0

4
1

文字

分享

0
4
1

想研究再生又沒有金剛狼,幸好我們還有斑馬魚!

科技大觀園_96
・2021/07/03 ・2779字 ・閱讀時間約 5 分鐘

手指斷了可以再生嗎?科學家正在從斑馬魚的再生能力尋找解答。圖/fatcat11 繪

我們該怎麼研究金鋼狼的再生能力?一般人的想法或許是:詳細解剖金鋼狼。不過更實際的策略其實是:養很多很多金鋼狼,看看誰的再生能力出現問題,再從他下手!

用斑馬魚研究再生

陳振輝的研究領域是「再生」,作為中央研究院細胞與個體生物學研究所(中研院細生所)的成員,其研究團隊目前有數個有趣的題目正在進行,其中「斑馬魚尾鰭的再生」率先問世。

陳振輝在博士後研究時,研發出標記與追蹤細胞的「Skinbow」技術,登上《Developmental Cell》期刊封面。圖/劉馨香攝

再生為什麼值得研究?和遺傳、發育、生理、免疫等領域相比,人們對再生的認識仍然不多,學術上有許多深入開拓的空間。另外再生研究也有具體的應用價值:人類壽命大幅增長後,癌症、心臟病、老化成為主要的健康問題,增廣再生的知識,有助於對抗老化、退化,增進生活品質。 做研究,材料很重要,這就是選擇斑馬魚的原因。

為了方便實驗進行,多數基礎研究都圍繞在幾種科學社群精心建立的「模式生物」(model organism)上,然而,常用的模式動物,如果蠅、線蟲、小鼠,卻不太有再生能力,不適合用於研究再生;相比之下,斑馬魚擁有十分全面的再生能力,不只鰭與皮肉能再生,甚至遭受脊椎、大腦受損的重傷害,一段時間以後照樣可以再生、恢復正常生活。

-----廣告,請繼續往下閱讀-----
斑馬魚房的一角。自己的實驗動物自己養!中研院細生所提供充足的基礎設備支援。圖/劉馨香攝

陳振輝是勇於踏出舒適圈的探險家,他在博士後研究時才轉換跑道,投入美國杜克大學的 Ken Poss 門下,與尚在起步階段的斑馬魚再生領域一同成長。一番歷練以後,他帶著新研發的技術與創意回到台灣,開始大展身手,而尾鰭再生是他完成的第一項研究計畫。

再生是重要的問題,斑馬魚是好用的研究工具,但是尾鰭乍看不太起眼,為何探討尾鰭的再生呢?主因是觀察尾鰭再生的過程相對容易。尾鰭由皮膚、血管、神經等不同種細胞組成,構造夠複雜卻又不會太過複雜,切掉多少面積,再生長回來多少、多快,都可以精確地量化。選擇較為單純的身體外部器官來研究再生反應,有助於釐清調控再生過程的複雜機制。

用正向遺傳學,尋找失去正常再生能力的突變種

從突變的異常樣本著手,比較它和正常個體之間的不同,抓出關鍵的差異,這就是「養很多很多金鋼狼,看看誰的再生能力出現問題,再從他下手!」的道理,又稱作「正向遺傳學」(forward genetics)。

概念說來簡單,但是光是尋找在誘發突變後,表徵可以穩定遺傳的突變品系,就需要耗時兩到三年;順利找到後又要花費同樣久的時間,確定突變點發生的位置,努力加上運氣,一共經過五到六年,才有我們如今在論文中見到的成果。 

-----廣告,請繼續往下閱讀-----
採取正向遺傳學的策略,篩選失去正常再生能力、且其表徵可以穩定遺傳的突變品系,最後進一步找到具體的基因。圖/沈佩泠繪,資料來源:寒波

動物身上每一個細胞的基因組都是一樣的,透過調控不同的基因表現,卻能產生各式變化。具備再生能力的動物,細胞中儲存了一套復活的遺傳「記憶」,如同電腦的重開機程式一般,有需求的時候就會啟動。尾鰭再生的過程中有許多基因牽涉其中,重要的基因倘若失去作用,尾鰭會喪失再生能力,了解哪些基因是「再生基因」?這些基因如何影響再生?是陳振輝實驗室努力的方向。 

經由這個研究方法,陳振輝與其研究團隊,發現有個基因 pola2 ,其表現活性竟然可以影響尾鰭再生後的形狀或大小!也就是說,指引尾鰭重建的「再生記憶」其實也可以改變。

超過五億年,指引再生的動物方程式

原本以為按部就班,一成不變的再生過程,人為介入後卻可以改變再生的結果。累積更多這方面的知識後,是不是有反過來應用的機會:讓原本不會再生的組織也能重新生長呢?比方說,手指被夾斷是常見的職業傷害,假如能讓斷掉的手指再生,將是多麼實際的用途! 

當然,離那一天仍然遙遠,不過這類想像卻不是癡人說夢。陳振輝的研究工具不侷限於斑馬魚,為求了解找到的機制是否只是斑馬魚的特例,他與細生所的同事游智凱與蘇怡璇合作,發現另外兩種具有再生能力的動物:文昌魚和水蚯蚓,在「再生記憶」的調控上也具備類似的機制。

-----廣告,請繼續往下閱讀-----
人類、斑馬魚、文昌魚、水蚯蚓的親戚關係。這些動物在五億年前有共同祖先。圖/沈佩泠繪,資料來源:寒波

文昌魚、水蚯蚓和斑馬魚,如今是差異很大的動物,演化上的共同祖先能追溯到超過五億年前;然而,它們依舊保有類似的機制維持再生記憶,表示這是一套非常遠古的調控之道。而人類也身為可再生動物的後裔,儘管早已喪失大部分的再生能力,或許仍存在一絲潛力,只待我們找到激活的辦法。

跨領域合作,挑戰再生經典難題

上述研究聽起來很有趣嗎?其實這只是陳振輝實驗室許多研究主題之一,再生研究的領域還有許多基礎問題等待回答。

應用「Skinbow」技術所產生的斑馬魚。利用此技術,準確掌握細胞行蹤,有機會繪製完整的「再生藍圖」。圖/陳振輝提供

陳振輝利用博士後研究時研發的「Skinbow」技術,精確標記細胞,追蹤再生時詳細的變化過程,是進一步探討不同題材的基礎。此外,中研院也有多元的人才庫,有需求時能發出穿雲箭,尋訪其他領域的專家合作。 

例如再生過程中有一個普遍的現象:「受傷愈重,再生愈快」。像是蠑螈有再生能力,切掉一隻手或一支手指都會再生,可是失去兩者後傷勢不同,長回來的時間卻是一樣。此一至今仍然無解的有趣現象,在陳振輝與中研院物理所、化學所的同儕一同努力之下,似乎已經見到曙光,而且真相令人非常驚喜。至於詳情如何,目前先賣關子,還請各位讀者耐心等待。 

-----廣告,請繼續往下閱讀-----

成為世界上第一個知道這件事的人,這就是做研究最大的樂趣啊!

參考資料

  1. Chen, C. H., Puliafito, A., Cox, B. D., Primo, L., Fang, Y., Di Talia, S., & Poss, K. D. (2016). Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Developmental cell, 36(6), 668-680.
  2. Wang, Y. T., Tseng, T. L., Kuo, Y. C., Yu, J. K., Su, Y. H., Poss, K. D., & Chen, C. H. (2019). Genetic Reprogramming of Positional Memory in a Regenerating Appendage. Current Biology, 29(24), 4193-4207.e4. 
-----廣告,請繼續往下閱讀-----
文章難易度
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
誠實面對人類參與的「自然」——太田欽也專訪
顯微觀點_96
・2024/07/11 ・3228字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

斑馬魚是最知名的模式生物之一,其基因、型態與發育深受了解,並用於探討深度同源等重要演化生物學問題。但也有科學家提出,演化生物學該持續隨環境演進,並嘗試以新的實驗物種——金魚——探討人類世(Anthropocene)環境下的生物演化。

育種歷史與基因巧合 奠定金魚的演化生物學價值

例如有千年馴化歷史、型態千變萬化的金魚,就相當適合探討人類因素與生物型態演化的關聯。

中研院細生所派駐臨海研究站的演化與發育生物學家太田欽也指出,斑馬魚與金魚兩者的胚胎都可以透過顯微鏡仔細觀察,相對於受精一年後才成熟的金魚,斑馬魚有成熟較快,基因組較為單純等優點,也具備許多現成基因研究工具。

-----廣告,請繼續往下閱讀-----

但斑馬品系間仍以其生理機能與基因為主要差別,對型態差異的演化並未那麼明顯。因為,科學家為了操作基因與細胞特徵而培育斑馬魚,使不同品系的差異大多來自目標明確的基因工程。

金魚型態演化圖。Courtesy of Kinya Ota and Gembu Abe

而金魚的型態變異,則完全來自飼養者對型態的偏好和育種,蘊藏更多元的型態變化與發育差異。其悠長的馴養歷史以及更古老的基因重複(Gene Duplication)機遇,使其值得成為演化發育生物學的新模式生物。研究器材和方法上的調整,則是生物學家展現才智的機會。

太田欽也舉例,「一般的解剖顯微鏡工作距離適合觀察和操作斑馬魚,但是經過我們自己的創意,也改裝出可以對金魚進行顯微手術的器具和適合拍攝的大型解剖顯微鏡。設備上的差異並不難克服。」

金魚胚胎的發育生物學優勢

太田欽也說,現代生物學家以果蠅和微生物育種進行遺傳與演化實驗,擴大時間維度來看,千年來金魚愛好者挑選、強化金魚外觀特徵的過程,可以比擬長時間的人擇實驗。

金魚不僅適合用來觀察人擇壓力如何影響成年生物的型態。太田欽也更想進一步探索,從胚胎階段的差異進行選擇,是否可能改變生物的型態。

-----廣告,請繼續往下閱讀-----

太田欽也提到,人工育種對發育與型態的影響力也展現在其他物種上,例如家犬與鴿子也被培育出許多特殊表型。但是哺乳動物和鳥類的胚胎觀察不易,需要相當高的技術與成本。

相對於動物子宮與鳥類蛋殼內的胚胎,在透明卵囊中發育的半透明金魚胚胎,就是非常容易觀察的研究對象。只要有恰當的複式顯微鏡、解剖顯微鏡和顯微手術能力,金魚的胚胎從受精到孵化都可以全程順利紀錄,而且每次繁殖可以蒐集到上百筆資料。

現代顯微攝影技術搭配容易觀察的金魚胚胎,讓太田欽也可以拍攝清晰影片,在網路上生動地分享發育生物學知識。攝影:楊雅棠

自製影片 盼演化生物學跨過學院圍牆

除了將金魚研究成果發表在 Nature 等科學期刊,太田欽也同時努力當起「Youtuber」。他希望能將演化發育生物學、金魚飼育經驗、臨海研究站的學術特色,甚至是宜蘭的風光,透過網路傳達給大眾。

武漢肺炎導致的漫長隔離,是他學習影音製作的契機。最初他在百無聊賴之下看了大量影片,後來逐漸萌發「我也要拍自己的題材!」的企圖心。開始搜尋拍攝、後製、配樂等網路教學,在隔離的單人房中逐漸進步。

-----廣告,請繼續往下閱讀-----

太田欽也說,拍攝影片最重要的動機是「分享」。他解釋,「科學的頻道不管累積再多追蹤者,例如數十萬人追蹤的 Nature, Science, 觀眾也以科學領域工作者為主。現代知識逐漸朝向『專家』與『外人』的兩極化狀態發展,我不喜歡這樣的社會。」

如同他推進學術研究的方法,他也透過自學、自己組裝基礎設備如空拍機、手機等,在節省開支的情況下拍出了中研院同僚為之驚艷的影片。

太田欽也為臨海研究站拍攝的簡介影片,基本款空拍機呈現了頭城的舒暢美景。

在早已開始的人類世 何謂自然?

太田欽也熱衷以空拍影片介紹宜蘭的郊野與人文,但他對主流輿論的「自然環境」內涵存疑,他認為「自然」早已被人類行為大幅改變。自從農業擴張、工業革命發生,人類對環境與生物的改變程度早已無法恢復「自然原貌」。

他以金魚的馴化過程為例,從宋朝開始的愛好者,透過育種極力凸顯特殊形態,從沒有背鰭的「蛋種」,到眼周水泡足以遮蔽視線的「水泡眼」。都不是基於適應「自然」而進行的育種。

-----廣告,請繼續往下閱讀-----

太田欽也強調,「如果是宋朝或明朝人有今天的生物學工具,以他們的追求珍奇的育種態度,一定會用 CRISPR 編輯金魚基因,製造出更奇特的變異型態。」

他說,這樣的行為會在現代科學圈與社會輿論上遭到反對,「認為動物被修改基因、型態變異很可憐」,但人類採用動物進行藥物實驗或經濟用途時,也並未優先考慮「自然原則」。

太田欽也反問,「若是透過基因編輯技術將金魚修改回類似野生鯽魚的型態,更適應野外環境,這樣算是自然或不自然呢?」

建立科技倫理 而非堅守「自然」想像

他指出,金魚的馴化與育種反映著東亞社會的自然觀念,不同於西方基督教倫理的「人統御、保護自然」意識形態。可以促進人們反思,人類也身在其中的「自然」的標準是什麼?而非執著於保護想像中的自然「原狀」。

太田欽也強調,「本質化『自然』、建構一個保守不變的形象,不會幫助人們了解生物學。」

他認為,宋朝人、明朝人的自然觀念與今日不同;甚至現代人常引用的「道法自然」倡議者老子,他所提倡的自然,與現代許多人想像、意圖恢復的也是不同的自然。

背鰭退化、尾鰭倍增的蛋種雙尾金魚,是古代貴族最青眼有加的奇特型態之一。作者:清 馬文麟 來源:國立故宮博物院

太田欽也建言,科學地面對人類因素影響世界各地生態的現實、建立基因科技的社會倫理與規範,都是比恢復建構出的「自然」意象更重要的生物學議題。

-----廣告,請繼續往下閱讀-----

來自日本和歌山縣鄉間的太田欽也說,長期駐守宜蘭頭城的臨海研究站不僅是因為設施與職位,也是因為此處環境與故鄉有幾分神似。

「但我不會說這兩個地方都很『自然』,在人們對我說『這裡很自然!』的時候。」太田欽也無奈地笑說,「想到周遭可以釣起吳郭魚的溪流、被整治疏濬成田園的原洪氾濕地,反而會讓我很疑惑彼此對『自然』的共識。」

1995 年諾貝爾化學獎得主克魯岑(Paul Crutzen)指出,現代已是由人類行為影響地質特性的人類世。此概念引起地質科學界激烈討論,從新石器時代、工業革命到核彈試爆頻繁的 1960 年代都有學者認為是人類世的開端。

最後由國際地層委員會的人類世工作小組投票決定,視第二次世界大戰後、人口與人類活動高速成長的20世紀中葉為人類世起點。

查看原始文章

參考資料

  1. Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn. 2019 Apr;248(4):251-283.
  2. Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun. 2014 Feb 25;5:3360.
  3. 太田欽也實驗室
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
18 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
左看右看 貓頭鷹、寶石竟是斑馬魚
顯微觀點_96
・2024/03/28 ・1870字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

乍看以為是寶石結晶的斑馬魚肌纖維、如竹林屏風般的斑馬魚尾鰭,到似貓頭鷹的斑馬魚鏡像圖以及充滿生命力大樹般的斑馬魚神經樹突,每一幅影像都以斑馬魚為題,卻拍出不同的趣味。

本次 Taiwan 顯微攝影競賽八名優選獎中,就有四位得獎者是中研院細胞與個體生物學研究所陳振輝老師的學生。這些拍出技術與美感兼具作品的研究者,分別為 Uday Kumar、Marco De Leon、陳樂融和劉昱秀。

其中, 來自印度的 Uday Kumar 參加第一屆顯微攝影競賽至今,年年獲獎,更榮獲首屆金獎。而他的同儕,來自菲律賓的 Marco De Leon 也因受到他的啟發參賽,於今年獲得優選。

-----廣告,請繼續往下閱讀-----

陳振輝老師實驗室主要以斑馬魚為樣本進行再生研究。他的學生們各自探索斑馬魚的不同組織或器官;有人專精於研究心臟、有人專門研究神經,有人則專門研究肌肉纖維。

Gems And Maturity Marco Pomida De Leon
Gems And Maturity Marco Pomida De Leon
生命之樹 劉昱秀

Uday Kumar 表示,由於每個人研究的方向不同,因此必須從基因工程到成長過程,各自「顧好」自己的斑馬魚。

這些攸關研究進度與實驗設計的斑馬魚,養殖在細生所地下室的魚房。數十個排列整齊畫一的魚缸,裡頭有著各式大小、不同生長階段和品系的斑馬魚。

為了能夠取卵進行基因轉殖,從養殖器皿到時間都必須加以控制。Uday Kumar 表示,除了一般魚缸外,養殖斑馬魚會再裝置一個多孔的產卵盒。晚上將公魚和母魚用隔板隔開,並保持環境黑暗,避免交配產卵。

-----廣告,請繼續往下閱讀-----

等到隔天上午將隔板拿掉,讓公魚、母魚相會,並利用光周期誘發產卵、受精後,必須將特製的產卵盒斜置,好讓受精卵下沉到魚缸底部。如此一來,也可避免斑馬魚將受精卵吃掉。

陳振輝老師實驗室專注於「多顏色細胞標誌技術」(Brainbow/Skinbow)。利用基因重組的方式,將紅、藍、綠三種不同色的螢光蛋白在個別細胞裡表現不同數量,依不同比例產生更多顏色來標誌不同細胞。

Uday Kumar 表示,要將目標基因注入細胞內,需要使用顯微注射技術,在立體顯微鏡下將注射管準確地插入受精卵中。

不過這對他來說,顯微注射已經是一件熟練到「像騎腳踏車」般簡單的事,一天注射超過 500 顆受精卵都沒問題。

-----廣告,請繼續往下閱讀-----

雖然基因轉殖對這些研究者來說已是熟能生巧的事,但要建立新的基因轉殖魚仍然要花上漫長的時間,通常需要 6 個月到一年,品系才會逐漸穩定。以 Uday Kumar 於 2021 年獲得金獎的作品來說,就是花了兩年才培育出能以正確比例呈現美麗色彩的斑馬魚。

顯微攝影的每一幅作品除了呈現出精彩美麗的影像外,背後更蘊含著每一位研究者精湛的技術以及長久累積的研究心血。

583050
細生所地下室的魚房,有著各式大小、不同生長階段和品系的斑馬魚。攝影/楊雅棠
Uday Kumar使用立體顯微鏡。攝影/楊雅棠

斑馬魚小教室

斑馬魚(Danio rerio)是常見的模式生物之一,原分布於孟加拉、印度、巴基斯坦、緬甸、尼泊爾等南亞淡水流域。其體長約 3 至 4 公分,雄魚體修長且背部呈淺橄欖黃色,雌魚體渾圓腹部較彭大;適合生長溫度為 23 至 28℃。

斑馬魚胚胎透明、發育期間短,容易觀察;且屬於脊椎動物,與人類有相似器官如心血管、神經等,加上基因組序列已解開,基因轉殖容易,種種優點使得牠成為非常適合作為遺傳研究及藥物篩選的脊椎動物模式。

查看原始文章

參考資料

  1. 顯微鏡下一抹彩虹,陳振輝,《中央研究院週報》第 1610 期
  2. 臺灣斑馬魚中心——中研院分支介紹,黃聲蘋,《中央研究院週報》第 1360 期
  3. 心臟、尾鰭與脊椎,那些以斑馬魚進行的「再生」研究
  4. 「從動物身上問對問題,就可以找到答案!」陳振輝談斑馬魚的超強再生力
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
18 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。