徹斯特的驕傲

由於太過微小,可想而知,原子並非顯而易見的存在。

一七九三年,英國科學家道耳吞(John Dalton)搬到曼徹斯特,成為曼徹斯特新學院的數學和自然科學教師,揭開了原子研究的序幕。

出生於貧窮家庭的他,不僅對數學與自然科學天賦極高,還具備著科學家最重要的特質:好奇心。這個特質在他的生活中處處顯現,身為一個色盲患者,他甚至好奇的研究自己的視覺缺陷,因此成為第一個發表色盲研究論文的科學家。

-----廣告,請繼續往下閱讀-----
圖/聚光文創提供

除了自己的疾病,道耳吞也熱愛氣象研究。終其一生,他都在進行長期的氣象觀測,直到他登出人生 online,持續了整整五十七年。

有人認為,正是這持續終身的氣象研究,讓道耳吞對大氣的成分產生了興趣。他那著名的原子論,也是在研究氣體的過程中逐漸成形。

在此之前,化學家已經發現,並且證實了許多定律,例如著名的「波以耳定律」、「質量守恆定律」、「定比定律」 等等。

這些定律,為早期的化學界逐漸建立化學元素的概念,卻依然缺乏一個完整的理論來整合說明。

-----廣告,請繼續往下閱讀-----

一八〇三年九月六日,是道耳吞的三十七歲生日,他並沒有舉行宴會慶生,而是寫下了原子學說的基本假設。

圖/聚光文創提供

道耳吞的原子基本假設,是簡明扼要的三項原則:

  1. 原子是物質的最小單位,每種元素(element),都是由一種具有特定質量的原子所組成。
  2. 當兩種元素反應,生成不同的化合物時,其中一元素與另一種元素的質量,會構成簡單的整數比。
  3. 在化學反應過程中,不會產生新的原子,也不會有原子消失(或是變成其他原子)。
圖/聚光文創提供

一八〇八年,道耳吞出版了《化學哲學的新體系》(A New System of Chemical Philosophy)一書。在書中,道耳吞詳細的闡述了他的原子論,並且以獨特的符號,向人們展示他的原子。

——本文摘自《奇怪的生物知識增加了》,2021 年 10 月,聚光文創

-----廣告,請繼續往下閱讀-----
聚光文創_96
6 篇文章 ・ 6 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。

1

6
4

文字

分享

1
6
4
兩百年前的原子量是怎麼誕生的?
姚荏富_96
・2021/03/08 ・2248字 ・閱讀時間約 4 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

說到原子量大家可能想到的就是什麼氧是 16、碳是 12……之類的元素與數字的關係,但你知道為什麼氧是 16 碳應該是 12 嗎?又或者原子量到底要用來幹嘛的呢?我想大部分的人在課堂中並不會得到比較具體的答案,所以筆者想在這裡和大家聊聊原子量到底是什麼。

原子量其實就是「一顆原子的質量」,今天如果想要測量一個物質的質量,通常是把物質放到天秤上來測量,但若要把「一顆原子」放到天秤上測量質量,並不是不可能啦,但這就要用到 2018 年的諾貝爾物理學獎的「光聶」技術,才有可能做到(當然,還有要用什麼砝碼來跟「一顆原子」平衡,什麼樣的天秤才足夠靈敏之類的問題)。

要把「一顆原子」放到天秤上測量質量,其實並不是不可能,但這就要用到 2018 年的諾貝爾物理學獎的「光聶」技術,才有可能做到。圖/Wikipedia

有趣的是,早在 18 世紀末期,原子量就出現了!還有具體的數字以及對照表(雖然說跟現在比起來有不少的誤差),兩百多年前可沒什麼「光聶」可以用,想必當時的科學家肯定不是用天秤量出「一顆原子」的質量,那這些原子量是怎麼出現的呢?

當年「元素」是物質的「最純形態」

在 18 世紀後期,科學家們將組成物質的「最純型態」叫做「元素」,而組成物質的「最小單位」叫做「原子」。

-----廣告,請繼續往下閱讀-----

在十八世紀以前雖然有「原子」這種講法,但當時「原子」與我們現在所學的概念並不相同;在更早以前的人認為所有的物質拆到最小都會是同樣的原子小球,會有不同元素的差異是因為原子排列方式的不同所造成。但其實「每種元素都有屬於自己的原子」,像是氫就有氫原子、氧就有氧原子,你是什麼元素就會決定你是什麼原子。

而這些概念的確立就要討論到 18 世紀末期科學家陸續發現的「定比定律」以及「倍比定律」兩大定律。

定比定律是同一種化合物他裡面的成分質量比都會是固定的,以水為例,水中含有氫與氧,但不管是你的合成水或是野外裝到的水,他的質量比都會是 1:8,這就好像上帝的食譜一樣,每個化合物都會有自己的元素配方和指定的質量比例。

而倍比定律呢?則是成份元素如果種類相同的話,每種物質他們的相同的元素也會出現簡單的整數比關係。舉例來說,甲烷和乙烯兩個都是由碳與氫組成的化合物,這時候分析裡面碳與氫的質量組成比例,就會發現當我碳固定質量時,甲烷和乙烯的的氫質量比就會呈現 2:1。

瞭解這兩個原理之後,科學家發現了相同化合物裡面的元素質量,和不同化合物的元素質量之間,都有著微妙的比例關係;但他們有一個問題遲遲無法解決,那就是不同元素的「一份」應該分別是多重。

-----廣告,請繼續往下閱讀-----

這時英國科學家道爾吞在 1803 年開了第一槍,他將化合物分為最簡單的二元(AB)、三元(A2B or AB2)以及四元(AB3 or A3B),並簡單粗暴的認定如果 A、B 兩種元素組合後只能有一種化合物的話,那這種化合物就會是一比一組成的二元化合物。現在看來這個判斷稍嫌武斷,但如果道爾吞沒有這樣定義的話原子量的概念就不會這麼早出來。

如果道爾吞沒有將化合物定義為最簡單的二元(AB)、三元(A2B or AB2)以及四元(AB3 or A3B),原子量的概念就不會這麼早出來。圖/Wikipedia

道爾吞依據前面的兩個定律與他提出的組成原則,將化合物中通常質量比數字都是最小的氫定為原子量 1(雖然現在我們的氫也是 1,但與這時的氫原子量概念並不完全相同),並以此為基準做了大量的原子量計算。

像是根據氨的重量分析,其中氫和氮的重量組成 20:80,那依照上面氫原子量是一的情況下,氮的原子量就是 4(現在看是錯的喇,因為當時他認為氨是 NH 但事實上氨是 NH3);又或者是根據水的重量分析,其中氫與氧的重量組成是 15:85,所以氧的原子量是 5.66,又再用氧的原子量去分析碳酸氣(二氧化碳),得出碳的原子量就是 4.5。

以上述的原子量推定方式來看就可以知道原子量並不是一個絕對的數字,而是一個相對質量的概念,所以原子量又可以稱之為相對原子質量。

-----廣告,請繼續往下閱讀-----

不過你可能會覺得 18、19 世紀的原子量跟我們現在學的數字根本就不一樣,但這又是另一個故事了,我們暫且打住。

原子量的測定邏輯,基本上還是從道爾吞製作的第一張原子量表延續到現在,其概念就是「既然我們無法抓一顆原子來測定他的質量,我們還可以找出物質化合的質量比例,來找出不同元素的原子之間他們的相對質量」而這就是原子量的基本概念。

相關科學史事件

  •  1789 年:愛爾蘭化學家希金斯發表《燃素與反燃素理論的比較》,除了支持拉瓦節的觀點外,他也推測原子只能按一定比例進行化合
  • 1792~1802 年:李希特(J.B Richter)提出定比定律
  • 1799 年:法國藥劑師普羅斯用人工與天然的鹽基碳酸銅去做測定,確定定比定律
  • 1800 年:戴維在《化學和哲學研究》分析了 N2O、NO、NO2 的重量組成(倍比定律的起始)
  • 1801 年:貝托萊在《親和力之定律的研究》中反對定比定律
  • 1803 年:道爾吞在論文中假定原子按簡單比例化合
  • 1804 年:道爾吞分析甲烷和乙烯之比例,提出倍比定律
  • 1808 年:道爾吞出版《化學哲學新體系》

參考資料

  1. 化學通史—凡異出版
  2. 化學史傳—商務印書館
所有討論 1
姚荏富_96
3 篇文章 ・ 6 位粉絲
成大化學畢,文字/影像工作者,LIS初代科學史圖書館,著有《科學史上最有梗的20堂化學課》。興趣廣泛,涉足科普寫作、影像製作、投資理財、社會觀察、社群經營......技能樹持續擴張中,目標是將學會的知識或技能用有趣簡單的方式分享給大家。