0

4
2

文字

分享

0
4
2

快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限

PanSci_96
・2023/03/11 ・2703字 ・閱讀時間約 5 分鐘

除了線材,市場上也到處可看到標榜使用氮化鎵、可支援大電流快充的充電頭。但為什麼之前充電速度一直快不起來呢?為什麼現在要改用氮化鎵呢?快充能變得更快更快更快嗎?

快充加速了充電速度

在快充出來以前,我們的智慧型手機充電器,功率大約是 5 瓦特(W)或是 2.5 瓦特,現在最夯的的氮化鎵快充頭功率則高達 65 瓦特,相差了 13 倍,理想上充電時間也會縮短為十三分之一。

實際上,這幾年快充的發展速度可能比想像的還要快上許多。

還記得在 21 世紀的 Nokia 3310 嗎?其功率僅 4.56 瓦特,而蘋果一直到 2014 年的 iPhone6 才支援更快的 10 瓦特快充。然而,現在不僅已經出現不少支援 50 瓦特以上快充的手機,今年二月中國手機品牌 realme 推出的 GT Neo5,甚至出現 240 瓦特的超快充技術,是目前充電最快的智慧型手機。

提升充電器功率的關鍵

從過去到現在,充電器不僅功率大幅提升,充電器的大小同時也縮小了許多。過去的線性充電器,除了有條細細長長的尾巴外,最大的特徵就是不僅大、充電時還會發熱的變壓器;為了將市電的 110V 交流電轉為手機可以使用的 5V 直流電,就需要變壓器協助降壓。

-----廣告,請繼續往下閱讀-----

變壓器的發熱來源來自內部占了絕大部分體積的線圈,在電路學中被稱為「電感器」。輸入與輸出的線路會以線圈的形式綑在一組鐵芯上,兩端的線圈數量十分關鍵,線圈數量的比值就是兩側電壓的放大大小;若想從 110V 變成 5V,則為輸入的線圈圈數是輸出的 22 倍,那麼輸出的電壓就會減少 22 倍。

在變壓的過程中,輸入端的線圈與鐵芯就像一顆大電磁鐵,讓磁通量通過鐵芯,將能量傳到輸出線圈,輸出線圈則會因為電磁感應,產生相同頻率但電壓不同的交流電,完成降壓。只要再把 5V 交流電轉成 5V 的直流電,就可以幫手機充電啦。

過去的線性充電器最大的特徵就是體積大、充電時還會發熱。圖/Envato Elements

聰明的你應該已經想到,提升充電功率的關鍵就在於——線圈數量

如果希望變壓器的輸出提升,必須在維持線圈比值的情況下,等比例增加輸入與輸出端的線圈數量;更多的線圈就意味更多的磁通量能透過鐵芯傳到另一端,更多的能量也隨之傳遞。但如此一來,早已被塞滿的變壓器,為了塞進更多的線圈就只能繼續增加充電器的體積,還會因能量耗損放出大量的熱。

-----廣告,請繼續往下閱讀-----

若想提升功率,又能減少電感器大小,最好的方法就是——增加工作頻率

透過「高頻變壓器」的幫忙,將原先市電 60 赫茲的頻率提升到 50K 赫茲,被轉為高頻的交流電再進行變壓,如此一來就能降低能量損耗,所需的電感器大小也會大幅降低。

然而,要注意的是,要想改變交流電的頻率,是無法直接轉換的。要先將交流電轉為直流電,再經由特殊的「開關」電路將直流電轉為特定頻率的交流電;這類型的充電器就被稱為「開關充電器」,現在的智慧型手機就是使用開關充電器。

救世主材料

但隨著手機電池容量不斷增加,手機充電效率的需求永無止盡,充電器又開始一個比一個大。

-----廣告,請繼續往下閱讀-----
智慧型手機所使用得充電器為開關充電器。圖/Envato Elements

不是繼續提升工作頻率就好了嗎?那是因為,我們遇到了「矽的極限」。

開關電路中將直流轉為交流的關鍵,就是我們熟知的半導體元件電晶體。裡頭的原料過去都以我們熟知的矽為主,然而以矽為材料的半導體工作頻率極限僅在 100k 以下,如果超過 100k,轉換效率會大幅下降,更有嚴重的能量浪費問題。

解決的方法就是:尋找下一個材料。沒錯,就是最近最夯半導體的——氮化鎵(GaN);其能隙是矽的 3 倍,電子遷移率為 1.1 倍,崩潰電壓極限則有 10 倍。

顯然,氮化鎵擁有更良好的電特性,還能在高頻、高電壓的環境下工作,使用氮化鎵為材料的快充頭因此誕生!氮化鎵最高的工作頻率是 1000K,是矽的 10 倍,除了讓變壓器的電感線圈能再次縮小,連帶縮小充電頭的體積;亦能降低能耗並減少電容與散熱器的大小,成為好攜帶的快充豆腐頭。

-----廣告,請繼續往下閱讀-----

到這裡,或許你會想問,提高充電效率應該不只有換材料一條路吧?還會有更快的充電技術出現嗎?

當然會的;和矽相比,氮化鎵仍有很大的研究性。

而且不僅手機,就以現在市面上正夯的電動車來說,也需要快充技術支援,來減少充電時所需要的時間;為應對龐大的充電市場需求,綜觀整個半導體材料的發展歷史,已經有許多材料問世。除了氮化鎵,還包括矽、鍺、三五族半導體「砷化鎵」(GaAs)、「磷化銦」(InP),以及化合物半導體「碳化矽」(SiC);在能源產業中,又以氮化鎵和碳化矽的發展最令人期待。

電動車也需快充技術的支援,來縮短充電所需時間。圖/Envato Elements

氮化鎵與碳化矽的未來與挑戰

不論以技術發展還是成本考量,這兩位成員還不會那麼快取代矽的地位。

-----廣告,請繼續往下閱讀-----

兩者應用的範圍也不完全相同。氮化鎵擁有極高的工作頻率,在高頻的表現佳,並且耐輻射、耐高溫,除了運用在充電技術內外,在高功率 5G 基地台、航空通訊、衛星通訊也都將大展身手。碳化矽則在高溫及高電壓下擁有良好的穩定性,尤其在未來電動車快充的需求增加,1000 伏特以上的充電需求,將使得僅能承受 600 伏特的矽半導體無法負荷,預期將接手電動車中的關鍵元件。

兩者看來潛力無窮,但目前在製程上仍需克服許多問題;如:材料介面的晶格缺陷及成本考量;在它們能像矽材料應用在各方領域之前,還需要投入更多研發能量。

但令人興奮的是,駛向下個半導體世代的鳴笛聲已經響起,不論是台積電、晶圓大廠環球晶,國內外各家半導體大廠,都早以搭上這班列車。不同的材料也意味著,從磊晶、製程、元件設計、晶圓製造都將迎來改變,陸續也有廠商開始使用 AI 輔助設計氮化鎵半導體元件。

未來半導體與科技產業將迎來何種轉變,就讓我們拭目以待吧!

-----廣告,請繼續往下閱讀-----
半導體未來的發展令人興奮!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

文章難易度
PanSci_96
1219 篇文章 ・ 2197 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
AI 生成影像有多接近真實世界?人類將製造出世界模擬器?
泛科學院_96
・2024/04/22 ・670字 ・閱讀時間約 1 分鐘

Sora 號稱自己是世界模擬器,但真的嗎?

這個問題,AI 大佬與研究者們比你更關心!

Sora 推出後不到一個月,不僅各大研究機構像開掛般發表相關論文,連 Nvidia、Meta、微軟,甚至是特斯拉創辦人 Elon Musk 也都跳出來分享看法⋯⋯

今天呢,我們從論文與 AI 大佬們的意見,來回答這兩個問題:

-----廣告,請繼續往下閱讀-----
  1. 為什麼 Sora 敢稱自己是世界模擬器?
  2. 世界模擬器離我們還有多遠?

說了那麼多,最後想問各位,你覺得照這個速度發展下去,你覺得會先成真呢?

  1. 通用型人工智慧
  2. 人類移民火星
  3. 都看不到,人類要滅亡了

歡迎在下面留言大家分享討論。喜歡這支影片的話,也別忘了按讚、訂閱,加入會員,下集再見~掰!

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

泛科學院_96
31 篇文章 ・ 40 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

1
0

文字

分享

0
1
0
可以瑟瑟!AI 陪伴使用心得——我的 AI 女友有點危險?
泛科學院_96
・2024/04/21 ・963字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

任何新科技誕生,人們總會問:「可以拿來瑟瑟嗎?」

AI 也不例外,在去年 AI 浪潮中,「AI 女友」,或者說「AI 陪伴」,也如雨後春筍般出來。

從去年六月開始,加密創投傳奇 A16z 就不斷宣揚 AI 陪伴是趨勢,這東西有搞頭阿!還順勢在 GitHub 上分享自己開發的 AI 陪伴服務。

不過,我更在意的是 A16z 年初分享的 AI 陪伴工具圖!這裡的英文字母(NSFW)引起我高度的興趣,因此稍微探索了一下。所以今天呢,就來分享使用第一象限服務的心得……

-----廣告,請繼續往下閱讀-----

額……會被黃標?剪輯說所有素材都要上馬賽克?

蛤?這集居然能接到業配?廠商爸爸會罵?

恩……好,所以今天,我們來聊三件事:

  1. A16z 這張圖除了第一象限,還說了什麼未來趨勢?
  2. 推出 firefox 的 Mozilla 基金會對 AI 陪伴提出的警告
  3. 「AI 陪伴」真的有助於心理健康嗎?

如果你想來點刺激的,請自己探索第一象限,我幫不了你,但也麻煩看完 Mozilla 對 AI 交友提出的警告再行動。廢話不多說,讓我們開始吧~

-----廣告,請繼續往下閱讀-----

總之,使用 AI 陪伴服務的時候,我們建議妳參考Mozilla基金會的建議,我把中文翻譯放在這,希望能幫助到想用 AI 女友的人。

然後我回頭看了一下我有用過的 AI 女友,好像都蠻危險的……就不推薦各位去用了,自己斟酌。

最後,我們把兩方對 AI 陪伴的觀點與資訊放在這裡。因為我只研究 AI 女友,如果你想要看 AI 男友的測試,這個……給我一點時間。

也想問問大家,你覺得未來 AI 陪伴會怎麼發展?

-----廣告,請繼續往下閱讀-----
  1. 我就是要瑟瑟,A16z 的藍圖一定會成真
  2. 有太多問題了,AI 陪伴市場會泡沫
  3. 最終我們都會有一個 AI 伴侶,但不是現在看到的服務模式
  4. 其他,也歡迎留言分享喔


有想要看的 AI 測試或問題,也可以在下面敲碗留言!

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

泛科學院_96
31 篇文章 ・ 40 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

0
0

文字

分享

0
0
0
【suno AI】五音不全也沒關係,讓 AI 幫你唱歌!這些 AI 是怎麼做到音樂生成的?
泛科學院_96
・2024/04/18 ・459字 ・閱讀時間少於 1 分鐘

不知道大家有沒有被傳說中的OO緊縮術攻擊,總之小編是中招了。

有時候一個人上網也是挺無助的,手足無措的我就想了解一下歌曲生成的魔法是怎麼出現的。

今天就讓我們來評測一下線上歌曲生成的服務,順便說說這些聲音生成是怎麼做出來的。

廢話不多說,讓我們開始吧!

-----廣告,請繼續往下閱讀-----

你有用過什麼更好笑,更好用的 AI 音樂生成工具呢?

我們最近有在研究怎麼用 AI 剪片,還有……AI 女友。

想看剪片的打+1,想看女友的打 <3

有其他想要看的 AI 測試或相關問題,也可以留言分享喔!

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

泛科學院_96
31 篇文章 ・ 40 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!