0

0
0

文字

分享

0
0
0

《Science》盤點:2017年度十大科學突破!

Peggy Sha/沙珮琦
・2018/01/01 ・6981字 ・閱讀時間約 14 分鐘 ・SR值 566 ・九年級

-----廣告,請繼續往下閱讀-----

每到了一年的最後,我們總是要不免俗地來回顧一下這年經歷的所有事情,而最適合科青們的回顧方式,莫過於跟著《Science》在 2017 年 12 月所選出「年度科學突破」(Breakthrough of the Year)來看看今年科學界最令人印象深刻的發展吧!

source:science

年度最大突破:中子星合併產生重力波

在今年的 8 17 號,科學家觀察到了在 1 3 千萬光年之外,兩顆中子星合併並產生了重力波(編號GW170817)。這次的爆炸證實了幾項重要的天文學假設、揭開了重金屬形成的來源,也讓科學家得以用一種前所未有的方式來驗證了愛因斯坦的廣義相對論。

這是科學史上首次觀察到中子星的合併,而這次的合併為什麼會被發現呢?因為科學家偵測到了中子星合併前輻射出的微小波紋──重力波。

雙中子星合併模擬。磁力線用白色表示。(圖片來源

重力波被雷射干涉重力波天文台(Laser Interferometer Gravitational-Wave ObservatoryLIGO)和處女座干涉儀(Virgo interferometer)觀測到,而由於中子星碰撞所產生的重力波頻率更高、持續時間更長,使得其他望遠鏡也有幸一窺這場 1 3 千萬光年前的盛大科學奇景:兩顆分別約 1.11.6 個太陽質量的中子星互相旋繞、碰撞,最後融合,在過程中產生了許多重金屬,宇宙中的黃金很多便源於中子星的碰撞。

-----廣告,請繼續往下閱讀-----

這次的觀察也支持了一項 25 年前提出的假說──「中子星合併會產生短伽瑪射線暴(short Gamma-ray burst)」,就在觀測到重力波之後約兩秒的時間,NASA 的費米伽瑪射線太空望遠鏡便偵測到了一陣短伽瑪射線暴。

這一次的事件,可以說是迄今為止被研究得最為透澈的天文事件,總共有 3674 位來自 953 個機構的研究者針對這次的中子星合併和相關後續事件進行了研究。除了這次探測到的事件之外,科學家更希望進一步觀測到其他新的現象,例如:中子星和黑洞的碰撞、銀河系中的超新星爆發、旋轉的中子星(脈衝星)……這種種現象都會產生重力波。

看見原子等級的生命細節:低溫電子顯微鏡(cryo-EM)技術

低溫電子顯微術(cryogenic scanning electron microscopycryo-EM)大概是「追求卓越」的代名詞。雖然這項技術已經在今年拿到了科學界的頭獎──諾貝爾化學獎,但它的影響力在拿獎後依舊不斷增加。

電子顯微鏡。圖/ PublicDomainPictures@pixabay。

這種技術的發展其實可以追溯至幾十年前,不過,由於近年來各種硬體軟體都有了提升,使得影像處理分析的速度也因此加快,另一方面,也大幅減少了誤差。

-----廣告,請繼續往下閱讀-----

現今的低溫電子顯微術讓科學家能夠利用快速冷卻的方式,在生物分子相互作用時將其「凍結」,從而獲得反應過程中的一系列定格影像。它所擁有的這種近乎原子等級的超高解析度,讓科學家重新檢視了剪接體(Spliceosome)的運作過程,也對於修復 DNA 破損的酶有了更深入的觀察。

居家必備實驗良伴:攜帶型微中子探測器

想要做精密的觀察,一定要用超大的儀器?才不呢!科學家在今年只用了個跟微波爐差不多大的可攜式微中子探測器,就發現了微中子和原子核間相干散射(coherent scattering)信號。

物理學家在今年用一種新的方法撞擊原子核,並由此發現了最難以捉摸的亞原子粒子──微中子。微中子只會在特定的核反應過程中產生,與其他物質很少發生反應,也正因如此,即便有無數的微中子持續穿越地球,科學家卻一直很難偵測到。

1970年11月13日,首次利用氫氣泡室對於微中子進行的觀測。微中子撞擊了氫原子中的質子。這撞擊發生於照片右方,是三條由帶電粒子所形成軌跡的匯集之處。圖/National Laboratory@wikipedia

微中子偶爾會撞擊原子核中的中子,讓它變成質子,而自己則變成如電子般能被探測到的粒子;另一種可能是,微中子與質子或中子碰撞彈飛。這兩種情況都非常罕見,科學家需要非常大量的樣本才可能觀察到一點點。

-----廣告,請繼續往下閱讀-----

不過,在 1974 年時,理論物理學家就曾預測:如果一個中微子的能量夠低,就可以被視為一種量子波,並能同時反射所有原子核中的質子和中子。這種相干散射應該可以大幅增加反應的可能性,但原子核的低能量反衝很難觀測。

如今,由 81 位成員所組成的 COHERENT 團隊就利用了一個不大的探測儀偵測到了這種相干散射,這項發現實現了學界 40 年以來的追求,或許有朝一日,這種體積小的微中子探測器可以幫忙監測核反應堆、確保它們在不擴散核的原則下運行,也或許能用來找尋更難探測的惰性微中子(sterile neutrinos)。誰知道呢?小兵也能立大功!

