1

3
2

文字

分享

1
3
2

Deepfake 不一定是問題,不知道才是大問題!關於 Deepfake,你需要知道的是⋯⋯?

TingWei
・2022/01/24 ・3489字 ・閱讀時間約 7 分鐘

編按:你的理智知道「眼見不為憑」,但你的眼睛還是會背叛你的理智,不自覺得被眼前的影像所吸引,儘管你真的、真的知道他是假的。Youtuber 小玉於2021年底涉嫌利用 Deepfake 技術,偽造多位名人的色情影音內容並販售的事件,既不是第一起、也不是唯一、更不會是最後一個利用「深偽技術」進行科技犯罪的事件。

當科技在走,社會和法律該如何跟上甚至超前部署呢?本次 Deepfake 專題,由泛科學和法律白話文合作,從Deepfake 技術與辨偽技術、到法律如何因應,讓我們一起全方位解析Deepfake!

第一篇,讓我們就 Deepfake 技術做一基礎的介紹,那我們就開始囉!

什麼是 Deepfake?

深偽技術 Deepfake 於 2017 年陸續開始進入大眾的目光中。原文 Deepfake 源自於英文「deep learning」(深度學習)和「fake」(偽造)組合,主要意指應用人工智慧深度學習的技術,合成某個(不一定存在的)人的圖像或影片、甚至聲音。最常見的應用,就是將影片中的人臉替換為另一張臉(常是名人),讓指定的臉在影片中做出自己從未說過或做過的事情。

利用深度學習技術合成或是置換人臉的技術,都是屬於Deepfake。圖 / stephenwolfram

現今談到 Deepfake,大多數人想到的可能是偽造的成人影片,就如前述 Youtuber 小玉的事件,Deepfake 一開始受到關注,主要與名人或明星的臉部影像被合成到成人影片有關,然而,Deepfake 的功能遠不僅於此,相關的技術使用還包括了替換表情、合成一整張臉、合成語音等等。

除了像是讓過去或現在的名人在影片中「栩栩如生」做出使用者想要的表情與動作,之前在社群媒體上曾有好幾款 APP一度風靡,包括上傳一張照片就可以看看「變老」「變性」自己的 FaceApp,甚至於讓自己的臉在經典電影中講上一段台詞的「去演」APP,這類的功能也是應用前述 Deepfake 的技術。

雖然有些線索顯示這類 APP 常有潛在的資安疑慮[註],但好歹技術的成果多屬搏君一燦自娛娛人,尚可視為無傷大雅。

「栩栩如生」的愛因斯坦

而過往電影的影音產業要仿造人臉需要應用許多複雜、耗時、昂貴的電腦模擬,有了 Deepfake 相關的技術,也使得許多只能抱憾放棄的事情出現了彌補的空間。最有名的應用應是好萊塢電影《玩命關頭7》與《星際大戰》系列。《玩命關頭7》拍攝期間主角保羅・沃克(Paul William Walker IV)意外身亡,剩下的戲份後來由弟弟擔綱演出,劇組再以 Deepfake 的技術讓哥哥弟弟連戲,整部電影才得以殺青上映。

Weta Digital 說明如何讓保羅・沃克的弟弟 Brian O’Conner 能透過 Deefake 的技術,繼續協助 保羅・沃克演完《玩命關頭7》

Deepfake 讓「變臉」變得太容易了?

想想過去的電影如《魔戒》中的咕嚕、或是 2008 年布萊德・彼特主演的《班傑明的奇幻旅程》,將影片或照片中人物「換臉」「變老」的修圖或 CG 技術,在 Deepfake 出世之前就已經存在了。Deepfake 受到關注的核心關鍵在於,應用 AI 的深度學習的演算法,加上越來越強大的電腦與手機運算能力,讓「影片換臉」這件事情變得越來越隨手可得、並且天衣無縫。

利用CG技術把布萊德・彼特「變老」。 圖 / © 2008 – Paramount Pictures

過往電影中採用的 CG 技術要花好幾個月由專業人士進行後製,才能取得難辨真偽的影像效果,而應用了 AI 演算法,只需要一台桌上型電腦甚或是手機,上網就可以取得軟體、有機會獲得差強人意的結果了。

進一步,傳統軟體演算法主要依靠工程師的持續修改調整,而如 Deepfake 這類技術,內部的演算法會經過訓練持續進化。有許多技術被應用於提高 Deepfake 的偽造效果,其中最常見的一個作法被稱為「生成對抗網路(Generative Adversarial Network, GAN)」,這裡面包含了兩組神經網路「生成器(Generator)」和「辨識器(Discriminator)」。

在投入訓練資料之後,這兩組神經網路會相互學習訓練,有點像是坐在主人頭上的小天使與小惡魔會互相吐槽、口才越來越好、想出更好的點子;在練習的過程中,「生成器」會持續生成偽造的影像,而「辨識器」則負責評分,反覆訓練下來,偽造生成的技術進步,辨識偽造的技術也得以進步。

