0

0
1

文字

分享

0
0
1

植物的竊聽風暴:無聲的植物如何彼此溝通?

活躍星系核_96
・2017/10/22 ・3742字 ・閱讀時間約 7 分鐘 ・SR值 487 ・五年級
  • 文/廖季薇
    主修樹木綠化,技能到處點的園藝人,包含繪畫、攝影、烹飪、各種手工藝及DIY等。樂於嘗試新事物,對植物有難以言喻的深厚情感。

「快!我要告訴你一件不得了的消息……」雙方低頭私語,

「竟然有這種事?那我得趕快做好準備!」神情驚恐不已。

此時角落傳來暗暗的竊笑聲,得意的說:「嘻嘻嘻!這可是大情報啊!」

植物們在說些什麼悄悄話?圖/photoAC

讀到這段你可能會以為是哪個小說情節,但其實這是你窗外正在上演的橋段:而主角是綠油油、青翠翠的植物們。看著它們無聲地隨風搖擺,很難以想像它們能夠用著我們五官無法解讀的語言,焦慮地傳達訊息。

如果植物不像我們是透過聲音或肢體動作來表達,那它們又要如何溝通呢?

植物能夠解讀空氣中的化學訊息,藉以觀測周遭其他植物的狀態。圖/aororak

植物如何知道在旁邊的是好鄰居還是惡鄰纏身?

我們搬到新家,通常會跟鄰居打聲招呼,順便了解一下對方是不是能守望相助的好鄰友。那植物會怎麼跟它的鄰居打招呼,來確定對方是朋友或是競爭資源的對手呢?

source:Pxhere

瑞典農業大學作物生態學系副教授 Velemir Ninkovic 與他的研究團隊在 2003 年發表的論文中說明,兩個不同品種的大麥,能夠透過對方散發到空氣中的揮發性有機化合物(volatile organic compounds;VOCs)來確認對方是敵是友。

實驗裝置使兩種植物的土壤隔絕,避免地下物質交流。密閉空間只保留出風口,使單方向的空氣流動,確保實驗大麥品種 Kara(植物 B)僅受大麥品種 Alva(植物 A)的揮發性物質影響。
圖 A:實驗組;圖 B、圖 C:對照組。 圖/Ninkovic, et al.

實驗中將大麥品種 Kara 與品種 Alva 隔絕於兩個獨立的箱體內,中間僅保留一個通風口,因此排除了土壤與根系接觸的可能性。當大麥品種 Kara 接收到來自大麥品種 Alva 的氣體後,品種 Kara 會將更多的養分送到根部,增加根部的生長,以佔據更大的地盤、提高對土壤礦物質與水分攝取的能力。

但若鄰房住的是相同的大麥品種,品種 Kara 則不會做出這麼大的反應。實驗結果可推測大麥品種 Kara 可以從氣體中辨識出鄰房住的是同鄉好親友或來搶糧的惡鄰居。同時也採取攻佔地盤的策略,大肆拓展根系範圍,以先發制人。

暴露於大麥品種 Alva 揮發空氣中的大麥品種 Kara 組(AK),相較於暴露於同一品種 Kara 組(KK)及暴露於一般空氣中的大麥品種 Kara 組(OK),AK 組的莖根比(S/R)最小,即其根部的生長量大於莖葉的生長量。圖/Ninkovic, et al.

在另一個實驗中,先讓大麥品種 Alva 生長於一個模擬森林下層的光源環境,即「紅光:遠紅光」比例較低(遠紅光比紅光多)。由於森林裡大部分的紅光會被上層植物攔截吸收,下層植物相對會接收到較多的遠紅光。當植物體內的光敏素吸收較多遠紅光,會從活化的 Pfr 型態轉變成不具活性的 Pr 型態(光敏素為植物體內的一種感光受器蛋白質,具有活化與鈍化兩種型態,即 Pfr 與 Pr 型態,能調控植物的生理與生長反應;吸收較多的紅光能活化光敏素,吸收較多的遠紅光則反之)。

此時,植物會傾向於將更多的養分供給到莖葉的生長,使自己長得更高大,能搶到更多的光源。這樣的生長現象,稱為遮蔭迴避效應(shade avoidance;或稱陰影遮蔽效應)。

森林下層的植物所能吸收的光線較少,為了爭取陽光,會努力使自己長得更高。這樣的生長現象,稱為遮蔭迴避效應(shade avoidance;或稱陰影遮蔽效應),由光敏素所調控。圖/ Chi Wei Liao

實驗結果顯示大麥品種 Alva 如期產生了遮蔭迴避效應,同時也改變了揮發性有機物質的組成比例。而神奇的是,當大麥品種 Kara 從空氣中接收到這揮發性物質後,也表現相同的遮蔭迴避效應生長,努力讓自己長得更高。

由此看來,大麥品種 Kara不僅可以從空氣中的揮發性有機物質「聽」出周圍的大麥是不是和自己操著同一種「鄉音」,也可以偷聽到競爭對手正要採取的生存策略。而且能即時做出相對應的行動,以避免落於人後。這樣的情報攻防戰,是不是像極了人們的諜對諜情節?

植物也能鳴奏無聲的號角警報

植物的揮發性物質不僅受到環境因素影響而產生變化,當植物遭受草食性動物(包含昆蟲)攻擊時,植物也會產生不同成分組合的揮發性物質(herbivore-induced plant volatiles;HIPVs;意指由食草行為所引導產生的揮發性物質)。

有些揮發性物質能直接驅趕草食性動物、或甚至造成毒害,例如:松樹(黃松 Pinus ponderosa Lawson、扭葉松 P. contorta Douglas var. latifolia Engelmann、白杉 Abies concolor Lindl. and Gordon等)所產生的單萜類物質(monoterpene;一種有機化合物);有些揮發性物質則能吸引草食性動物的天敵前來逮捕這些吃霸王餐的食客,這樣的防禦方式被稱為「間接防禦(indirect defense)」,例如玉米、棉花、黃瓜及甘藍等能吸引害蟲的天敵寄生蜂,有效地減少鱗翅目幼蟲的危害,如斜紋夜盜蟲、小菜蛾、甜菜夜蛾等。

瓢蟲也是幫助植物消滅蟲害的好盟友。圖中為六條瓢蟲(Menochilus sexmaculatus),以取食蚜蟲為主。圖/Chi Wei Liao

這些因為草食性動物攻擊而引導植物產生的揮發性物質,也能告知周圍的同種植物:「大敵當前!快把槍矛弓弩火藥都備齊啊!」使尚未受害的植物們提前做好防禦敵害的準備, 例如增加葉片中的單寧(tannin)含量等,會讓食客們覺得難以下嚥。

來自美國加利福尼亞大學戴維斯分校的學者 Richard Karban,長年研究植物的感知與訊息傳播模式,2015年出版專書 Plant Sensing and Communication(暫譯:植物的感知與通訊)。

Richard Karban 曾藉由修剪山艾樹(Artemisia tridentata)的葉片來模擬草食性動物啃食,成功引導山艾樹的傷口生成大量的揮發性物質──茉莉酸甲酯(methyl jasmonate)。經過三年的野外試驗發現,有修剪過山艾樹周圍的野生菸草(Nicotiana attenuata),相較於未經修剪山艾樹旁的菸草,所受到的蟲害明顯較低。

科學家推論,生長於山艾樹旁的野生菸草能解讀山艾樹傷口所發出的「情報」,使自己也進入備戰狀態,提早做好準備以抵禦害蟲侵食。

實驗地點:北美大盆地的山艾樹(Artemisia tridentata)族群。圖/K. Shiojiri

但從資源的競爭關係來看,山艾樹實在沒有理由將「防敵情報」傳達給鄰居的菸草。因此 Richard Karban 又做了一系列的實驗,結果發現山艾樹若要將「防敵情報」由受傷的枝條傳達到其他沒有受傷的枝條,並無法透過內部的輸導組織傳送。

「防敵情報」必須透過空氣中傳播揮發性訊息給其他沒有受傷的部位,才能使這些枝葉啟動抵禦蟲害的備戰模式。所以,住在附近的菸草鄰居其實是「偷聽」到了這個情報,才開始做對抗蟲害的準備。

由於植物產生的揮發性有機化合物之組合有遺傳上的差異,親緣關係越接近的植物之間,其「語言」也更為相近相通,對於訊號反應的敏感度更高。實驗中,當山艾樹與菸草兩者的距離超過15公分後,「防敵情報」的影響能力會降低;而山艾樹與同種山艾樹之間的溝通距離則可達到 60 公分。

如果我們能學會植物的「語言」、解讀植物的「情報」

科學家們在這數十年間前仆後繼,致力於解碼植物的揮發性有機化合物。未來我們不僅能解讀植物訊息,亦能使用植物的語言來與植物「溝通」。當這些有機化合物廣泛應用於保護農業作物,便能減少高毒性農藥的使用量。例如利用茉莉花酸(jasmonate acid, JA)誘導植物進入備戰狀態,抵禦外患,減少草食性動物帶來的損害。

如果我們能理解植物的語言,也許就能知道它們面臨著什麼問題、需求什麼資源,甚至告訴我們更多的秘密。當我們能和植物做朋友,那絕對是人類外交史上的一大邁進!

參考影片

  • 植物能互相交流嗎?看起來當然不能。植物不像動物一樣有著複雜的感觸神經系統,他們看起來被動得多。儘管聽起來很玄乎,但是植物確實能相互交流,尤其是受到攻擊時。理查德.卡爾班解釋了其中的奧秘。

參考文獻

  1. Ninkovic, V. (2003). Volatile communication between barley plants affects biomass allocation. Journal of Experimental Botany54(389), 1931-1939.
  2. Litvak, M. E., & Monson, R. K. (1998). Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia, 114(4), 531-540.
  3. Karban, R., Baldwin, I. T., Baxter, K. J., Laue, G., & Felton, G. W. (2000). Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia125(1), 66-71.
  4. Karban, R., Shiojiri, K., Huntzinger, M., & McCall, A. C. (2006). Damageinduced resistance in sagebrush: volatiles are key to intraand interplant communication. Ecology87(4), 922-930.
  5. Thaler, J. S., Stout, M. J., Karban, R., & Duffey, S. S. (1996). Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. Journal of Chemical Ecology22(10), 1767-1781.

本文為泛科學院「用科普寫作打造個人品牌」學員作品,如果你也想展現自己的專業素養,將知識用大家聽得動、有興趣的方式傳達出去,歡迎一起來跟泛科學總編輯學。報名請洽 #泛科學院


數感宇宙探索課程,現正募資中!

文章難易度
活躍星系核_96
755 篇文章 ・ 89 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia


0

2
1

文字

分享

0
2
1

就是想知道十萬個植物的為什麼!解開植物生長之謎的駭客兼翻譯——蔡宜芳專訪

鳥苷三磷酸 (PanSci Promo)_96
・2022/04/06 ・3848字 ・閱讀時間約 8 分鐘

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

2018 年「台灣傑出女科學家獎」傑出獎第十一屆傑出獎得主

  • 中研院分子生物研究所特聘研究員蔡宜芳,畢業自台灣大學植物系,在美國卡內基美隆大學(Carnegie Mellon University, CMU)取得博士,後於加州大學聖地牙哥分校(University of California, San Diego, UCSD)進行博士後研究,研究專長為植物分子生物學。主要從事細胞膜蛋白的功能研究,在硝酸鹽轉運蛋白研究領域有卓越貢獻。2021 年蔡宜芳特聘研究員榮獲美國國家科學院(National Academy of Sciences, NAS)外籍院士(international members)。

如果妳撿到蔡宜芳掉的手機,可能很難立即知道失主是誰,甚至有點摸不著頭緒:因為她手機裡超過 80% 的照片,都是植物。為何會選擇植物作為研究領域?身為中研院分子生物研究所特聘研究員,在植物分子生物學領域貢獻卓著的她卻說,這個決定其實「不太科學」,因為起心動念是自己「真的很喜歡植物」。

因為喜歡所以好奇,因為好奇而想要知道更多:許多 love story 都是這樣開始的,而研究領域的開展又何嘗不是一場超浪漫故事呢?也因為一般人都不夠認識植物,聽不懂植物的細語呢喃,更需要蔡宜芳這般熱愛植物的科學家,擔任植物駭客兼翻譯,讓不辨菽麥者也能偷聽花開的聲音。

故事,從一株異變的阿拉伯芥開始說起。

植物對於氮肥的攝取機制與調控方法正是蔡宜芳的研究主題。圖/劉志恒攝影

分子生物學突破:發現植物吸收硝酸鹽的關鍵蛋白 CHL1

上世紀 50 年代起的「綠色革命」,大幅提升了糧食生產量,餵飽了激增的地球人口,「氮肥」在其中功不可沒。它對植物開花結果至關重要,然而植物透過什麼機制攝取氮肥?如何調控才能更有效地吸收?蔡宜芳研究的正是其中的分子機制。

氮,是生物存活的重要元素;從推動光合作用的葉綠素、各種代謝反應的酵素,到與遺傳相關的核酸中,都有氮的存在。但對植物來說,要取得氮元素卻出乎意料地困難;大氣的組成中近五分之四為氮氣,但是除了藉由少數有固氮能力的微生物以外,植物只能使用在土壤中非常少量的氮源,吸收的型態有「氨鹽」與「硝酸鹽」,其中又以硝酸鹽為主。

但是,硝酸鹽是帶電離子,無法自行通過脂質構成的細胞膜,那到底植物如何利用硝酸鹽呢?為了解開這個長年來的謎題,蔡宜芳將目光投向一棵無法正常吸收硝酸鹽的阿拉伯芥突變株,並利用當時最新發展出來的分子生物技術,試圖找到出關鍵基因。蔡宜芳表示,這個無法正常吸收硝酸鹽的突變株,在她約 10 歲時就被荷蘭研究者發現,這麼多年來在傳統技術底下被研究得相當透徹;卻直到她開始進行博士後研究,伴隨植物分子生物相關技術發展,才有方法找到關鍵的轉運蛋白。

這樣的研究自然充滿了挑戰,因為新技術還不穩固,就連實驗室老闆都曾勸她放棄。不願投降的她,決定一邊持續研究氮代謝,一邊到其他研究室學細胞膜研究的新技術,1994 年,蔡宜芳從美國回到台灣,持續研究進一步發現, 位在植物細胞膜上的 CHL1 硝酸鹽轉運蛋白,除了作為硝酸鹽的「搬運工」,還有其他異想不到的功能。在你我的印象當中,植物是被動的吸收養分:但其實當土壤中的的硝酸鹽變化時,植物會主動改變硝酸鹽的運作模式,這就是蔡宜芳團隊在 2003 年的重大發現。運作模式的改變正來自於 CHL1 蛋白的磷酸化轉換,因此 CHL1 蛋白也具備作為「傳令兵」的功能。透過 CHL1,植物便能感應周圍的硝酸鹽濃度,幫助植物調控基因表現,以便能更有效率地利用硝酸鹽。

掌握硝酸鹽吸收的調控,在農業領域十分有發展潛力,蔡宜芳的研究進一步轉向,對接實際應用,期盼為農業的永續未來提供新解方。除了 CHL1硝酸鹽轉運蛋白的機制外,她也針對阿拉伯芥如何吸收與輸送硝酸鹽到不同組織的分子機制展開探索。近期更研究探討是否能以育種或基因調控的方式,增進植物吸收硝酸鹽的效率。由於硝酸鹽非常容易在環境中流失,因此多數的氮肥施放到田間後,植物也往往吸收不了;如果可以改善植物的吸收效率,就能減少施肥的浪費,連帶減少製造氮肥耗用的能源,也讓農作物長得更好。

好消息是,透過基因調控,蔡宜芳團隊已經在阿拉伯芥、菸草及水稻上實驗成功,並取得相關專利,期待未來將授權給生物科技公司進行下一步。

培養科學研究必備品:好奇心、科學思辯與毅力

蔡宜芳從事研究的初衷是因為對植物的喜愛與好奇心,對她來說和植物有關的十萬個為什麼,猶如始終永遠拼不完的大型拼圖,從小時候就在蔡宜芳的心中佔據了重要位子,於是她「追根究柢」(如字面上意義),想靠自己解開植物現象背後的秘密。

人們對自己不了解又無法回嘴的植物充滿了誤解,往往覺得植物跟動物一點也不同,然而在蔡宜芳看來絕非如此,她表示,已經有研究發現,當我們這些動物咬下蔬菜的瞬間,植物裡頭負責傳導的的鈣離子就會產生變化。「大家都覺得植物不會動不會叫,但其實植物是有感知的。」蔡宜芳表示,植物其實都知道,只是用我們不懂的方式在表達,要靠研究才能一句一句地破解植物的密語。

圖/劉志恒攝影

當然研究也不能自己埋頭苦幹,交流非常重要。蔡宜芳擔任植物學期刊 《Plant Physiology》 編輯多年,但回憶起剛建立獨立實驗室的階段,面對那麼多來自審稿人的刁鑽問題,當時的自己也難免生氣。一旦轉換身份成為審稿人,被審的經驗也讓她更明白審查論文時該注意的重點,一來一往的思辨與答辯,反而讓她覺得很好玩。

「我自己有個突破,是因為被質疑的時候很生氣,可是不能光氣,也要想辦法解決。就在生氣的時候,想出來的方法,最後變成我們實驗室很新的工具。」而她也認為自己在替《Nature》等重要期刊審稿時,認真地給出言之有物的評論,幫她累積了領域內的信譽,才讓期刊編輯的位置找到了她。

蔡宜芳曾擔任植物學期刊《Plant Physiology》編輯。圖/《Plant Physiology》網頁截圖

像投稿審稿這般來回思辨的訓練,對科學家的養成非常重要,然而蔡宜芳觀察,科學思辨在台灣教育裡比較缺乏。她舉例,在美國課堂上,老師會要學生先讀一篇論文,接下來整堂課則要學生批評論文有什麼問題。「我們在台灣被訓練的人,都會把 paper 當作傳世經書在讀,讀懂它就覺得很開心了——要去批評它,我們真的沒有習慣。」蔡宜芳坦言那過程對她來說曾經非常痛苦,但會痛就代表該變。

她就此改變了思路:面對知識,蔡宜芳要求自己不僅要讀懂,還要有餘力批評它,說出對、錯在哪裡。蔡宜芳認為,科學就是得永遠抱持著質疑的態度,在不疑處有疑,才能找到真正的答案。「在我自己的實驗室裡面,我也一直在逼學生要去思考」。

蔡宜芳在實驗室中,會不斷要求學生思考、批判。圖/劉志恒攝影

而除了好奇心及思辨能力之外,蔡宜芳認為「毅力」也是科學家在科學界持續前進的重要特質。經驗告訴她,在科學研究中遇見失敗比遇見成功的次數多太多了,革命十次稀鬆平常,如何二十次甚至三十次之後還能繼續往前走?那絕對需要強大的毅力來抗壓才行。

說到壓力,身為科學界的女性,蔡宜芳認為,自己的成長環境中,性別造成的影響並不大,以她所在的中研院分生所為例,研究人員性別比例很平均。但若深入細究,「無意識偏見」(unconscious bias)仍難以避免。她以自己帶過的學生為例,生科領域在大學時期男女比例大約是各半,但隨著碩士、博士一路往上,男性的比例逐漸多於女性。因為許多女學生在面臨職涯選擇的時候,往往會被迫以家庭或是男性伴侶的事業為優先,這種狀況回過頭來又讓部分老師覺得「教育女生有時會是浪費」,成為惡性循環。

榮獲過許多科學成就獎項的她,時常是唯一獲獎的女性,而就在接受採訪不久前,她又獲頒一個獎項,直到頒獎當天的照片寄回到所上,「一片黑西裝裡面,就我穿黃色!」她笑道。所上第五屆台灣女科學家傑出獎得主鍾邦柱老師看到照片時,也對她苦笑說:「哎,革命尚未成功,同志仍需努力。」

「先不要去想會有這個東西,做該做的事情。真正不平的時候,不要安靜不講。」儘管環境仍待改變,蔡宜芳建議女科學人自己先跨出一步,就如同她自己一路走來的態度。

一株莫名異變的阿拉伯芥,遇上一位不放棄的科學家兼植物迷,造就了改變農業、甚至是整體生態未來的契機。如果妳的手機也跟蔡宜芳一樣,裝的幾乎全是自己感興趣、想研究的東西的照片,請別質疑自己是不是怪怪的,或許妳也將靠著研究,改變世界,這是我能想到最浪漫的事了。

台灣傑出女科學家獎邁入第 15 年,台灣萊雅鼓勵女性追求科學夢想,讓科學領域能兩性均衡參與和貢獻。想成為科學家嗎?妳絕對可以!傑出學姊們在這裡跟妳說:YES!:https://towis.loreal.com.tw/Video.php

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。


數感宇宙探索課程,現正募資中!

鳥苷三磷酸 (PanSci Promo)_96
9 篇文章 ・ 7 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia