0

0
0

文字

分享

0
0
0

道爾吞誕辰 │ 科學史上的今天:09/06

張瑞棋_96
・2015/09/06 ・1031字 ・閱讀時間約 2 分鐘 ・SR值 483 ・五年級

-----廣告,請繼續往下閱讀-----

【科學史上的今天】9/6——道爾吞誕辰(John Dalton, 1766-1844)

老人顫抖的手在記錄本上吃力地寫下今天的天氣、溫度、濕度和氣壓,才滿意地闔上本子。他自二十一歲開始,五十七年來每天記錄當天氣象資料,數十年如一日,從不間斷。

只是他已經很多年沒記錄雨量了;自從八、九年前兩度中風後,他就不方便進出屋外取放量筒。老人想起第一次測量雨量的情景,不禁嘴角微笑。他 15 歲時到親戚辦的學校幫忙,第二年來了一位雙眼失明的果夫(John Gough)老師。他朗讀書報給果夫聽,博學的果夫則教他語文、數學與自然科學,也包括測量大氣與其它實驗方法。也因為果夫的推薦,並幫他把氣象紀錄整理成冊,他才得以在 27 歲時至曼徹斯特的一所學院教書。

而他直到此時才發現自己原來有色盲,而於 1794 年發表他的第一篇論文,也是關於科學史上第一篇探討色盲的論文;他沒料到後來自己的名字竟就用以稱謂色盲症(Daltonism)。

-----廣告,請繼續往下閱讀-----

1800 年,他失去了教職,於是乾脆自己開辦私塾,同時針對他當年觀測氣象時,發現的「飽和蒸氣壓」現象展開實驗。他發現氣體溶入水中的量與空氣中的氣體含量有固定的比例關係,而不同氣體在水中溶解的比例關係卻各不相同。他因此思考不同氣體是否由不同粒子組成,而且粒子的數量與重量也各不相同?

經過無數實驗,他於 1803 到 1805 年間陸續發表後來被稱為「原子論」的學說,主張每種元素都是由不可再分割的原子組成;同一元素的原子完全一樣,不同元素有不同性質與重量的原子;不同元素形成化合物時,其原子是以簡單整數比結合而成。

他還設計了各種原子的符號,一顆顆小小的圓形圖案多美麗啊,他不懂世人為何要採用瑞典化學家貝吉里斯(J. J. Berzelius)所建議的,使用字母作為元素符號,一點美感都沒有。還有一個法國人蓋呂薩克(Joseph Gay-Lussac)也讓他相當不滿,竟然指他的實驗有誤,說水的氫氧比例不是 1:1。

無論如何,他仍堅信自己才是對的。他不管外界紛擾,繼續做他的實驗,繼續為私塾的學生上課,直到健康不佳才終止;他突然想起 1837 年最後一屆的畢業生中,有位叫焦耳的學生雖然調皮卻蠻聰明的,不知現在如何了?

-----廣告,請繼續往下閱讀-----

老人回過神來,將氣象紀錄的冊子收好,上床就寢。第二天一早,照顧他生活起居的僕侍發現他倒在床邊地板,已無氣息。1844 年 7 月 27 日,以原子論改變現代化學的道爾吞中風過世,享年 77 歲。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 951 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

4
4

文字

分享

0
4
4
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

7
1

文字

分享

0
7
1
醞釀兩千年才誕生的「原子論」,源頭竟然是古希臘哲學?——《奇怪的生物知識增加了》
聚光文創_96
・2021/10/08 ・2059字 ・閱讀時間約 4 分鐘

  • 作者/蘇仁福、曾明騰
  • 繪者/Oliver Wei、卡斯威爾

此原子非彼原子

俗話說:「眼見為憑」,除了民間習俗或是崇拜超自然的宗教信仰以外,面對於無法親眼所見的事物,人們普遍抱持著懷疑與不信任的態度,過去的科學研究也是如此。

前面兩章的故事告訴我們,早期的科學,就是專注於眼前看得到、摸得到的明確對象。隨著科學技術的進步,時至今日,科學家們卻是反其道而行,投身於肉眼看不見的微觀世界中,發掘其中的蛛絲馬跡。

「原子」(atom),是組成物質的最小單位。

舉凡我們身上穿的衣服、呼吸的空氣,甚至是代步的交通工具,這一切的一切,都是由「原子」——這是在我們生活中看不見、摸不著卻又確實存在的東西——所構成。

-----廣告,請繼續往下閱讀-----

若是你認為書寫所使用的「原子筆」(ballpoint pen)跟這裡的「原子」是一樣的話,那可就是「張飛打岳飛,打得滿天飛」啦!

萬物起源

原子的概念,是距今兩千四百年前左右,由希臘哲學家德謨克利特(Democritus)所提出。

德謨克利特認為,宇宙中有無限多個質點,它們無法被進一步分解或是破壞。萬事萬物,都是由一大堆(究竟有多少他也不知道)、非常微小(小到多小他也莫宰羊)的質點所組成。

他將這些質點稱為「原子」,或者又叫「不可分割的東西」。他認為,正是因為這些原子的大小不一,形狀也不盡相同,造成世間萬物的存在型態、顏色、味道等種種不同。

-----廣告,請繼續往下閱讀-----

或許在德謨克利特的眼中,我們這些麻瓜口中的物質與空間,根本就是原子和虛空。

圖/聚光文創提供

同樣的哲學時代,另一位希臘哲學家恩培多克利(Empedocles),則依據當時人們對化學較為粗淺的認知,提出了自己的原子理論。

恩培多克利認為,物質是由「火、氣、水、土」這四大元素所組成。這四大元素會依據不同的成分與比例混合,構成這個大千世界裡的萬事萬物。

圖/聚光文創提供

用現代的眼光來看,這些與原子相關的學說或理論,根本可以算是神作——這艱澀難懂的程度,恐怕也只有神才能夠通盤理解了——更別提,當代人受教育的比例不高,不夠通俗易懂的話,還真沒有多少人能夠消化。

-----廣告,請繼續往下閱讀-----

正因為如此,原子論被古代哲學家棄置一旁。在之後,歐洲陷入了一段宗教狂熱的黑暗時期,一直到十九世紀,科學研究才再次登上世界的大舞臺。

曼徹斯特的驕傲

由於太過微小,可想而知,原子並非顯而易見的存在。

一七九三年,英國科學家道耳吞(John Dalton)搬到曼徹斯特,成為曼徹斯特新學院的數學和自然科學教師,揭開了原子研究的序幕。

出生於貧窮家庭的他,不僅對數學與自然科學天賦極高,還具備著科學家最重要的特質:好奇心。這個特質在他的生活中處處顯現,身為一個色盲患者,他甚至好奇的研究自己的視覺缺陷,因此成為第一個發表色盲研究論文的科學家。

-----廣告,請繼續往下閱讀-----
圖/聚光文創提供

除了自己的疾病,道耳吞也熱愛氣象研究。終其一生,他都在進行長期的氣象觀測,直到他登出人生 online,持續了整整五十七年。

有人認為,正是這持續終身的氣象研究,讓道耳吞對大氣的成分產生了興趣。他那著名的原子論,也是在研究氣體的過程中逐漸成形。

在此之前,化學家已經發現,並且證實了許多定律,例如著名的「波以耳定律」、「質量守恆定律」、「定比定律」 等等。

這些定律,為早期的化學界逐漸建立化學元素的概念,卻依然缺乏一個完整的理論來整合說明。

-----廣告,請繼續往下閱讀-----

一八〇三年九月六日,是道耳吞的三十七歲生日,他並沒有舉行宴會慶生,而是寫下了原子學說的基本假設。

圖/聚光文創提供

道耳吞的原子基本假設,是簡明扼要的三項原則:

  1. 原子是物質的最小單位,每種元素(element),都是由一種具有特定質量的原子所組成。
  2. 當兩種元素反應,生成不同的化合物時,其中一元素與另一種元素的質量,會構成簡單的整數比。
  3. 在化學反應過程中,不會產生新的原子,也不會有原子消失(或是變成其他原子)。
圖/聚光文創提供

一八〇八年,道耳吞出版了《化學哲學的新體系》(A New System of Chemical Philosophy)一書。在書中,道耳吞詳細的闡述了他的原子論,並且以獨特的符號,向人們展示他的原子。

——本文摘自《奇怪的生物知識增加了》,2021 年 10 月,聚光文創

-----廣告,請繼續往下閱讀-----
聚光文創_96
6 篇文章 ・ 6 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。

1

6
4

文字

分享

1
6
4
兩百年前的原子量是怎麼誕生的?
姚荏富_96
・2021/03/08 ・2248字 ・閱讀時間約 4 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

說到原子量大家可能想到的就是什麼氧是 16、碳是 12……之類的元素與數字的關係,但你知道為什麼氧是 16 碳應該是 12 嗎?又或者原子量到底要用來幹嘛的呢?我想大部分的人在課堂中並不會得到比較具體的答案,所以筆者想在這裡和大家聊聊原子量到底是什麼。

原子量其實就是「一顆原子的質量」,今天如果想要測量一個物質的質量,通常是把物質放到天秤上來測量,但若要把「一顆原子」放到天秤上測量質量,並不是不可能啦,但這就要用到 2018 年的諾貝爾物理學獎的「光聶」技術,才有可能做到(當然,還有要用什麼砝碼來跟「一顆原子」平衡,什麼樣的天秤才足夠靈敏之類的問題)。

要把「一顆原子」放到天秤上測量質量,其實並不是不可能,但這就要用到 2018 年的諾貝爾物理學獎的「光聶」技術,才有可能做到。圖/Wikipedia

有趣的是,早在 18 世紀末期,原子量就出現了!還有具體的數字以及對照表(雖然說跟現在比起來有不少的誤差),兩百多年前可沒什麼「光聶」可以用,想必當時的科學家肯定不是用天秤量出「一顆原子」的質量,那這些原子量是怎麼出現的呢?

當年「元素」是物質的「最純形態」

在 18 世紀後期,科學家們將組成物質的「最純型態」叫做「元素」,而組成物質的「最小單位」叫做「原子」。

-----廣告,請繼續往下閱讀-----

在十八世紀以前雖然有「原子」這種講法,但當時「原子」與我們現在所學的概念並不相同;在更早以前的人認為所有的物質拆到最小都會是同樣的原子小球,會有不同元素的差異是因為原子排列方式的不同所造成。但其實「每種元素都有屬於自己的原子」,像是氫就有氫原子、氧就有氧原子,你是什麼元素就會決定你是什麼原子。

而這些概念的確立就要討論到 18 世紀末期科學家陸續發現的「定比定律」以及「倍比定律」兩大定律。

定比定律是同一種化合物他裡面的成分質量比都會是固定的,以水為例,水中含有氫與氧,但不管是你的合成水或是野外裝到的水,他的質量比都會是 1:8,這就好像上帝的食譜一樣,每個化合物都會有自己的元素配方和指定的質量比例。

而倍比定律呢?則是成份元素如果種類相同的話,每種物質他們的相同的元素也會出現簡單的整數比關係。舉例來說,甲烷和乙烯兩個都是由碳與氫組成的化合物,這時候分析裡面碳與氫的質量組成比例,就會發現當我碳固定質量時,甲烷和乙烯的的氫質量比就會呈現 2:1。

瞭解這兩個原理之後,科學家發現了相同化合物裡面的元素質量,和不同化合物的元素質量之間,都有著微妙的比例關係;但他們有一個問題遲遲無法解決,那就是不同元素的「一份」應該分別是多重。

-----廣告,請繼續往下閱讀-----

這時英國科學家道爾吞在 1803 年開了第一槍,他將化合物分為最簡單的二元(AB)、三元(A2B or AB2)以及四元(AB3 or A3B),並簡單粗暴的認定如果 A、B 兩種元素組合後只能有一種化合物的話,那這種化合物就會是一比一組成的二元化合物。現在看來這個判斷稍嫌武斷,但如果道爾吞沒有這樣定義的話原子量的概念就不會這麼早出來。

如果道爾吞沒有將化合物定義為最簡單的二元(AB)、三元(A2B or AB2)以及四元(AB3 or A3B),原子量的概念就不會這麼早出來。圖/Wikipedia

道爾吞依據前面的兩個定律與他提出的組成原則,將化合物中通常質量比數字都是最小的氫定為原子量 1(雖然現在我們的氫也是 1,但與這時的氫原子量概念並不完全相同),並以此為基準做了大量的原子量計算。

像是根據氨的重量分析,其中氫和氮的重量組成 20:80,那依照上面氫原子量是一的情況下,氮的原子量就是 4(現在看是錯的喇,因為當時他認為氨是 NH 但事實上氨是 NH3);又或者是根據水的重量分析,其中氫與氧的重量組成是 15:85,所以氧的原子量是 5.66,又再用氧的原子量去分析碳酸氣(二氧化碳),得出碳的原子量就是 4.5。

以上述的原子量推定方式來看就可以知道原子量並不是一個絕對的數字,而是一個相對質量的概念,所以原子量又可以稱之為相對原子質量。

-----廣告,請繼續往下閱讀-----

不過你可能會覺得 18、19 世紀的原子量跟我們現在學的數字根本就不一樣,但這又是另一個故事了,我們暫且打住。

原子量的測定邏輯,基本上還是從道爾吞製作的第一張原子量表延續到現在,其概念就是「既然我們無法抓一顆原子來測定他的質量,我們還可以找出物質化合的質量比例,來找出不同元素的原子之間他們的相對質量」而這就是原子量的基本概念。

相關科學史事件

  •  1789 年:愛爾蘭化學家希金斯發表《燃素與反燃素理論的比較》,除了支持拉瓦節的觀點外,他也推測原子只能按一定比例進行化合
  • 1792~1802 年:李希特(J.B Richter)提出定比定律
  • 1799 年:法國藥劑師普羅斯用人工與天然的鹽基碳酸銅去做測定,確定定比定律
  • 1800 年:戴維在《化學和哲學研究》分析了 N2O、NO、NO2 的重量組成(倍比定律的起始)
  • 1801 年:貝托萊在《親和力之定律的研究》中反對定比定律
  • 1803 年:道爾吞在論文中假定原子按簡單比例化合
  • 1804 年:道爾吞分析甲烷和乙烯之比例,提出倍比定律
  • 1808 年:道爾吞出版《化學哲學新體系》

參考資料

  1. 化學通史—凡異出版
  2. 化學史傳—商務印書館
所有討論 1
姚荏富_96
3 篇文章 ・ 6 位粉絲
成大化學畢,文字/影像工作者,LIS初代科學史圖書館,著有《科學史上最有梗的20堂化學課》。興趣廣泛,涉足科普寫作、影像製作、投資理財、社會觀察、社群經營......技能樹持續擴張中,目標是將學會的知識或技能用有趣簡單的方式分享給大家。