舉例來說,This Person Does Not Exist 這個網站就充滿了使用 GAN 架構建構的人臉,這個網站中的人臉看上去非常真實,實際上都是 AI 製造出來的「假臉」。

This Person Does Not Exist 裡的「假臉」。

Deepfake 影片不一定是問題,不知道是 Deepfake 才是問題

現今的 Deepfake 技術得以持續進步、騙過人眼是許多人努力的成果,也不見得都是壞事。像是《星際大戰:俠盜一號》片尾,年輕的萊婭公主出面驚鴻一瞥,就帶給許多老粉絲驚喜。這項技術應用癥結在於,相關演算法輕易就能取得,除了讓有心人可以藉以產製色情影片(這類影片佔了Deepfake濫用的半數以上),Deepfake 製造的影片在人們不知情的情況下,很有可能成為虛假訊息的載體、心理戰的武器,甚至於影響選戰與輿情。

因此,Deepfake 弄假似真不是問題,閱聽者因此「不辨真假」才將是最大的問題所在。

歐巴馬的 Deepfake 影片

相關的研究人員歸納了幾個這類「變臉」影片常見的特徵,可以用來初步辨識眼前的影片是不是偽造的。

首先,由於 AI 尚無法非常細緻的處理一些動作細節,因此其眨眼、視線變化或臉部抽蓄的動作會較不自然。其次,通常在邊緣處,如髮絲、臉的邊緣線、耳環等區域會出現不連貫的狀況。最後,在一些結構細節會出現不合理的陰影瑕疵,像是嘴角的角度位置等。

由於現階段的 Deepfake 通常需要大量的訓練資料(影像或影片)才能達到理想的偽造成果,因此會遭到「換臉」的受害者,主要集中在影像資源豐富的名人,如電影明星、Youtuber、政治人物等。需要注意的是,如果有人意圖使用 Deepfake 技術製造假消息,其所製造的影片不見得需要非常完美,有可能反而降低解析度、非常粗糙,一般人如用手機瀏覽往往難辨真假。

人眼已經難辨真假,那麼以子之矛攻彼之盾,以 AI 技術辨識找出 Deepfake 的成品,有沒有機會呢?隨著 Deepfake 逐漸成為熱門的議題,有許多團隊也開始試圖藉由深度學習技術,辨識偽造影像。2020 年臉書與微軟開始舉辦的「換臉偵測大賽」(Deepfake Detection Challenge)就提供高額獎金,徵求能夠辨識造假影片的技術。然而成果只能說是差強人意,面對從未接觸過的影片,第一名辨識的準確率僅為 65.18%。

「換臉偵測大賽」(Deepfake Detection Challenge)的辨識素材。圖/MetaAi

對於 Deepfake 可能遭到的濫用,某部分我們可以寄望技術的發展未來終將「道高一尺」,讓社群平台上的影像不致於毫無遮攔、照單全收;然而技術持續「魔高一丈」讓防範的科技追著跑,也是顯而易見的。

社群網路 FB 在 2020 年宣布全面禁止 Deepfake 產生的影片,一旦有確認者立即刪除,twitter 則強制註記影片為造假影片。Deepfake 僅僅是未來面對 AI 浪潮,科技社會所需要應對的其中一項議題,法律、社會規範如何跟上?如何解決箇中的著作權與倫理問題?這些都將是需要經過層層討論與驗證的重要課題。

至少大家應該心知肚明,過往的網路流行語:「有圖有真相」已經過去,接下來即將面臨的,是一個「有影片也難有真相」的網路世界了。

  • 註解:推出 FaceApp 與「去演」的兩家公司其軟體皆要求註冊,且對於上傳資料之後續處理交代不清,被認為有侵犯使用者隱私權之疑慮。

參考資料

  1. Deepfakes and the New AI-Generated Fake Media Creation-Detection Arms Race – Scientific American
  2. What To Do About Deepfakes | March 2021 | Communications of the ACM
  3. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., & Ortega-Garcia, J. (2020). Deepfakes and beyond: A survey of face manipulation and fake detection. Information Fusion, 64, 131-148.
  4. Deepfake 深偽技術的技術濫用與道德困境,大眾正要開始面對 | TechNews 科技新報
  5. 台灣團隊研究辨識Deep Fake影片 深偽技術的正邪之戰開打 | 台灣事實查核中心 (tfc-taiwan.org.tw)


數感宇宙探索課程,現正募資中!

文章難易度
所有討論 1
TingWei
12 篇文章 ・ 10 位粉絲
據說一生科科的生科中人,不務正業嗜好以書櫃堆滿房間,努力養活雙貓為近期的主要人生目標。


2

6
3

文字

分享

2
6
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
10 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook