0

0
0

文字

分享

0
0
0

再生機制的研究:有可能像金鋼狼或沙威瑪一樣不斷「再生」嗎?

研之有物│中央研究院_96
・2017/07/23 ・3798字 ・閱讀時間約 7 分鐘 ・SR值 522 ・七年級

-----廣告,請繼續往下閱讀-----

為什麼研究「再生」

組織與器官如何啟動再生機制,至今人們仍然不了解。例如,當切斷蠑螈的手臂和手指,不同部位再生所費時間竟然相同,但為什麼?在中研院細胞與個體生物所,陳振輝團隊利用經由基因突變篩檢出來、失去再生能力的斑馬魚,來了解再生過程的分子機制,期待未來能幫助再生醫學的發展。

希臘神話九頭蛇的再生能力:砍了一個我,還有千千萬萬個我。圖/iStock

在古代,希臘神話中的怪物九頭蛇,危害沼澤附近的生物,當與海格力斯大戰時,九頭蛇被砍斷頭顱後還可以不斷再生。在現代,X 戰警電影中的金鋼狼,也具有驚人的再生能力,傷口可以在短短幾秒內恢復。從這兩個故事看來,人類從古至今對於再生能力是既感恐懼又羨慕。

再生並非只存在傳說中,自然界也有奇蹟存在。例如,蠑螈雖然是低等的脊椎動物,但可以從被截斷的手臂切面,長出神經、骨頭、血管與肌肉,再生出完好的手臂。而斑馬魚和渦蟲,也都具有很強的再生能力。

蠑螈需花費 30~60 天才能再生一隻完好的手,不像金鋼狼那麼誇張,可以瞬間再生,但若能了解哪些關鍵會觸發再生機制,也許有一天人類也可以再生。

「所有人都對再生有興趣,並不是科學界才對再生研究感興趣!」在陳振輝的實驗室,正透過科學化的方法,以斑馬魚為研究對象,探索傷口修復和複雜組織再生過程中,細胞們如何運作。

找找看,能發現失去再生能力的基因突變斑馬魚嗎?被截斷的尾鰭是個指引。圖/張語辰

透過「斑馬魚」畫出「再生藍圖」

人類的肢幹受傷斷裂,傷口癒合後就形成斷肢,無法再生。但若是截斷斑馬魚尾鰭、用強光破壞視網膜、用細針攪爛一側的大腦,甚至剪斷脊椎這種極端方式,斑馬魚都可以完整再生這些複雜組織。

-----廣告,請繼續往下閱讀-----

在脊椎再生的模式中,斑馬魚一開始會因缺乏神經連結而無法再游動,並躺在水缸底兩個禮拜,但待神經重新連結、表皮癒合後,斑馬魚又再次成為一尾活龍、游來游去。(註一)

陳振輝團隊試著想回答兩個問題:再生如何發生?再生機制為何會發生?

再生機制,涵蓋「表皮細胞、骨頭細胞、神經細胞、血管細胞」等運作,就像蓋一棟房子,需要不同材料、不同步驟進行。例如,殘肢上的細胞要移動、增生、分化產生新組織,同時也要跟舊組織溝通、整合,來讓新生的手臂具有正確的大小、形狀和功能。

陳振輝透過 Skinbow 這種多顏色細胞標誌技術,以不同顏色標記斑馬魚體內不同的細胞,觀察再生過程中細胞如何移動、如何分工合作,藉以建立一個三維空間裡,各式細胞如何互動、建構複雜組織的工程藍圖,並運用這個藍圖看看能否移轉到其他生物上實現,也蓋出名叫「再生」的房子。

-----廣告,請繼續往下閱讀-----
經過 Skinbow 處理的斑馬魚鱗片,不同細胞被標記不同顏色,在顯微鏡下觀察如同冰淇淋甜筒上的七彩糖珠。圖/Chen et al., (2016). Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Developmental Cell 36 (6), 668-680.

Skinbow:研究再生的繽紛驚喜

環顧陳振輝實驗室中色彩繽紛的照片,彷彿藝廊展覽。照片中所採用的 Skinbow 多顏色細胞標誌技術,點子來自於陳振輝在美國杜克大學醫學院的細胞生物學實驗室中,看到同事 Vikas Gupta 成功運用 Brainbow 多顏色細胞標誌技術,觀察斑馬魚心臟的發育與再生過程。(註二)

Brainbow 由 Joan Livet 於 2007 年時建立,當初是為了觀察老鼠的大腦神經(註三),其基本原理是利用基因重組的方式,隨機將紅綠藍三原色的螢光蛋白在個別細胞表現不同的數量,如此一來便能產生上百種顏色,標誌每一顆細胞,並且觀察每顆細胞的運作狀態。

結合「大腦」的實驗及「彩虹」般的色彩表現,這個以多種顏色標誌細胞的技術便稱為 Brainbow。

而陳振輝團隊轉化此技術,運用於觀察斑馬魚的「表皮細胞」於再生時的運作情況,並另名為 Skinbow ,經過多次嘗試,Skinbow 可用來標誌斑馬魚成魚的尾鰭、鱗片、眼球、甚至整隻仔魚的表皮細胞。

-----廣告,請繼續往下閱讀-----
Skinbow:將紅、綠、藍(光的三原色)螢光蛋白標誌疊合之後,可以產生上百種不同顏色來標誌不同的表皮細胞,讓同個細胞在組織再生的過程中,能被長時間追蹤觀察。圖/張語辰

在 Skinbow 多顏色細胞標誌下,可以觀察斑馬魚的表皮細胞,在面對不同的傷害情況下,如何集體反應、合作、再生,以恢復原來的組織構造。

例如,若想了解截斷斑馬魚的尾鰭後,細胞的移動方式是「沿著截斷面長出新細胞」,或是「舊組織的細胞會往截斷面移動」?透過 Skinbow 可以清楚看見,舊組織的表皮細胞會先移動到截斷面要增生的部份,然後才在原本的舊組織長出新的表皮細胞。

透過 Skinbow 看到斑馬魚被截斷的尾鰭上,「舊」組織的表皮細胞(以綠點為例),會往截斷處移動、修補,而非立即從截斷處長出「新」細胞。 資料來源透過 Skinbow 看到斑馬魚被截斷的尾鰭上,「舊」組織的表皮細胞(以綠點為例),會往截斷處移動、修補,而非立即從截斷處長出「新」細胞。 資料來源/陳振輝提供; 圖/王怡蓁、張語辰

為何是斑馬魚?蠑螈不行嗎?

陳振輝表示,斑馬魚作為模式生物已經有二十多年的歷史,科學家主要利用魚胚胎來研究脊椎動物的發育過程,累積了足夠的遺傳學基礎和研究方法。

另一個主要的原因是斑馬魚在高倍顯微鏡下較易觀察,光是在顯微鏡下觀察尾鰭再生的過程就要持續二十天,但蠑螈太大隻非常不容易辦到,因此容易麻醉方便長時間觀察也是考量因素之一。而生長週期也是關鍵,蠑螈的成長過程需要數年,斑馬魚只要三個月。

斑馬魚的體型小且扁平,麻醉後易於透過顯微鏡長時間觀察。 圖/張語辰

在中研院細胞與個體生物學研究所地下室一樓,有著一間斑馬魚養殖場,一箱箱疊在一起的斑馬魚水族箱,不斷冒著泡泡,水族箱上頭仔細貼著說明標籤。

-----廣告,請繼續往下閱讀-----
陳振輝指著尾鰭明顯少掉四分之一(黃圈處)的斑馬魚說:「這隻是尾鰭截斷之後,無法再生的魚。」圖/張語辰

我們將斑馬魚泡在誘發基因突變的藥水中,觀察哪隻斑馬魚在截斷尾鰭後變得「不會再生」,去找出是哪個基因出問題,這可能就是觸發再生的關鍵。

「目前實驗室已經在突變魚身上找到一些基因對於再生是重要的,而這樣尋找的過程平均要花上一年半到兩年的時間。」陳振輝說,充滿著耐心。

如何將斑馬魚的再生,應用到人類身上?

陳振輝認為,再生機制的研究要植基於這些「很會再生」的「模式生物」,如果沒有利用這些生物,將很難建立複雜組織再生的模型。

而基礎研究所得到的結果,可以進一步在老鼠模式上面驗證,例如利用斑馬魚的再生機制去調控實驗老鼠的再生能力。(註四)

為什麼人類具有跟斑馬魚一樣的再生基因,卻無法再生?這關乎基因調控的狀況。

再生機制牽涉到兩個層面,第一是人類缺乏斑馬魚具有的特定再生基因;第二,則是基因調控的狀況。

-----廣告,請繼續往下閱讀-----

例如,斑馬魚的基因 A 在受傷後會被活化,但人的基因 A 卻不會被活化,因此人類無法再生,這可能牽涉到基因的上游 DNA 序列的調控,而這會影響負責再生的基因表現。

至於其他魚類是否也具有再生能力?陳振輝表示許多硬骨魚類都具有。生物的再生能力,對繁衍沒有直接影響,像人類無法進行斷肢再生,卻不影響其繁殖與其在地球的地位,因此再生能力在演化的過程可能會獲得或失去。像是並非所有渦蟲及蠑螈都會再生,部分譜系的渦蟲及蠑螈在演化過程中,也失去了再生能力。

人類敬畏又渴望再生的能力,但在演化過程中,大自然選擇性地讓部分物種保留再生的特權。陳振輝播放著已看過無數次的蠑螈再生斷肢的影片,驚嘆地說:「再看幾次還是會覺得這些動物怎麼這麼神奇,讓人不斷地想了解為什麼牠們可以這樣呢?」


延伸閱讀

註釋

-----廣告,請繼續往下閱讀-----
  • 註一:Mokalled et al., 2016, Science 354: 630-634.
  • 註二:Gupta et al., 2012, Nature 484: 479-484.
  • 註三:Livet et al., 2007, Nature 450: 56-62.
  • 註四:Kang et al., 2016, Nature 532: 201-206.
  • CH Chen, A Puliafito, BD Cox, L Primo, Y Fang, S Di Talia, KD Poss. (2016). Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Developmental Cell 36 (6), 668-680.

採訪編輯|王怡蓁   美術編輯|張語辰

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
290 篇文章 ・ 3283 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

5
1

文字

分享

0
5
1
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
194 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

12
7

文字

分享

0
12
7
一切都為了快快長大!斑馬魚的「無合成分裂」,「表面」到你難以察覺
研之有物│中央研究院_96
・2022/10/08 ・5419字 ・閱讀時間約 11 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

不用合成新 DNA 的細胞分裂——無合成分裂

細胞分裂,想來是再簡單不過的事情:一顆細胞先將遺傳物質複製為兩份,再一分為二,分配給兩顆細胞。然而,由中央研究院細胞與個體生物學研究所的陳振輝助研究員領軍,2022 年 4 月發表在《自然》(Nature)的論文,卻報告了過往未知的一種分裂方式:斑馬魚的皮膚細胞,可以直接一變二,再二變四,過程中不用合成新的 DNA!這項未來將改寫教科書的新知識,當初是如何發現、驗證,未來又有什麼衍生方向呢?中研院「研之有物」專訪陳振輝助研究員,請他和我們仔細分享斑馬魚的「表面功夫」。

陳振輝研究團隊發現斑馬魚表皮細胞有「無合成分裂」現象,研究成果於 2022 年 4 月發表在國際頂級期刊《自然》。圖為陳振輝(右)與第一作者陳潔盈(左)合影。圖/研之有物

將顏色植入斑馬魚的每一個細胞

陳振輝實驗室的研究大多著重於「再生生物學」,新研究算是「發育生物學」的領域。不過了解背後細胞行為調控的機制就會知道,這兩個領域其實是共通的。

陳振輝以斑馬魚作為實驗材料,基因改造後讓不同細胞被標記上不同顏色,使得不同細胞的動態行為,能夠被清晰地分辨和追蹤。這個研究方法可以用來探究逆境下複雜組織的再生,也能用來研究正常狀況下動物的發育進程,因為這些過程都涉及大量細胞的動態調控。

-----廣告,請繼續往下閱讀-----
陳振輝以斑馬魚作為實驗材料,基因改造後讓不同細胞被標記上不同顏色,使得不同細胞的動態行為,能夠被清晰地分辨和追蹤。圖片這隻為斑馬魚的仔魚,年齡為受精之後第 8 天。(另開圖片可放大檢視)圖/陳潔盈、陳振輝

發育生物學是生物學研究的熱門領域,投入者眾,大部分的研究者都針對部分細胞或特定基因作探討,陳振輝團隊的技術讓他們能同時追蹤單一活體動物整個組織裡所有的細胞。這項技術除了用在皮膚組織(方法名為「palmskin」),陳振輝也用類似的方法探索肌肉、肝臟等各式器官的發育、再生過程。

創造色彩繽紛的細胞,原理其實很簡單,就是利用紅色、藍色、綠色的三原色不同比例的組合。具體作法是透過基因改造,將能製造紅、藍、綠色螢光蛋白質的基因組,植入斑馬魚的細胞,利用遺傳學的工具,讓表皮、肌肉、肝臟等目標組織的每一顆細胞,隨機表現出不同的顏色組合。

舉例來說,其中一個細胞可以表現「3 個紅色螢光蛋白 + 5 個藍色螢光蛋白 + 4 個綠色螢光蛋白」,隔壁細胞可能是「1 紅 + 2 藍 + 6 綠」,鄰近細胞間便能呈現不同顏色,讓長期追蹤所有不同細胞成為可能。

將能夠製造紅、藍、綠色螢光蛋白質的基因組,植入斑馬魚的細胞,利用遺傳學技術,讓表皮、肌肉、肝臟等目標組織的每一顆細胞,隨機表現出不同的顏色組合。圖/研之有物(資料來源/陳振輝

將調色盤植入細胞的原理看似簡單,做起來卻要耗費不少功夫,尋找適合的基因轉殖魚需要半年到一年的時間。陳振輝解釋用斑馬魚當實驗材料的優點:它們容易繁殖,生長的週期不用等太久,體積小,容易操作;更重要的是魚體扁平,容易拍攝大面積、高解析度的細胞影像,進行系統性的量化分析。搭配讓每一顆細胞,從誕生到凋逝都無所遁形的全面「監控」影像平台,才有機會觀察到前人視而不見的細胞分裂方式。

-----廣告,請繼續往下閱讀-----
圖片為斑馬魚的仔魚(上圖)和成魚(下圖)的透視圖,仔魚年齡為受精之後第 3~21 天。斑馬魚當實驗材料的優點是:容易繁殖,生長週期不長,體積小,容易操作;更重要的是魚體扁平,容易拍攝大面積、高解析度的細胞影像。圖/研之有物(資料來源/J Clin Invest.

隱藏在「表面之中」的無合成分裂

斑馬魚的皮膚和人類的皮膚基本構造類似。唯一不同是人類的皮膚有角質層覆蓋,斑馬魚皮膚的外層是沒有角質化的活細胞,適合拍照觀察。斑馬魚的另一優點是在顯微鏡下活體觀察時不會傷害到魚體,麻醉後可以直接拍照,再放回水中喚醒;如此才能追蹤同一條魚從出生到長大,身上所有皮膚細胞的動態行為。

研究斑馬魚的學者很多,皮膚發育這回事可謂天天在人們的眼前發生,可是其它人為什麼都視而不見,沒有注意到陳振輝團隊發現的無合成分裂呢?事情其實沒有說起來那麼簡單。

斑馬魚皮膚剖面示意圖,從顯微鏡看到的斑馬魚細胞是最上層的表皮細胞。圖/研之有物(資料來源/陳振輝)

斑馬魚的皮膚分為上中下三層,下層的幹細胞,會分裂產生新的細胞,送到上層成為覆蓋身體最外側的皮膚細胞。其它研究人員如果見到表皮細胞的數目變多,直觀的想法會是下層的幹細胞又送上新的細胞,不會想到是上層既有已分化的細胞可以直接進行分裂。

陳振輝表示,一開始見到表皮細胞的數量增加時,直覺也認為是下層幹細胞產生的新細胞,可是連續追蹤後卻發現不是這麼回事。由於他的技術可以對斑馬魚身上 2,000 到 3,000 顆皮膚細胞進行同時監測,才意外察覺到上層已分化的細胞竟然會不用複製遺傳物質,就直接分裂成兩顆,甚至是四顆細胞!

-----廣告,請繼續往下閱讀-----
陳振輝團隊觀察到斑馬魚表皮上層已分化的細胞可以不用複製遺傳物質,直接分裂成兩顆,甚至是四顆細胞。影/陳振輝

顛覆認知:不用合成 DNA 的細胞分裂

外行人聽起來好像沒什麼,上述發現其實開拓了細胞分裂研究的新領域。精子和卵子這類生殖細胞(germline cell),在複製遺傳物質以後會經過 2 次分裂,形成 4 顆細胞,也就是減數分裂(meiosis)。構成身體的體細胞(somatic cell)則會先複製內部的遺傳物質,再分裂 1 次成兩顆細胞,稱為有絲分裂(mitosis)。

還有較少見的狀況,如 DNA 複製後細胞不分裂,變成多套遺傳物質的 1 顆細胞(endoreplication);或是多個細胞融合在一起,成為 1 顆多核細胞(cell-cell fusion,例如骨骼肌細胞)。

然而不管怎麼分裂,過去研究沒有發現不用複製 DNA 就能分裂的細胞!正常細胞分裂的過程有許多監控機制,如果細胞的遺傳物質沒有完整複製,一般情況細胞應該會啟動相關的監控機制,阻止分裂過程的進行。癌症細胞不受控制的分裂,就是相關機制沒有正常運作。

斑馬魚表皮細胞竟然能在沒有複製遺傳物質的情況下,避免細胞凋亡的命運,持續分裂,是一個很特別的例外。

斑馬魚從仔魚到成魚的發育過程中,表皮細胞可以在沒有複製遺傳物質的情況下持續分裂。圖/研之有物

論文投稿到《自然》期刊後,四位同儕審查者一致給予正面評價,但是顛覆認知的新發現仍受到不少質疑,需要陳振輝團隊進行許多額外的實驗來回答。

-----廣告,請繼續往下閱讀-----

有沒有觀察失誤的可能?

陳振輝團隊同時標記下層、上層的細胞,證實進行分裂的細胞確實位於上層。為了證明遺傳物質沒有複製,他們進一步測量細胞內 DNA 的量,包覆 DNA 的組蛋白(histone)的量,以及施加阻止 DNA 複製的藥劑。

結果顯示分裂後的細胞,遺傳物質的含量確實有等比下降,分裂過程不受阻止 DNA 複製藥劑的影響。顯然細胞沒有合成新的 DNA 就直接分開,陳振輝稱之為「無合成分裂」(asynthetic fission)。

所以,究竟是怎麼分裂的?

顯微鏡下看來似乎沒有一定的章法,有些表皮細胞會分裂 2 次成 4 顆細胞,有些分裂 1 次成 2 顆細胞,還有些不會分裂,維持 1 顆細胞;也發現有少數細胞可以逆轉分裂過程,形成雙核細胞。

陳振輝團隊現有的研究技術,尚無法辨明胞器的分配,以及每一條染色體的分配模式;團隊預計使用單細胞定序(single cell DNA sequencing),在無合成分裂後,分別定序每一顆細胞分配到的染色體組成,以釐清細胞的遺傳物質是否有特定的拆分方式。

-----廣告,請繼續往下閱讀-----
斑馬魚表皮上的無合成分裂(影片箭頭處),還有很多細節尚待研究。陳振輝團隊預計要釐清在無合成分裂之後,細胞的遺傳物質是否有特定的拆分方式。影/陳振輝

一切都是為了節省資源!努力長大的表皮細胞

無合成分裂對斑馬魚有什麼意義呢?斑馬魚由受精卵孵化後,仔魚在前 8 天不用吃東西,成長速度緩慢;第 8 天起開始進食,體型也像吹氣球般迅速膨脹,第 14 天時成長速度達到最快。觀察發現從第 8 天 到 21 天,皮膚細胞會發生無合成分裂,團隊推測此一分裂現象與身體表面積的快速延展息息相關。

斑馬魚的仔魚從受精卵孵化之後的第 8 天到第 21 天,表皮細胞會發生無合成分裂,陳振輝團隊推測此一分裂現象與身體表面積的快速延展息息相關。
圖/研之有物(資料來源/Nature

僅管省略掉複製遺傳物質的階段,細胞進行無合成分裂所花費的時間,卻比一般細胞分裂稍慢,所以其優點並非單純的縮短時間,應該是節省資源。斑馬魚仔魚身體的表面積在特定時間迅速增加,體表需要皮膚細胞的完整覆蓋,團隊發現細胞進行 1 次無合成分裂,表面積能增加 26%,兩次能達到 59%,這些細胞能在斑馬魚體表存活 2 到 3 週的時間。

陳振輝團隊發現,斑馬魚表皮細胞進行 1 次無合成分裂,表面積能增加 26%,兩次則能增加到 59%,這些細胞能在斑馬魚體表存活 2 到 3 週的時間。
圖/研之有物(資料來源/陳振輝)

斑馬魚如何啟動無合成分裂呢?目前仍不太清楚,團隊發現其過程受到表面張力變化的影響。皮膚細胞有感應張力變化的特定離子通道,利用藥物影響這些離子通道的活性,無合成分裂也會受到影響,詳細作用機制仍有待更多的研究。

生活數量的密度也會影響斑馬魚長大

另一項十分有趣的發現是,無合成分裂和仔魚生活的密度有關。斑馬魚從仔魚長到成體,最終的體型都差不多,但是生長過程則有很大的差異,個體成長速度有快有慢。假如將許多仔魚養在一起,處於高密度的生活環境,個別仔魚的生長速度會較慢。

-----廣告,請繼續往下閱讀-----

奇妙的是,一旦換到低密度的環境,仔魚的成長速度會瞬間暴增,體表面積快速增加又要維持皮膚細胞的完整覆蓋,會導致更多的無合成分裂。斑馬魚如何感知、在生理上反應周遭環境鄰居密度的變化,是另一個有趣的研究方向。

斑馬魚若處於高密度的生活環境,仔魚的生長速度會較慢。奇妙的是,一旦換到低密度的環境,仔魚的成長速度會瞬間暴增,體表面積快速增加,導致更多的無合成分裂。圖/研之有物(資料來源/陳振輝)

進行無合成分裂的細胞缺乏完整的遺傳物質,還能算是有生命的活細胞嗎?陳振輝提醒我們,多細胞生物的生理機能由各式各樣的細胞一起維持,某些特化的細胞還沒有細胞核。例如紅血球的成熟會經過脫核的過程,完全沒有細胞核的紅血球有重要的生理功能也可以存活超過 100 天。在斑馬魚體表進行無合成分裂的皮膚細胞,或許也有它們短暫卻不可或缺的使命。

有可能其它生物的細胞也會無合成分裂嗎?

無合成分裂目前只在斑馬魚表皮的發育過程中觀察到,其它細胞、其它生物、其它情境下是否也存在呢?事實上陳振輝自己也很好奇。

以人體來舉例,體表的皮膚,口腔內膜、消化道組織,時時刻刻都需要大量的表皮細胞覆蓋,而且耗損甚鉅,有不斷補充的需求。這些必須持續維持完整覆蓋表面的情境,或許無合成分裂也參與在其中。

-----廣告,請繼續往下閱讀-----

然而,無合成分裂不容易在活體動物直接觀察。例如小鼠的模式,就算能引進三原色調色盤的細胞標誌技術,也不像斑馬魚仔魚那般透明容易拍照。話說回來,知道某個現象有可能發生,就是發現的第一步。假如其它細胞或是生物也存在無合成分裂,在陳振輝團隊邁出第一步以後,未來一定有人能克服相關的技術門檻來進行研究。

發現斑馬魚表皮細胞的無合成分裂,像是開啟一扇新的大門,可以通往過去想像不到的研究方向。會有醫學應用的可能嗎?像癌症是細胞的不正常分裂,任何細胞分裂機制的基礎研究,應該有機會對癌症的治療有所啟發。陳振輝同意這是潛在的研究方向之一,但是他也強調從基礎研究到醫學應用,是很漫長的一段路,科學家能做的就是一步一步踏實前進。

對沒預期的發現保持警覺,在探索過程中充分滿足自己的好奇心,將支持陳振輝持續前進,挑戰下一個研究課題。

對沒預期的發現保持警覺,在探索過程中充分滿足自己的好奇心,將支持陳振輝持續前進,挑戰下一個研究課題。圖/研之有物
研之有物│中央研究院_96
290 篇文章 ・ 3283 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

6
5

文字

分享

1
6
5
第三種細胞分裂方式「無合成分裂」背後的發現之旅——《科學月刊》
科學月刊_96
・2022/09/03 ・4233字 ・閱讀時間約 8 分鐘

  • 採訪編輯/張樂妍|本刊編輯

Take Home Message

  • 由於想繪製出再生藍圖的想法,陳振輝踏上以多顏色標誌技術解構再生過程細胞行為的研究旅程。
  • 12 年間他面對各項挑戰,而實驗中一次意外的發現,竟在後來成為突破性的研究,發表在《自然》(Nature)期刊。
  • 陳振輝分享自己一路上所領悟的研究精神,強調科學家不會失敗、有自己的觀點、專心做一件自己覺得好玩的事情,還要勇於妄想。

實驗室的顯微鏡底下,銳利的刀片輕劃過魚尾組織,精確地切除斑馬魚尾鰭固定的面積。但不過一陣子,許多細胞就會開始在傷口邊緣快速移動、增生、修復傷口,數天後完整再生全新的尾鰭組織。

這是斑馬魚(Danio rerio)的再生實驗。為了找出與再生能力調控有關的基因,這隻斑馬魚身上有隨機誘發的突變基因,如果尾鰭的再生出現問題,就可以回頭尋找突變點發生的位置及它所影響的基因。然而,突變發生在相關基因的機率非常低,想找到「再生基因」得全憑運氣。

12 年前,在美國杜克大學(Duke University)生物學家波斯(Ken Poss)實驗室的陳振輝,每一天都重複這項實驗,有時候一天要切上 1000 多條斑馬魚。

蓋房子絕不能缺少藍圖,而細胞再生也是!

因為需要長時間在顯微鏡下觀察再生的過程,陳振輝對於再生從無到有的發生過程感受極深,他覺得「再生」在細胞的層級中,其實和蓋房子很像。

-----廣告,請繼續往下閱讀-----

「你覺得蓋房子最重要的是什麼?」

他認為蓋房子最重要的,是一張詳細的設計藍圖。有了設計藍圖,才可以知道每一層樓需要多少建材,要從何處開始建蓋,水管和電路要如何設計安排;就如同再生過程中,各式各樣不同的細胞,一定也依循著某種既定的藍圖移動、增生,最後建構出型態、功能完整的複雜組織。

如果可以即時、完整記錄所有參與此過程中個別細胞的動態行為,是不是就可以畫出一張最詳細的再生藍圖?某天就可以在人類身上把這個叫做「再生的房子」蓋起來?

陳振輝當時有個簡單的想法:多顏色細胞標誌技術(Brainbow)[註]可以提供很特別的機會,即時解構每一顆細胞在再生過程中扮演的角色,釐清複雜組織如何完整恢復的過程,以及它的調控機制。

只不過要將這個簡單的想法實現並不容易,小小尾鰭的再生其實有上萬個不同種類的細胞 (比如皮膚細胞、骨骼細胞、神經細胞) 參與在其中。面對許多技術層面上的挑戰,一晃眼就是五年。

-----廣告,請繼續往下閱讀-----
  • 註:利用隨機表現三個不同顏色的螢光蛋白(紅、藍、綠),當三種螢光蛋白表現不同的比例,可以產生更多額外的顏色來標誌不同細胞。在理想的實驗條件下,有機會產生上百種不同顏色來標誌有興趣的細胞種類。由於此技術第一次的應用對象是腦神經細胞,因此被命名為 Brainbow(brain + rainbow)。

最適合的模式生物——斑馬魚

「當你在一個研究題目或技術上專注了多年的時間,通常這個過程會反過來改變你這個人和你看問題的觀點。」

在 2016 年,陳振輝結合三種實驗技術——多顏色細胞標誌技術、活體長時間追蹤、大尺度定量分析——首次達到在再生過程中即時、同時追蹤所有皮膚細胞的動態行為,並將此技術另名為「Skinbow」。

以「Skinbow」技術標誌斑馬魚的皮膚表皮細胞,藉由個別的表皮細胞具有不同的顏色,可以長時間追蹤、觀察組織再生的過程。圖/陳振輝提供

這項初步的研究成果帶給陳振輝一些啟發。第一,Brainbow 的應用門檻高,許多細節須注意;第二,要結合上述三種不同的實驗技術,只有斑馬魚這個模式生物最適合;第三,全世界或許只有長時間跟這些技術奮戰的自己最適合這個研究方向。不過在恍然大悟的陳振輝面前,還有許多現實層面的挑戰等待著他。

彩色斑馬魚的實驗若要繼續進行,需要大規模的飼養空間、專屬客製化的影像設備,以及能看到此一研究方向潛力而願意全力支持的學術機構。很幸運地,中央研究院細胞與個體生物學研究所的謝道時前所長提供他最適合的環境。當陳振輝以為所有研究工具都到位的情況下,卻又馬上遇到下一道挑戰。

意外發現第三種細胞分裂方式

在探索表皮幹細胞行為的過程中,陳振輝和博士班研究生陳潔盈意外發現到表皮已分化的上皮細胞竟然會持續分裂,而且這些分裂的細胞不會在過程中複製 DNA。由於目前已知的有絲分裂和減數分裂過程中都包含複製 DNA 的步驟,因此他們觀察到的細胞分裂過程並不屬於任何一種。

-----廣告,請繼續往下閱讀-----

「當下不會去思考這是不是第三種的細胞分裂方式。」陳振輝表示,看見與教科書完全不同的發現,就像是突然看到外星人在地球出現一樣讓人難以置信。要推翻過去多年來學界認定的現象,對科學研究者來說是充滿挑戰的。一方面若是能發現一個全新的生物現象,可以開創新的研究領域,是讓人興奮的一刻;但另一方面也有到頭來一場空的風險。

在四年多的時間裡,研究團隊持續觀察與試驗,發現斑馬魚幼魚在特定的發育階段生長快速,表皮下層的表皮幹細胞以有絲分裂增生,但上層已分化的表皮細胞,不需要 DNA 複製就可以直接分裂產生四個子細胞,是一個有效率延展體表面積的細胞機制。研究團隊將觀察到的現象定義為一種新的細胞分裂方式,終於,他們在 2020 年 12 月將成果投稿到《自然》(Nature)期刊。

但此時,嚴重特殊傳染性肺炎(COVID-19)疫情突然在英國升溫,使得研究團隊時隔兩個月才收到期刊的第一次審稿意見。好不容易收到的回覆,內容卻是四個審稿員多達 60 幾道問題,需要一一詳細解釋。

經過來來回回的審查、修改、補充數據之後,終於在今(2022)年 5 月,第三種細胞分裂方式——無合成分裂(asynthetic fission),正式發表在《自然》期刊中,讓全世界見證這項挑戰學界對基礎生命現象了解的發現。

-----廣告,請繼續往下閱讀-----

科學家就是要不斷挑戰、勇敢前進

如果讀者從一篇新聞去看科學家光鮮亮麗的發表,其實很難看見研究團隊背後付出了多少血汗(有時還會加上淚)。陳振輝的斑馬魚細胞再生研究已經走了 12 年,路途上充滿一次又一次的峰迴路轉。

所以,科學家都是怎麼想「發現的過程」呢?

  • 研究的路上不會失敗

科學研究從來不是一條直線,從「觀察」到「發現」的過程總是曲折、充滿挑戰、沒有捷徑,而且無一例外,但是科學家不會擔心失敗。因為他們相信自己不會失敗——因為科學家不是剛剛克服完前一個挑戰,就是在往下一個挑戰前進的路上

陳振輝表示,科學研究從來都不是一條直線的道路,從觀察到發現的過程有 90% 的時間都在面對挑戰、解決問題。圖/陳振輝提供
  • 要有自己的觀點

克服挑戰的過程要相信自己,但是也不可以盲目地前進,一定要有自己獨特的觀點。大部分領域裡的科學家都專注在觀察細胞的微構造,陳振輝因為一直很想繪製再生藍圖而有了不同的研究方向:在公分等級觀察細胞的集體行為。

「珍奇異獸通常都躲在人煙稀少的地方!」

也因為這個特別的觀點,陳振輝才有機會可以發現無合成分裂的生理意義。

-----廣告,請繼續往下閱讀-----
  • 專心地做一件好玩的事

陳振輝每個禮拜天都在實驗室餵魚,餵魚的時候都會回想到生命中一些特別的時刻,像是第一次拍到 Skinbow 影像的當下。記得當時自己只有一個簡單的想法:「我想讓斑馬魚身上的每一個細胞都變成這樣!」因為科學家都在專心地做一件自己覺得好玩的事情,他們才能一直堅持下去。

「因為發自內心覺得很好玩,所以才會想盡辦法,讓學生、助理、期刊編輯和審稿員都覺得好玩!」

  • 勇敢去妄想

最後、也是最重要的一件事,要知道自己的妄想是什麼。

「妄想」(delusion)和「夢想」(dream)不一樣,它可以支撐我們走過最痛苦、掙扎的時刻。他以各種人物作比喻:「就像《灌籃高手》裡面的赤木,即使再打下去腳會斷掉、再也不能走路,他還是要上場打球,只因他想『稱霸全國』;還有中研院的廖俊智院長,每一次演講都會提到要『阻止全球暖化』的決心;而我自己的妄想,就是繪製『最完整的再生藍圖』。有了妄想,才會不計代價且樂在其中。」

「請問你的妄想是什麼呢?」陳振輝問道。

努力不如預期?換個角度看事情吧!

陳振輝鼓勵所有正在路途上努力的人,不論是實驗結果不如預期、難以解釋,或是論文被拒絕,又或是個人心情低迷、團隊士氣低落時,都可以用 wow 這個字來轉換看事情的角度。

-----廣告,請繼續往下閱讀-----
  • 表皮幹細胞的實驗結果不如預期怎麼辦?
    → Wow!那去看看以分化的表皮細胞在做什麼搞不好更有趣!
  • 看到不符合已知觀念的細胞分裂模式,沒辦法解釋實驗結果!
    → Wow!它們不會複製 DNA!實在太酷了!
  • 實驗室的士氣好低落…… 
    → Wow!難道你會是發現第三種細胞分裂的人嗎?
  • 論文通通被期刊拒絕了……  
    → Wow!《細胞》(Cell)跟《科學》(Science)都不接受,難道是在叫我們去試《自然》(Nature)嗎?

無合成分裂的意外發現,只是研究工作長遠路途的一隅。背後的調控機制尚有待更多的研究,而這種分裂方式是否會發生在皮膚細胞之外的其他細胞、組織,甚至不同的物種上?讓人充滿想像。

顛覆想像的意外發現,除了是再生機制裡一小塊缺失的拼圖,或許也會有機會影響其它領域,像是癌症 (不正常的細胞分裂) 或是傷口癒合 (加速的細胞分裂) 等研究。

抱持樂觀、對意外發現充滿好奇與熱忱的態度,陳振輝將與研究團隊繼續向繪製「全彩再生藍圖」的道路上前進。

2022「中研講堂」宜蘭場

本文感謝陳振輝研究員協助校稿,提供圖片及精彩的演講內容。

  • 〈本文選自《科學月刊》2022 年 9 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Chen, C.H., et al. (2016). Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Developmental Cell, 36, 668–680.
  2. Chan, K.Y., et al. (2022). Skin cells undergo asynthetic fission to expand body surfaces in zebrafish. Nature, 605, 119–125.
所有討論 1
科學月刊_96
249 篇文章 ・ 3365 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。