發現30萬年前的智人化石,改寫人類歷史

我們的祖先從哪裡來?石頭?猴子?猩猩?在今年以前,最接近正解的答案或許是「約 20 萬年前的東非」。

不過,科學家們在今年深入探索了北非摩洛哥的  Jebel Irhoud 遺址,並使用熱釋光定年法(thermoluminescence datingOSL)檢測出遺址中的石器是在 30 萬年以前經過加熱的,整整將人類的歷史又往前推進了 10 萬年。

-----廣告,請繼續往下閱讀-----
Jebel Irhoud 遺址在北非摩洛哥的位置。圖/Eric Gaba@wikipedia

研究團隊認為 Jebel Irhoud 遺址的居民可能屬於早期智人族群的一部份,族群約在 33 萬到 30 萬年前遍佈非洲,而後演化成現代人類。這個發現改寫了我們目前已知的人類歷史,顯示出人類祖先在非洲扎下的根可能比我們原先的推測來得更深、更廣,這種可能性也為人類的尋親之路開啟新的篇章。

基因編輯大突破,鹼基編輯有助治療遺傳疾病

超過 6 萬個遺傳畸變與人類疾病有關,而其中有將近 3 5 千個變異是源於我們體內最微小的錯誤:只要 DNA 中一個小小的基因點突變,就可能讓人生苦不堪言。

今年,科學家宣布了一種新的技術,稱為「鹼基編輯器」(base editor),它可以修改 DNA RNA 中的單一鹼基,而且相對於當紅的 CRISPR 技術,這種方式更為精準,也更加安全,因為它不需切割 DNA ,即可將 A-T 鹼基對轉換成 G-C 鹼基對,如此細緻的基因編輯技術,讓劉如謙的團隊成功地將一個不正確的 G 替換成 A

劉如謙(David Liu)團隊研發的新基因編輯技術,將可能拯救許多生命。圖片來源:ServiceAT@wikipedia, by CC 4.0.

中國的研究團隊更在今年修復了人類胚胎中一個致病的基因點突變,藉此凸顯出這種技術的力量。雖然這種修復並非百分之百成功,然而,技術所蘊含的巨大潛力仍讓人興奮,而技術未來在醫學領域的應用亦令人期待。

-----廣告,請繼續往下閱讀-----

期刊刊登之前先分享一波!生物學論文預印模式興起

論文預印指的是在研究經過同儕審查於期刊發佈前,可以先發佈在能進行建檔的平台上;物理學界常用的預印平台 ArXiv 早在 1991 年就出現了,那生物學家們怎麼辦呢?

等待多年,如今生物學家終於翻身啦!在 4 年前,冷泉港實驗室(The Cold Spring Harbor LaboratoryCSHL)發起了一項計畫,成立了免費的生物學預印服務器「bioRxiv」。這個平台囊括了計算生物學、細胞生物學、微生物學、神經科學等等領域的實驗研究。一些著名的生命科學家也開始說服自己的同事,讓他們了解到,預印將加快科學的進程,也能讓年輕的研究者留下研究紀錄。

冷泉港實驗室(The Cold Spring Harbor Laboratory,縮寫CSHL),位於美國紐約州長島上的冷泉港,此機構的研究對象包括癌症、神經生物學、植物遺傳學、基因組學以及生物資訊學,其主要成就為分子生物學領域。圖/AdmOxalate@wikimedia

而在今年,美國和英國的組織都推出了鼓勵預印分享的相關方針,使得這個模式獲得了極大進展。而在 4 月時,「陳祖克柏」基金會更對 bioRxiv 進行了不公開的投資,有助於鞏固其成為最受歡迎的生物學服務網。現今大部分的期刊都允許作者將投稿的論文以預印的方式張貼;另一方面,有些編輯也會上 bioRxiv 尋找可供出版的論文。

不過這種模式或許還有很長一段路要走,bioRxiv 目前每月的論文數量約只有 PubMed 1.5%;此外,也有部分生物學家對於未經審查就預先公開研究成果的方式不甚認同。但無論如何,這種預印模式都是一項重大的交流方式改變。

-----廣告,請繼續往下閱讀-----

用新藥「一網打盡」所有癌細胞

一說到癌症,腦袋好像就會自動撥放偶像劇插曲(咦)就讓人想到其繁瑣的治療過程,究竟這種折磨人的疾病有沒有根治的方法呢?就在今年 5 月,美國食品藥品監督管理局(FDA)批准了一種癌症免疫新藥「pembrolizumab」。

Pembrolizumab的模型。圖/Dr. David S. Goodsell @wikipedia

在過去,這種藥物已經被證實可以治療黑色素瘤和一些其他類型的腫瘤,現在更可以用以治療成人和兒童體內的實體瘤。不過其治療是有前提的,那就是:癌細胞必須是基因錯配修復缺乏症(mismatch repair deficiencyMMR)。這表示,即便癌細胞出現的地方可能在胰臟、結腸、甲狀腺或是其他組織,它們仍會有共通點,那就是:在修復 DNA 的基因中發生突變。

具有這種缺陷的細胞會累積數百種突變,使得免疫系統更容易辨識出患病的細胞並將其殺死,因此,pembrolizumab 可以利用這項特性殺死腫瘤;反之,如果沒有基因錯配修復缺乏症,對這種治療也不會有反應。FDA 的批准為這種新的癌症治療方式打了一劑強心針,未來,可能會有更多相關研究朝這個方向發展。

家族再添新成員!發現第三種紅毛猩猩

讓我們掌聲歡迎猩猩家族中的新成員──塔班努利紅毛猩猩(Pongotapanuliensis)!距離上一次發現靈長類人科的物種已經過了漫長的 90 年,在今年 11 月,研究者們在印尼發現了新的猩猩物種「Pongotapanuliensis」。

-----廣告,請繼續往下閱讀-----

直到今年以前,巨猿(the great apes)家族的成員只有倭黑猩猩(bonobo)、黑猩猩(chimpanzee)、兩種大猩猩(gorilla)和兩種紅毛猩猩(orangutan)以及我們人類。(嗚嗚嗚我們家人也太少……

現存三種紅毛猩猩大概在 1400 萬年前和所有其餘人科物種分家,而蘇猩猩大概在 340 萬年前步上分歧之路,最後,塔猩猩和最近緣的婆猩猩則大概在 67 萬年前分家。圖片編修自NewScientist (原圖有誤)

這種新發現的紅毛猩猩住在蘇門答臘島,而先前已知的紅毛猩猩則住在婆羅洲。藉由比對這三種紅毛猩猩的基因,科學家得到了一些猩猩演化的歷史足跡:現今紅毛猩猩的祖先大約是數百萬年前從馬來西亞來到印尼的,當時的海平面較低,兩地之間可以互通往來。

然而,讓人憂心的是,這個新發現的紅毛猩猩族群數目並不多,約只有 800 左右,而且牠們居住在一個備受盜伐威脅的林區,此外,當地還有一個水電大壩的興建計畫。環保團體希望這次的物種確認能夠有助於守護塔班努利紅毛猩猩的家。

270萬年前的地球大氣

今年 月,來自普林斯頓大學和緬因大學的研究團隊宣布:他們發現了 270 萬年前的南極冰芯,比先前最古老的冰芯樣本還早了 170 多萬年。

這次新發現的樣本來自南極洲的艾倫山(Allan Hills),冰芯之中有著細小的氣泡,這些氣泡來自 270 萬年前的大氣。當時,地球正進入冰河時期,而大氣中的二氧化碳濃度約在 300ppm 以下,遠低於現今的 400ppm

艾倫山是南極洲的山峰,位於埃爾斯沃思地,屬於埃爾斯沃思山脈中森蒂納爾嶺的一部分,處於克雷杜克山東南面5.2英里,海拔高度3,430米,美國地質調查局根據測量和該國海軍的空中照片繪入地圖。圖/Alexrk2@wikipedia

這項發現和先前一些間接測量所得到的數據不太一致,但仍然驗證了科學家們先前提出的氣候模型──較低濃度的二氧化碳是地球進入冰河期的必要元素。

科學團隊目前計畫在未來回到艾倫山以取得更多冰芯,希望可以找到 500 萬年以前的樣本,因為當時的溫室效應與今日人類製造出來的氣候相差無幾。

基因療法大成功,治療肌肉萎縮不是夢!

今年,一個小型的臨床試驗取得了巨大的成功,也推動了基因治療領域的發展。根據研究人員的報告,他們藉由在脊髓神經元中添加一個缺失的基因,拯救了一些原本可能死於遺傳性神經肌肉疾病的嬰兒。

脊髓性肌肉萎縮症(Spinal Muscular Atrophy,SMA)是一種體染色體隱性遺傳疾病,起因於脊髓前角運動神經元(Anterior horn cells of the spinal cord)的漸進性退化。患者的智力發展不受影響,但肌肉會逐漸無力、萎縮,疾病的發病年齡從出生到成年都有可能,而患病的嬰兒若未接受及時治療,將會在 2 歲左右面臨死亡。

受脊髓肌肉萎縮影響的脊髓神經元的位置。圖/Angelito7@wikipedia

這個基因治療利用無害的「腺相關病毒」(adeno-associated virusAAV)將基因轉運至目標細胞。研究團隊表示,利用靜脈注射 AAV9 的基因治療方式可以阻止 1 型脊髓性肌肉萎縮症。在過去,罹患此種疾病的嬰兒最終會因為肌肉無力、無法呼吸而死亡。

然而,今年 11 月研究團隊所提出的成果報告表示:在 12 位接受 AAV9 治療的嬰兒中,有 11 位可以說話、吃飯、短暫利用自己的力量坐起。其中有位女孩能夠快走,更有個男孩已經會跑步。

此療程已經通過美國食品藥品監督管理局(FDA)核准,在未來,團隊希望利用 AAV9 進一步治療遺傳性腦部疾病。

以上是 2017 年的科學突破,有沒有覺得這年真是生物界的豐收之年呢?不知道你心目中的十大突破跟這份榜單有多高的相似度?歡迎大家來分享你最重視的科學事件和心目中的遺珠,同時,也讓我們一起展望 2018 年,對這些議題接下來的發展拭目以待吧!

  • 如果有興趣也可以看看《Science》精心製作的影片喔:

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

0

0
0

文字

分享

0
0
0
近零碳建築新趨勢:從節能創意到 2050 淨零轉型
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/23 ・3701字 ・閱讀時間約 7 分鐘

本文由 建研所 委託,泛科學企劃執行。 

根據聯合國統計數據,全球每年 38% 的溫室氣體排放,並非來自道路上的交通工具,而是由「現代都市與建築」所造成的。

我們如今站在兩條路徑的十字路口。一條是依賴更多水泥建築與空調系統來抵禦夏季酷暑,然而這樣的選擇只會加劇室外大氣的惡化。另一條則是徹底改革建築、用電、設計與都市規劃,不僅尋求低碳排放的建築方式,還要找出節能降溫的解決方案,實現事半功倍的效果。

然而,我們是否真的能將建築業的碳排放歸零?

-----廣告,請繼續往下閱讀-----

建築的溫室氣體哪裡來?

在建築物 60 年的生命週期中,建材的碳足跡其實只佔 9.8%,因為建築一旦完成後,材料不會頻繁更換。相反,日常生活中的用電才是主要的碳排來源,占了 83.4%,其中大部分來自冷氣、照明和各種電器。

當然,讓大家集體關燈停用電器「躺平」來拯救地球,顯然不切實際。既然完全不消耗能源是不可能的,我們應該尋找更現實的解決方案。

現在就來看看全球七棟零碳建築之一——成大的「綠色魔法學校」,臺灣首座淨零建築,如何運用建築技術,成為當代永續建築的典範。這些技巧中,有哪些能應用到你我家中呢?

綠色魔法學校。圖 / 內政部建築研究所

為了省電要把煙囪塗黑、吸收更多太陽光?

都市裡,我們最大的挑戰之一就是夏天的高溫,水泥建築群在陽光的烘烤下,變成一個個巨大的窯爐。為了解決這個問題,綠色魔法學校在國際會議廳裝了一個煙囪,不過這不是為了讓窯爐更熱,而是用來降溫的。

-----廣告,請繼續往下閱讀-----

煙囪為什麼都都要蓋的那麼高?原來煙囪越高,上下的溫差越大。熱空氣因為密度低而向上移動,產生熱對流。溫差越大,這個熱對流就越強烈,這就是所謂的「煙囪效應」。在要幫室內降溫的情況下,我們的目的是產生更強的煙囪效應,抽走熱空氣,讓室溫下降。但這棟建築裡沒有火爐,而溫差不夠大時,這效應會變得微弱,那該怎麼辦?

綠色魔法學校提出了一個大膽的解法:在煙囪南面下半部改裝透明玻璃窗,並將煙囪內部塗成黑色,還加裝了黑色烤漆鋁板,這樣可以最大限度地吸收太陽光。每當艷陽高照,這個不插電的的「自然通風系統」就能自動啟動,創造局部的熱對流,帶動整根煙囪的熱氣向上移動,為室內降溫,達到節能效果。以熱制熱,完全反常識。

綠色魔法學校的特殊煙囪設計,玻璃引入太陽光。圖 / 泛科學攝影畫面截圖

幫室內降溫的最大原則是:通風。

實際上,不是人人家裡都有煙囪。但如果建築的高處沒有任何窗戶或通風設備,熱空氣就是會從屋頂一路往下蓄積在室內。因此,你也一定在許多工廠或民宅的屋頂看過一個不斷旋轉的小風扇,它們也是有異曲同工的效用。雖然不是高聳的煙囪,但特殊的渦輪構造,風吹過就會開始轉動,並連帶空氣排出室外。是個不用插電的通風球。

-----廣告,請繼續往下閱讀-----
綠色魔法學校館內動畫-室內通風排熱補冷。圖 / 泛科學攝影畫面截圖

綠色魔法學校的煙囪就是個效能更強的換氣機,足以讓 300 人大型會議廳的換氣次數,高達每小時 5 到 8 次,甚至能在室內颳起風速每秒 0.5 公尺的微風,是最舒適的環境。這些利用熱氣密度的差異來改善室內溫度的方法,又稱為「浮力通風」。

為了把通風貫徹到底,綠色魔法學校在建築的兩面裝設大量窗戶以及吊扇,來讓水平也能通風。這些我們習以為常的裝置,其實才是關鍵。靠吊扇的一點點電力讓自然風可以自由進出,耗費的能源,遠比冷氣還要少得多。

幫空調省電的最後一招,就是微環境控制。

綠色魔法學校透過屋頂植栽與造林改善微氣候。圖 / 綠色魔法學校

實際上魔法學校內還是找的到空調設備,並不是完全拔除不用。除了選用最高效率的主機,以及把室內循環做到最好以外,降低周遭環境溫度才能減低冷氣的負擔。要降低水泥叢林的熱島效應,需要植被與水體來做溫度調適。

在太陽照射下,水泥屋頂表面最高可以達到攝氏 70 度,如果屋頂有種植植栽,室內頂層樓板的表面溫度就可以維持在攝氏32 度以下。不用開電就先幫室內降溫。

-----廣告,請繼續往下閱讀-----

水也是關鍵的一環。一是水的比熱高,想打破水分子之間的氫鍵,需要大量的熱量,要讓一千克水的溫度升高一攝氏度,需要 4,200 焦耳的熱量,這可以避免溫度因為烈陽就快速上升。二是當溫度真的過高,水也會透過蒸發帶走熱量,讓溫度不至於向上飆。

魔法學校的屋頂花園使用水庫淤泥,研磨後燒製成的再生陶粒,裡頭混合了稻穀,結構極細,不會像有機土一樣分解消失,可以涵養水源,還不用動不動補土壤,不只降低屋頂植被的澆水次數,還能達到降溫效果。地面也採用透水鋪面,讓每一滴水都不浪費。

綠色魔法學校本名是成功大學的「孫運璿綠建築研究大樓」

2013 年被英國知名出版社羅德里其評為「世界最綠的建築」,並獲選為聯合國全球七棟零碳建築之一。

除了表彰之外,在認證上也確實取得了臺灣最高等級的「鑽石級綠建築」認證,以及美國最高級的「白金級綠建築」兩個綠建築認證。

-----廣告,請繼續往下閱讀-----

為了讓相同的成效可以陸續在全臺的所有建築上實現,臺灣在既有的綠建築標章體系上,擬定出了「建築能效評估系統 BERS」,針對關鍵的空調、照明、插座電器的用電狀況訂出明確的耗電密度指標得分。簡單來說,就是每平方公尺的面積上,每年平均的用電量。

建築能效標示。圖 / 內政部建築研究所

要打造一棟淨零建築,需要設計與材料硬體的相互配合。在日常用電這最大耗能項目上,能透過前面的淨零設計與智慧能源管理來減低能耗。而我們還沒提到的最後一塊拼圖,則是回到建築的建材本身。這部分減碳的方法有很多種,例如將傳統施作工法改為在工廠就完成模組化建材製造的「預鑄工法」,減少現場搭建鷹架、施工的步驟,達成減碳。又或是將部分建材更換為木、竹等負碳建材,甚至使用零廢棄物、能「循環使用」的建材。例如 2018 年亮相的臺中花博荷蘭館、或是 2021 年台糖在沙崙啟用的循環聚落。

建築物能夠完全不用電嗎?……電從哪裡來?

沒錯,連全球最綠的建築——綠色魔法學校,也無法做到完全不使用電力。正如前面提到的,建築的最大能源消耗來自日常使用,而這所「魔法學校」的成就,是成功將日常能源消耗降低,讓溫室氣體排放減少超過 50%。

這就是關鍵,減少一半後,剩下的部分就靠周邊的造林、太陽能和風能等綠色能源來補足。

-----廣告,請繼續往下閱讀-----

2022 年 3 月,國發會公佈了 2050 淨零排放的路徑圖,參考美國、日本、歐盟等國,制定了 2050 年達成淨零建築的目標。

這條路徑包含兩個核心目標:第一,所有建築物要在建築能效評估系統(BERS)中達到 1 級節能,甚至進一步達到「1+ 級」近零碳建築的標準,減少至少 50% 的能源消耗。第二,同步發展再生能源,讓這些近零碳建築朝淨零邁進。

淨零建築路徑。圖 / 內政部建築研究所。

這個目標比你想像的要容易實現。比如,2023 年 12 月,台達電的瑞光大樓 II 就成功取得了「1+ 級」近零碳建築認證,並符合 0 級淨零建築規範。而在 2024 年 7 月,國泰人壽在臺中烏日的商辦大樓經過改造後,也達到 0 級淨零建築標準。這些案例證明了綠色魔法學校的成功經驗可以複製,不論是新建築還是舊建築,都能達成甚至超越淨零目標。

圖 / 台達電瑞光大樓 II
圖 / 國泰人壽臺中烏日商辦大樓

為了不讓每一年的夏天都是你我餘生最涼的夏天,碳排歸零是必須要實現的目標。現在你知道,這個任務的關鍵就掌握在你我手中。就像選擇能源標章電器一樣,只要選擇符合 BERS 能效標準的建築,我們不僅能降低冷氣的依賴,也能節省電費,讓地球和你的荷包都雙贏。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
復發淋巴瘤的希望之光:ADC 治療的革新突破
careonline_96
・2024/10/21 ・2212字 ・閱讀時間約 4 分鐘

圖/照護線上

肺癌後又罹淋巴瘤!復發靠突破性治療–抗體藥物複合體 ADC 續命

「瀰漫性大 B 細胞淋巴瘤(Diffuse large B-cell lymphoma),簡稱 DLBCL,是一種有機會治癒的疾病,但並非每個人都能如此幸運。曾碰過一位讓我印象深刻的患者,他的淋巴瘤在第一線治療緩解多年後又再復發。」林口長庚醫院血液科施宣任醫師表示,「患者過去曾因罹患肺癌切除過肺臟,身體狀況難以承受自體幹細胞移植,面臨治療選擇相當有限的困境,狀況一度很不樂觀。」

幸運的是,當時針對 DLBCL 淋巴瘤的突破性新治療–抗體藥物複合體 ADC(Antibody-drug conjugate)剛好核准通過。根據臨床試驗數據,針對復發的病患,若於治療時再加上 ADC 藥物,完全反應率是傳統化療的兩倍,整體存活期更較傳統化療增加將近三倍!因此當時在討論後,立刻幫患者將 ADC 藥物加入治療組合中,後續也順利地達到完全緩解快一年,目前沒有復發跡象,持續門診追蹤。

瀰漫性大B細胞淋巴瘤(DLBCL)治療不能等
圖/照護線上

台灣常見淋巴瘤 DLBCL 惡性度高!復發具抗藥性急需新治療突破

DLBCL 是台灣最常見的淋巴瘤。根據國健署癌症登記報告,台灣一年新增超過四千例淋巴癌個案中有九成屬於非何杰金氏淋巴瘤,超過一半是惡性度很高的 DLBCL,不僅進展快速,且可能侵犯全身器官,因此治療要越快越好,盡量避免等待空窗期。

施宣任醫師強調,「不像一些小細胞的低惡性度淋巴瘤可以等症狀明顯再治療,大細胞病變通常來勢洶洶,像 DLBCL 雖然會因為分期等因素,治療選擇上略有差異,但基本就是完全不能等!」過去 DLBCL 標準的第一線治療為化療藥物再加上 CD20 單株抗體的『免疫化學治療』,除化療毒殺腫瘤細胞外,同時藉由單株抗體直接促使帶有 CD20 的 B 細胞死亡達到緩解的效果。「大約 5~6 成的病患接受免疫化學治療後可以達成長期完全緩解也就是痊癒;剩下無法完全緩解的這群病患,又被稱作頑固型 DLBCL 淋巴瘤,因為已經對第一線藥物產生抗藥性,治療上較為棘手,需要更有效的新藥物選擇。」

-----廣告,請繼續往下閱讀-----
抗體藥物複合體ADC雙管齊下,結合單株抗體+化療
圖/照護線上

ADC 治療雙管齊下 提升療效降低副作用 健保已開放第三線給付

ADC 是經臨床試驗證實有效 DLBCL 淋巴瘤治療的新突破選擇。ADC 藥物的『複合』二字,指的就是單株抗體與化療的結合,藉由單株抗體對腫瘤的精準指向性,將化療藥物直接送到腫瘤身邊,進行毒殺。施宣任醫師進一步解釋,「ADC 藥物的專一性優勢,除了讓治療效果更顯著外,相較傳統化療沒有目標性地作用,ADC 藥物透過單株抗體可達成如同讓淋巴瘤細胞直接把化療吞進去的效果,自然副作用也降低很多,病患比較少感覺噁心、想吐、掉髮等。」

臨床研究顯示,ADC 藥物合併免疫化學治療一起使用後,能夠增加頑固型或復發淋巴瘤病人的整體存活期和完全反應率,並具有更長的療效持續時間。「整體存活期約增加近3倍、達成完全反應的機率則增加2倍以上,對已產生抗藥性的病人來說,這樣的數字實屬難能可貴。」施宣任醫師指出,因此美國 NCCN 治療指引也建議,符合特定條件的 DLBCL 淋巴瘤病人,可優先考慮接受 ADC 藥物的治療組合。

「台灣的醫療基本都是與國際同步,特別會參考美國的作法,因此健保署也於今年(113年)2 月將 ADC 納入 DLBCL 淋巴瘤第三線給付,讓患者能夠在減輕經濟負擔的狀態下,快速接受與國際同步的最新治療。」

ADC藥物或健保給付:提升頑固型或復發DLBCL反應率
圖/照護線上

彌漫性大B細胞淋巴瘤(DLBCL)治療與日常照護小提醒

現今 DLBCL 淋巴瘤的治療已朝多元選擇邁進,但免疫化學治療仍是重要的骨幹治療。施醫師提醒,包括 ADC 藥物等不同治療組合,都會搭配不同的化學藥物,毒性雖有高有低,但都可能造成免疫力低下,因此治療期間,應盡可能降低感染的機會,避免出入人潮較多的公共場所;近期流感、新冠等呼吸道傳染症疾病也較盛行,DLBCL 的病人更應提高警覺,小心預防。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

careonline_96
509 篇文章 ・ 275 位粉絲
台灣最大醫療入口網站

0

0
0

文字

分享

0
0
0
肝癌末期奇蹟逆轉!免疫治療合併抗血管新生藥物創新突破
careonline_96
・2024/09/18 ・2877字 ・閱讀時間約 5 分鐘

圖/照護線上

「免疫治療合併抗血管新生標靶藥物組合的出現,讓原本許多瀕臨絕境的肝癌晚期患者又再找到一線生機,甚至是原本肝癌多處轉移、破裂、復發等較致命的情況,都有機會控制到癌指數完全正常!」

童綜合醫院外科薛冠群醫師分享幾例十分棘手的肝癌晚期案例,「一例為手術後又發現橫膈膜上有7、8顆腫瘤轉移,因為基本上有轉移就表示癌細胞侵襲性高,復發風險度高,即使手術切除後也很難控制,但使用免疫治療合併抗血管新生藥物後,目前存活已超過一年,不僅癌指數都維持正常,多次追蹤的電腦斷層影像上也都沒有再發現腫瘤,可以說是控制住了腫瘤;另外兩個肝癌晚期案例,則都是發現腫瘤時就已破裂出血休克,癌指數非常高,甚至其中一例還高達16萬多!在先經栓塞或是手術處理後,雖然保住性命,但術後仍產生多處轉移情況,透過免疫合併抗血管新生標靶治療後數月,奇蹟似地讓2人的癌指數都降到幾乎正常,而且幾乎在後續影像檢查中已找不到存活的腫瘤。」

薛冠群醫師分析,「過往面對中晚期肝癌多次復發、血管侵犯、肝外轉移等棘手情況時,大多只能反復進行局部治療,但因為無法將癌細胞消滅殆盡,往往陷入一再復發的困境,患者最後甚至對治療感到疲憊並失去信心;而免疫治療合併抗血管新生標靶藥物問世後,透過此有效的全身性組合療法,終於有機會將手術切除後一再復發、栓塞塞不死、電燒燒不盡的癌細胞趕盡殺絕,避免一再復發、重複多次局部治療導致肝臟承受不住造成肝衰竭的惡性循環,甚至有機會接受根除性治療,讓肝癌晚期患者能重拾治癒希望。」

接受根除性治療大不易! 肝癌晚期治療反應率亟待提升

薛冠群醫師指出,「肝癌初期通常無症狀,等出現黃疸、腹脹等現象,往往病情已較嚴重,台灣約有一半以上肝癌病人確診時為中晚期,也因此導致肝癌長達 43 年位居十大癌症死因第二名。」由於肝癌晚期腫瘤已過大、血管侵犯、甚至已轉移至其他部位,故患者大多無法直接進行手術或是肝臟移植等根除性治療移除腫瘤,僅能透過全身性藥物治療,盡量縮小腫瘤,但過往傳統單一標靶治療成效有限,反應率可能低於 10%,因此手術可能性極低。

-----廣告,請繼續往下閱讀-----

機轉相乘!免疫治療 X 抗血管新生標靶藥物 毒殺肝癌藥效更佳

所幸隨著醫藥的進步,免疫藥物的出現大幅改變了肝癌晚期的命運。其中,免疫治療與抗血管新生標靶藥物合併使用的組合,更是大幅提高腫瘤反應率,有效的縮小腫瘤大小,提高存活率,增加後續接受根除性治療如手術,甚至是肝臟移植的機會!薛冠群醫師表示,「以免疫治療合併抗血管新生標靶藥物的組合治療時,反應率較高,有較高機會能顯著縮小腫瘤,延長病人存活期,甚至使部分患者的肝癌腫瘤消退至可手術切除的狀態,增加根除性治癒機會。」

機轉相乘!免疫治療X抗血管新生標靶藥物
圖/照護線上

免疫治療合併抗血管新生標靶藥物組合中的免疫藥物為 PD-L1 抑制劑,「人體免疫細胞原本具有辨識並毒殺癌細胞的能力,但當肝癌細胞上的 PD-L1 與T細胞上的 PD-1 接合時,會使 T 細胞失去活性而停止攻擊;此時,藉由免疫治療 PD-L1 抑制劑,就能阻斷上述接合,使 T 細胞“醒”過來,重新毒殺癌細胞。」

薛冠群醫師進一步指出,「在免疫治療 PD-L1 抑制劑外,再加上抗血管新生標靶藥物時,更能達到相輔相成的效果。因為肝癌腫瘤會刺激血管新生以獲取更多血液供養,此時抗血管新生標靶藥物不僅可有效抑制血管新生,阻止腫瘤長大,還可改善肝臟的腫瘤免疫微環境,讓併用的免疫治療能順利進入患處,發揮藥效,因而大幅提高反應率。」

免疫治療X抗血管新生標靶延長整體存活期期
圖/照護線上

權威 NCCN 治療指引列優先推薦 健保開放肝癌晚期第一線就給付

上述免疫治療 PD-L1 抑制劑與抗血管新生標靶藥物併用的加乘效果,經大型臨床試驗證實,有機會將原本僅 12% 的腫瘤反應率,提升達 30% 之多,同時減少 3 成多的死亡與 4 成的疾病惡化風險,增加近 6 個月的整體存活期。

-----廣告,請繼續往下閱讀-----

免疫治療合併抗血管新生標靶藥物所達成的反應率提升,也表示後續能接受根除性治療機率的提升,給予肝癌晚期病患更多爭取痊癒的機會,因此國際權威 NCCN 及 AASLD 肝癌治療指引均將免疫治療合併抗血管新生標靶藥物,列為肝癌晚期第一線治療優先推薦。

「我國健保也從善如流,自 2023 年 8 月開始,只要符合給付條件者,晚期肝癌第一線就可申請免疫治療合併抗血管新生標靶藥物的給付,病人不需要再自費,大大減輕經濟負擔!」薛冠群醫師提醒肝癌中晚期患者與家屬,「目前健保放寬到第一線就給付,讓反應率高的藥物及早使用這件事更無負擔,所以別忘了主動與醫師討論,制定最適合自身的治療計畫。」

權威NCCN治療指引列優先推薦 健保開放肝癌晚期第一線就給付
圖/照護線上

肝癌晚期治療—免疫合併抗血管新生標靶藥物重點整理

一、 免疫治療 PD-L1 抑制劑能喚醒免疫 T 細胞活性,重新毒殺癌細胞;抗血管新生標靶藥物則可有效抑制血管新生,阻止腫瘤長大,並改善肝臟的腫瘤免疫微環境,讓併用的免疫治療能順利進入患處,發揮藥效進而大幅提高反應率。

二、 大型臨床試驗證實,免疫治療合併抗血管新生標靶藥物有機會將反應率提升至 30%、減少 3 成多的死亡與 4 成的疾病惡化風險,增加近 6 個月的整體存活期。

-----廣告,請繼續往下閱讀-----

三、 國際權威 NCCN 及 AASLD 肝癌治療指引將免疫治療合併抗血管新生標靶藥物,列為肝癌晚期第一線治療優先推薦。

四、 2023 年 8 月起,免疫治療合併抗血管新生標靶藥物已納入肝癌晚期第一線健保給付,提醒患者與家屬可主動與醫師討論用藥,制定最適合自身的肝癌晚期治療計畫。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。