0

0
1

文字

分享

0
0
1

沒有邁克生干涉儀,就沒有現代物理學和天文學——1907年諾貝爾物理奬

物理雙月刊_96
・2017/05/31 ・2659字 ・閱讀時間約 5 分鐘 ・SR值 546 ・八年級

-----廣告,請繼續往下閱讀-----

文/余海峯|馬克斯.普朗克地外物理研究所博士後研究員

1907 年的諾貝爾物理奬授予阿爾伯特.邁克生(Albert Michelson)。邁克生的得奬原因是他改良了干涉儀(interferometer),現在被稱為邁克生干涉儀(Michelson interferometer)。今天回望,我們完全可以說如果沒有邁克生干涉儀,就沒有現代物理學和天文學。

我們完全可以說如果沒有邁克生干涉儀,就沒有現代物理學和天文學。圖/By The original uploader was Bunzil at English Wikipedia, Public Domain, wikimedia commons

追上光的速度,才有現代科學

現代物理學,或者說整個現代科學,都是建基於對光速的準確測量。由於光速太快,在 19 世紀時人們不可能用普通方法去量度光速:站在很遠的距離,打開電筒然後計時,光速就是距離/時間了。可是,光速快到能一秒鐘由地球跑到月球。以當時的技術,實驗者恐怕得把光源帶到月球上才行!

幸好,伽利略早在 1610 年發現了木星的其中四粒衛星。木星的衛星運轉到木星後面的現象,叫做掩食。天文學家發現,木星掩食衛星的時間長度,在不同季節不同。如果光速是無限快的話,理應不會發生這個現象。這是因為從木星衛星出發的光線需要一段時間才能到達地球,而地球在這段時間內亦會繞太陽運行一段距離。如果地球的運行方向是向著木星的話,從木星衛星出發的光線走到地球的距離就會短一些,因此掩食時間就會短了;反之,如果地球的運行方向是背著木星的話,掩食時間就會長了。

-----廣告,請繼續往下閱讀-----

靠著測量不同月份木星掩食衛星的時間差,惠更斯(Christiaan Huygens)在 1690 年使用奧勒.羅默(Ole Rømer)在 1671 至 1677 年間的掩食觀測數據,首次計算出光速為大約秒速 22 萬公里,是現代測量數值的 75%。

羅默在 1676 年畫的圖解木衛掩食測量光速方法。地球在環繞太陽A運行的不同位置 E、F、G、H、L、K 觀察木星 B 遮掩其衛星(由 C 到 D)的不同時間長度,就能夠計算光線在宇宙空間傳播的速率。圖/By Ole Rømer, Public Domain, wikimedia commons

干涉儀能做什麼?它,抓得住光

除了天文觀測方法之外,其實在實驗室裡也能夠測量光速。例如使用一個旋轉的齒輪遮擋來回反射的光線,在特定的轉速下光線會剛好穿過齒輪的縫隙。只要知道齒輪的轉速、縫隙的間距和兩面反射鏡的距離,就可以計算出光速。另一個光法是測量真空電容率和真空磁導率,利用麥克斯韋波動方程,我們知道

光速 = 1/開方(真空電容率 × 真空磁導率)

邁克生從小就著迷於測量光速。他在 1870 年代開始改良干涉儀去測量光速,在 1883 年得出光速介乎秒速 299,793 至 299,913 公里。邁克生干涉儀故名思義利用波動干涉效應,測量非常小的距離變化。旋轉齒輪把量度速率變成比較容易量度的角速率以提高精確度,而邁克生採用的干涉儀靠反射來加長光線行走的距離,再量度光線的干涉(interference)程度。

-----廣告,請繼續往下閱讀-----
邁克生在 1881 年實驗中使用的干涉儀。圖/By w:Albert Abraham Michelson, Public Domain, wikimedia commons

干涉是波動的基本性質。波動有波峰和波谷。以水面的波浪為例,波峰是波浪的最高點、波谷是波浪的最低點,而連續兩個波峰或波谷的距離就叫做波長。干涉是指兩個波浪重疊在一起。兩個波峰重疊就會互相疊加、波峰和波谷重疊就會互相抵消,分別叫做建設性干涉(constructive interference)和摧毀性干涉(destructive interference)。

邁克生干涉儀是一個平台,平台中心有一塊半鍍銀的鏡子。邁克生把一束光線發射到台中心的鏡子,鏡子會把光束分為互相垂直的兩束光線,然後會各自被另一塊鏡子反射回來結合回一束光線。如果兩束光線行走的距離一樣,最後結合的光束就會發生建設性干涉。邁克生調整鏡子的距離,使兩束光線行走的距離差了半個波長,就會發生摧毀性干涉。量度這個調整的距離就知道波長,而如果知道使用的光的頻率,就能夠以波動速率等於波長乘以頻率算出光速。

找出光速,便能重新定義長度

準確測量光速對基礎物理學意義重大。長度是物理學的基本參數。長度單位「公尺」的標準一直靠放在巴黎的一根金屬棒。金屬棒的長度會因熱脹冷縮而改變,而如果金屬棒被破壞或不見了,就沒有辦法回復原本的定義。

在 1975 年,光速的測量誤差已變得小到不能再提升精確度,誤差來自原本定義公尺的金屬棒長度的不確定性。從此,長度反過來被光速定義:一公尺就是光在 1/299,792,458 秒內走過的距離;越來越精確地量度光速,就變成了越來越精確地量度一公尺的長度。

-----廣告,請繼續往下閱讀-----

邁克生的研究使長度單位不用再以實物去做標準。利用干涉儀,邁克生可以量度非常小的距離,連光的波長也能夠直接量度出來。邁克生亦使用干涉儀發現一些原本觀察到的光譜線其實是由一組幾條非常靠近的光譜線組成。干涉儀對例如原子結構和我們討論過的塞曼效應(1902 年諾貝爾物理獎)的研究有很大幫助。

相對論的見證者:否定以太假設,找到重力波

邁克生在 1887 年與愛德華.莫雷(Edward Morley)一起改良了邁克生干涉儀,試圖測量地球在以太之中的運行速度。以太是假設中光線的傳播介質。如果以太存在,那麼由於地球環繞太陽運行在一年不同時間的方向不同,會令干涉儀測量到不同的結果。可是,他們發現無論在何時何地進行實驗,干涉結果從不改變,因此就證明了以太並不存在。這個就是著名的邁克生-莫雷實驗(Michelson-Morley experiment)。

1887 年邁克生-莫雷實驗中使用的干涉儀。圖/By Case Western Reserve University, Public Domain, wikimedia commons

天文學測量亦因邁克生改良的干涉儀而變得非常精確。利用干涉,我們可以把兩支或以上的望遠鏡的觀測結合,效果就好像一個放大了的望遠鏡一樣。在今天,射電天文學家把位於不同大陸的射電望遠鏡的觀測以干涉技術結合,形成一個直徑與地球一樣大的望遠鏡陣。這個叫做甚長基線干涉陣(Very-long-baseline Interferometry Array)的望遠鏡陣,能夠幫助人類看到非常遙遠的宇宙深處。

甚至到今年物理學的極重大發現:直接探測重力波,用的也是最基本的干涉效應。探測到重力波的激光干涉重力波天文台(Laser Interferometer Gravitational-Wave Observatory, LIGO),其實就是放大版本的邁克生干涉儀。LIGO 儀器擁有兩條長 4 公里的真空隧道,利用一道激光分別來回穿過並重新結合得出的干涉圖案去計算空間被重力波扭曲的程度。

-----廣告,請繼續往下閱讀-----
其中一台 LIGO 干涉儀。圖/取自 LIGO Lab

邁克生和莫雷的干涉儀,在 1887 年證明以太不存在,成為愛因斯坦相對論的第一個證據,愛因斯坦相當時只有八歲。誰會想到在 2016 年、愛因斯坦發表廣義相著論 100 週年,干涉儀會證明廣義相對論的最後一個預言:重力波的存在?


 

 

 

 

本文摘自《物理雙月刊》39 卷 2 月號 ,更多文章請見物理雙月刊網站

文章難易度
物理雙月刊_96
54 篇文章 ・ 13 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

5
4

文字

分享

0
5
4
高速移動的話時間流速會不一樣嗎?時間暫停是可能的嗎?——《關於宇宙我們什麼都不知道》
天下文化_96
・2023/11/08 ・2746字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

我們都感覺到相同的時間嗎?

在二十世紀之前,科學認為時間是普適的:每個人和宇宙中的一切,都感覺到相同時間。那時的假設是,你如果在宇宙裡四處擺滿了一模一樣的時鐘,那麼每個時鐘在任何時刻都會顯示相同時間。畢竟,這就是我們在日常生活中遇到的情況。想像一下,如果每個人的鐘都以不同的速度奔跑,會是多麼混亂!

但後來,愛因斯坦的相對論把空間與時間結合成「時空」*1 概念,改變了一切。愛因斯坦強調,移動中的時鐘運行速度較慢。如果你以接近光速行駛至附近的星星,那麼你體驗的時間,將遠遠少於在地球上的時間。這並不是說你覺得時間過得很慢,像是「駭客任務」中的慢動作鏡頭那樣,而是說地球上的人和時鐘測量到的時間,會比宇宙飛船上的時鐘量到的更長。我們都以同樣的方式(以每秒一秒的節奏)體驗時間,但是如果我們彼此以相對高速移動,我們的時鐘就不會同步。

在瑞士的某個地方,製錶師剛剛心臟病發作。

一模一樣的時鐘卻以不同速度運行,似乎違背了所有的邏輯論證,但宇宙就是這樣運行的。我們知道這是真的,因為我們己經在日常生活中見證了。你的手機(或汽車、飛機)上的 GPS 接收器,會假定繞地球跑的 GPS 衛星時間走得較慢(衛星以每小時數千里的速度,在受地球巨大質量彎曲的空間中移動)。沒有這些資訊,你的 GPS 設備將無法從衛星傳輸的信號中,精確的同步和進行三角定位。關鍵是當宇宙遵循某個邏輯法則時,這些法則有時不見得如你所想。以這個案例來說,宇宙有個最高速限:光速。根據愛因斯坦的相對論,沒有任何東西、資訊甚至是外送披薩的旅行速率,可以比光跑得快。這個速率(每個時段所移動的距離)的絕對上限,會產生一些奇怪後果,並挑戰我們的時間概念。

-----廣告,請繼續往下閱讀-----

首先,先確定我們了解這個速率限制是如何運作的。最重要的規則是:從任何角度來衡量任何人的速率時,這個速率限制都必須適用。我們說沒有什麼東西可以比光速還快時,無論你用什麼觀點來看,就是「沒有」。

所以我們來做個簡單的思考實驗。假設你坐在沙發上並打開手電筒。對你來說,手電筒的光線以光速遠離你。不過,我們是否可以把你的沙發綁在火箭上,點燃火箭然後讓沙發以驚人的速度移動呢?如果此時你打開手電筒,會發生什麼事?如果把手電筒指向火箭前方,光線是否以光速再加上火箭的速率移動呢?

我們將在第十章〈我們能以超光速移動嗎?〉花更多時間在這些想法上。但重要的是,為了讓所有觀察者(在火箭上的你和我們其他在地球上的人)看到,手電筒的光線都是以光速移動的,於是某些東西必須改變,這個東西就是「時間」。

為了幫助你理解這個概念,讓我們回到把時間當做時空第四維度的想法。這個想法有助於想像物體如何穿越時間和空間,而把宇宙速限應用在你的總速率上。如果你坐在地球上的沙發裡,你沒有穿越空間(相對於地球)的速率,所以你穿越時間的速率可以很高。

-----廣告,請繼續往下閱讀-----

但如果你坐在火箭上,對地球而言,火箭的移動速度接近光速,那麼你穿越空間的速率是非常高的。因此,為了讓你穿越時空的總速率在相對於地球時,保持在宇宙速限之內,你的時間速率必須減少,在此所有的速率量測都使用地球上的時鐘。

還讀得下去嗎?

對於不同人可以回報不同時間長度,你可能很難接受,但這是宇宙的運作方式。更奇怪的是,人們可能會在某些情況下,看到事件以不同順序發生,而且都是正確的。舉例來說,兩位誠實的觀察者,如果以非常不同的速度移動,他們會對誰贏得直線競速賽有不同的看法。

如果你的寵物美洲駝和雪貂進行賽跑,那麼,依據你的移動速度和相對於比賽場地的距離,你可以看到心愛的美洲駝或雪貂贏得比賽。每隻寵物都會有屬於自己事件的版本,如果你的祖母能夠以接近光速的速率移動,她看到的比賽結果可能完全不同。而且,所有人都是正確的!(不過要注意的是,每個人的時間起始點都不相同。)

-----廣告,請繼續往下閱讀-----
圖/《關於宇宙我們什麼都不知道》

我們喜歡認為宇宙有絕對真實的歷史,所以不同人可以體驗不同的時間,是令人難以接受的想法。我們可以想像,原則上有人可以寫下宇宙至今發生的每一件事(這會是非常冗長的故事而且大半都超級無聊)。如果這故事存在,那麼每個人都可以根據自己的經驗來進行檢查,除非是無心之過或視力模糊,每個人讀的故事應該要一致。但愛因斯坦的相對論使得一切都是相對的,所以不同觀察者對於宇宙裡事件的先後順序,會有不同的描述。

最終我們必須放棄宇宙有絕對單一時鐘存在的想法。雖然因此我們有時會遇到違反直覺且看似荒謬的領域,但驚人的是,這種看待時間的方式已測試為真。與許多物理革命一樣,我們被迫拋棄自我的直覺,並遵循受時間主觀意識影響較小的數學之道。

時間會停止嗎?

打從一開始,人們就想排除時間會停止的概念。時間除了向前,我們從未見過它做過其他事,既然如此,時間怎麼可能還有別的選項呢?由於我們本來就不清楚為什麼時間要前進,所以很難自信的說,時間向前是永恆真理。

一些物理學家相信,時間的「箭頭」是根據熵必須增加的法則所決定。也就是說,時間的方向與熵增加的方向相同。但如果這是真的,當宇宙達到最大熵時會發生什麼事?在這樣的宇宙裡,一切都將處於平衡而且不能創造秩序。那麼,時間會在這一點停下來嗎?還是時間不再有意義?一些哲學家猜測,在這個時刻,時間的箭頭和熵增加的法則可能會逆轉過來,導致宇宙縮小到一個微小奇點。不過,這個說法比較像是深夜裡藥吃多了後激發的猜測,而不是實際的科學預測。

-----廣告,請繼續往下閱讀-----

還有理論提出大霹靂創造了兩個宇宙,一個時間向前流逝,一個時間向後奔流。更瘋狂的理論則提出時間不只一個方向。為什麼不呢?我們可以在三個(或更多)空間方向中移動,為什麼不能有兩個或更多的時間方向?真相為何?如往常一樣,我們不知道。

註解

  1. 愛因斯坦的天才並沒有展現在為事物命名上面。

——本文摘自《關於宇宙我們什麼都不知道》,2023 年 9 月,天下文化出版,未經同意請勿轉載。

天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

2

2
2

文字

分享

2
2
2
諦聽宇宙深處的低吟,宇宙低頻重力波訊號代表的意義——《科學月刊》
科學月刊_96
・2023/11/01 ・3782字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/陳哲佑
    • 任職於日本理化學研究所,專長為黑洞物理、宇宙學、重力理論等。
    • 熱愛旅行、排球與珍珠奶茶
  • Take Home Message
    • 今(2023)年 6 月,北美奈赫茲重力波天文臺(NANOGrav)團隊觀察到宇宙中的低頻重力波。
    • NANOGrav 團隊利用數個脈衝星組成「脈衝星陣列」(PTA),測量各脈衝星訊號到達的時間,計算不同訊號的到達時間是否存在著相關性。
    • PTA 得到的重力波訊號相當持續,沒有明確的波源。科學家推測此訊號可能來自多個超大質量雙黑洞系統互繞而產生的疊加背景。

2015 年 9 月,位於美國的雷射干涉儀重力波天文臺(Laser Interferometer Gravitational-Wave Observatory, LIGO)成功偵測來自雙黑洞碰撞的重力波訊號(請見延伸閱讀 1)。

這個發現不僅再次驗證愛因斯坦(Albert Einstein)「廣義相對論」的成功,更引領人類進入嶄新的重力波天文學時代。到了現在,我們不僅能使用各種電磁波波段進行觀測,還多了重力波這個強而有力的工具能夠窺探我們身處的宇宙,甚至還有同時結合兩者的多信使天文學(multi-messenger astronomy)註1,皆能帶給人類許多單純電磁波波段觀測無法觸及的資訊(請見延伸閱讀 2)。

如同不同波段的電磁波觀測結果為我們捎來不同的訊息,重力波也有不同的頻譜,且頻譜與產生重力波的波源性質有非常密切的關係。以雙黑洞碰撞為例,系統中黑洞的質量與碰撞過程中發出的重力波頻率大致上成反比,因此當系統中黑洞的質量愈大,它產生的重力波頻率就愈低。

目前地球上的三個重力波天文臺:LIGO、處女座重力波團隊(The Virgo Collaboration, Virgo),以及神岡重力波探測器(Kamioka Gravitational wave detector, KAGRA, or Large-scale Cryogenic Gravitational wave Telescope, LCGT)都受限於干涉儀的長度,只對頻率範圍 10~1000 赫茲(Hz)的重力波有足夠的靈敏度,此範圍的重力波對應到的波源即是一般恆星質量大小的雙黑洞系統。

-----廣告,請繼續往下閱讀-----

然而,來自超大質量黑洞互繞所發出的重力波頻率幾乎是奈赫茲(Nano Hertz,即 10-9 Hz)級別,如果想要探測到此重力波,就需要一個「星系」規模的重力波探測器。雖然這聽起來彷彿天方夜譚,但就在今年 6 月,北美奈赫茲重力波天文臺(North American Nanohertz Observatory for Gravitational Waves, NANOGrav)的團隊利用「脈衝星計時陣列」(pulsar timing array, PTA)成功地觀測到這些低頻重力波存在的證據。

以不同方式觀察不同頻率的重力波

與電磁波相似,重力波也有不同的頻率。不同頻率的重力波會對應到不同性質的波源,且需要不同的方式觀測。圖/科學月刊 資料來源/Barack, et al. 2018

NANOGrav 如何觀測低頻重力波?

讀者聽過脈衝星(pulsar)嗎?它是一種高速旋轉且高度磁化的中子星(neutron star)註2,會從磁極放出電磁波。隨著脈衝星的旋轉,它的電磁波會以非常規律的時間間隔掃過地球,因而被身處於地球上的我們偵測到,就像是海邊的燈塔所發出的光,會規律地掃過地平面一般。由於脈衝星的旋轉模式相當穩定,掃過地球的脈衝就如同宇宙中天然的時鐘,因此在天文學上有相當多的應用——甚至可以用來觀測重力波。

利用脈衝星觀測重力波的第一步,首先要記錄各個脈衝星的電磁脈衝到達地球的時間(time of arrival),並且將這些訊號與脈衝星電磁脈衝的理論模型做比對。

如果訊號和理論模型相符,那麼兩者相減後所得到的訊號差(residual)只會剩下一堆雜訊;相反的,如果宇宙中存在著重力波,並且扭曲了該脈衝星和地球之間的時空,那麼兩訊號相減之後就不會只有雜訊,而會出現時空擾動的蹤跡。

-----廣告,請繼續往下閱讀-----
利用數個脈衝星組成的脈衝星計時陣列,可用來尋找宇宙中低頻的重力波訊號。圖/Tonia Klein, NANOGrav 

然而以觀測的角度來看,即便我們從來自單一脈衝星的訊號中發現訊號差出現偏離雜訊的跡象,也不能直接推論這些跡象一定是來自重力波。畢竟科學家對脈衝星的內部機制和脈衝傳遞的過程也並未完全了解,這些未知的機制都可能會使單一脈衝星的訊號差偏離雜訊。

因此為了要判斷重力波是否存在,就必須進行更進一步的觀測:利用數個脈衝星組成脈衝星陣列,測量每個脈衝星訊號到達的時間,並且計算這些不同脈衝星訊號的到達時間是否存在某種相關性。

舉例來說,如果脈衝星和地球之間沒有重力波造成的時空擾動,那麼即便每顆脈衝星的訊號差都出現偏離雜訊的跡象,彼此之間的訊號也會完全獨立且不相干;反之,如果脈衝星和地球之間有重力波經過,這些重力波便會扭曲時空,不僅會改變這些脈衝訊號的到達時間,且不同脈衝星訊號到達的時間變化也會具有某種特定的相關性。

根據廣義相對論的計算,一旦有重力波經過,不同脈衝星訊號之間的相關性與脈衝星在天球上的夾角會滿足一條特定的曲線,稱為 HD 曲線(Hellings-Downs curve)。

-----廣告,請繼續往下閱讀-----

科學家以兩顆脈衝星為一組觀測單位,藉由觀測多組脈衝星的訊號、計算它們之間的相關性,再比較這些數據是否符合 HD 曲線,就能夠進一步推斷低頻重力波是否存在。值得一提的是,由於重力波訊號非常微弱,用來作為陣列的脈衝星必須有非常穩定的計時條件,因此一般會選擇自轉週期在毫秒(ms)級別的毫秒脈衝星作為觀測對象。

NANOGrav 在今年 6 月發布的觀測結果就是利用位於波多黎各的阿雷西博天文台(Arecibo Observatory,已於 2020 年因結構老舊而退役)、美國的綠堤望遠鏡(Robert C. Byrd Green Bank Telescope)和甚大天線陣(Very Large Array, VLA)觀測 68 顆毫秒脈衝星。

他們分析了長達 15 年的觀測數據後,發現這些脈衝星訊號的相關性與 HD 曲線相當吻合,證實了低頻重力波確實存在於我們的宇宙中。

除了 NANOGrav,其他團隊例如歐洲的脈衝星計時陣列(European Pulsar Timing Array, EPTA)、澳洲的帕克斯脈衝星計時陣列(Parkes Pulsar Timing Array, PPTA)、印度的脈衝星定時陣列(Indian Pulsar Timing Array, InPTA),以及中國的脈衝星計時陣列(Chinese Pulsar Timing Array, CPTA)等,皆得到相符的結果。

-----廣告,請繼續往下閱讀-----

NANOGrav 觀測結果帶來的意義

與先前 LIGO 觀測到的瞬時重力波訊號不同,目前利用 PTA 得到的重力波訊號是相當持續的,而且並沒有較明確的單一波源,反而像是由來自四面八方數個波源組成的隨機背景訊號。

打個比方,LIGO 收到的重力波訊號像是我們站在海邊,迎面而來一波一波分明的海浪,每一波海浪分別對應到不同黑洞碰撞事件所發出的重力波;而 PTA 的訊號則是位於大海正中央,感受到隨機且不規則的海面起伏。

目前對這些奈赫茲級別的重力波訊號最合理也最自然的解釋,是來自多個超大質量雙黑洞系統互繞而產生的疊加背景。若真是如此,那這項發現將對天文學產生重大的意義。

過去科學界對於如此巨大的雙黑洞系統能否在可觀測宇宙(observable universe)的時間內互繞仍普遍存疑,如果PTA觀測到的重力波真的來自超大質量雙黑洞互繞,那代表這類系統不僅存在,它們的出現還比過去我們預期的更為頻繁,且產生的訊號也更強。

-----廣告,請繼續往下閱讀-----

NANOGrav 的觀測結果

橫軸為脈衝星陣列中,兩脈衝星位置之間的夾角;縱軸為訊號之間的相關性;藍色數據點為 NANOGrav 15 年的觀測結果;黑色虛線為 HD 曲線。可看出數據點的分布與 HD 曲線相當吻合。圖/科學月刊 資料來源/Agazie et al. 2023

不過除了雙黑洞系統,也有其他「相對新奇」的物理機制也可能產生這樣的重力波背景,包含早期宇宙的相變、暗物質,以及其他非標準模型的物理等。若要從觀測的角度去區分這些成因,最重要的關鍵在於,能否從隨機背景中找到特定的波源方向。

如果是雙黑洞系統造成的重力波,勢必會有來自某些方向的訊號比較強;反之,如果是早期宇宙產生的重力波,那麼這些重力波將會隨著宇宙的膨脹瀰漫在整個宇宙中,因此它們勢必是相當均向的。

為了找到波源方向,提升訊號的靈敏度成為了當務之急。而若要提升 PTA 的靈敏度,最主要的方式有兩種——其一是將更多的脈衝星加入陣列;其二則是延長觀測的時間。

目前,不同的 PTA 團隊已經組成國際脈衝星計時陣列(International PTA)互相分享彼此的脈衝星觀測資料。隨著觀測技術的進步,解密這些奈赫茲級別的神祕重力波將指日可待。

-----廣告,請繼續往下閱讀-----

註解

  1. 相較於過往只能以可見光觀測宇宙,多信使天文學能利用多種探測訊號,如電磁波、微中子、重力波、宇宙射線等工具探索宇宙現象,獲得更多不同資訊及宇宙更細微的面貌。
  2. 質量較重的恆星在演化到末期、發生超新星爆炸(supernova)後,就有可能成為中子星。

延伸閱讀

  1. 林俊鈺(2016)。發現重力波!,科學月刊556,248–249。
  2. 金升光(2017)。重力波獨白落幕 多角觀測閃亮登場,科學月刊576,892–893。
  3. NANOgrav. (Jun 28 2023). Scientists use Exotic Stars to Tune into Hum from Cosmic Symphony. NANOgrav.
  • 〈本文選自《科學月刊》2023 年 10 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 2
科學月刊_96
249 篇文章 ・ 3474 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

5
2

文字

分享

0
5
2
來自137 億年前的訊息!透過重力波,一窺「宇宙誕生」的真相──《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》
台灣東販
・2022/08/09 ・4055字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

重力波不只能提供星體的資訊!

說到重力波,一般人可能會想到黑洞、中子星、超新星這三個引發話題的星體。不過,只有在這些星體事件發生的「瞬間」,才會產生重力波,就像宇宙中的一場秀一樣。而當重力波通過後,就無法再偵測到這些資訊。

discoveries GIF
圖/GIPHY

譬如,LIGO 在 2015 年 9 月捕捉到的就是「來自 13 億光年外星體的重力波」。不過,和宇宙年齡相比,這其實是相對較年輕的星體事件。

我們有沒有辦法捕捉到很久很久以前,宇宙剛誕生時產生的重力波,也就是暴脹時期產生的重力波呢?

為什麼宇宙正在急速膨脹?

138 億年前,宇宙在超高溫、超高壓下,以「火球」的樣貌誕生,這就是所謂的「大霹靂」。在這之後,隨著宇宙的急速膨脹,溫度與密度逐漸下降,然後演變現在的樣貌。

這就是大霹靂宇宙論,也是目前多數學者支持的標準宇宙論。

-----廣告,請繼續往下閱讀-----

那麼,為什麼會產生「火球宇宙」這個超高溫、超高壓的世界呢?為什麼宇宙不是一直保持原樣(不是保持相同大小),而是會急速膨脹呢?目前有一個較被接受的說法,那就是前面提過許多次的「暴脹理論

在這個理論中,宇宙初期並沒有任何物質或光,而是一個充滿能量的真空。透過這些真空能量,宇宙用比光速還快的速度,呈指數函數膨脹。

而在暴脹時期結束後,這些真空能量轉變成了光(火球),於是產生了超高溫、超高壓的宇宙,這就是所謂的大霹靂。

目前科學界的研究和觀測結果大多支持大霹靂學說。圖/NASA

不過,如果空間中存在許多能量的話,應該會存在像重力這樣使空間收縮的力才對。為什麼空間會以超越光速的速度迅速膨脹,進入暴脹時期呢?

-----廣告,請繼續往下閱讀-----

學者們用「暴脹子場」這種量子場中的真空能量,說明暴脹時期。

暴脹子場是個未證實存在的純量場。就目前而言,它的存在仍處於假說階段。

目前已知的純量場,譬如 2012 年時,由瑞士日內瓦的歐洲核子研究組織 CERN 在 LHC 實驗中發現並發表,由希格斯玻色子產生的希格斯場。研究者們也因此而獲得 2013 年諾貝爾物理學獎,各位應該還記憶猶新。

137億歲的宇宙,至今仍然不斷膨脹

暴脹子場與希格斯場在質量與粒子的結合力上,都有著很大的差異。暴脹子場的真空中,會產生長時間的負壓。而這個負壓會造成宇宙加速膨脹。

這點與目前的暗能量機制十分類似。有人猜想暗能量可能是未發現的純量場。與暴脹時期相同,目前的宇宙中可能存在著未知純量場的真空能量,就像暗能量般,佔了全宇宙能量的 70%。

-----廣告,請繼續往下閱讀-----

宇宙中佔了 30% 能量之物質,與佔了 0.1% 的光會產生引力,但比不過真空能量所產生的斥力,所以目前宇宙正在加速膨脹。

宇宙仍在不斷的擴大。圖/NASA

順帶一提,即使物質與光的能量佔宇宙的 100%,宇宙也只是減速膨脹而已,並不會收縮回去。因為膨脹初期的速度過快,所以宇宙只會持續膨脹下去。

宇宙誕生的第一步——「原始重力波」

暴脹時期結束後,空間能量會迅速轉變成物質能量,使宇宙轉變成超高溫、超高壓、充滿輻射的狀態。這就是大霹靂「火球」。暴脹理論說明了幾點。

首先是前面提到的「膨脹速度超越光速的宇宙」

-----廣告,請繼續往下閱讀-----

這造成了我們現在看到的(宇宙視界內的)宇宙溫度擁有各向同性,在 10 萬分之 1 的精度下,為絕對溫度 2.723K(約 3K 的宇宙微波背景輻射(CMB))。

在大霹靂學說中,宇宙微波背景輻射是宇宙誕生時所遺留下來的熱輻射。圖/ESA

第二,這個急速膨脹,使宇宙的形狀在幾何學上變得相當平坦,就像膨脹的氣球一樣。

再者,暴脹子場的量子擾動,是宇宙初期物質擾動的來源,也就是3K宇宙微波背景輻射所觀測到的溫度擾動。暴脹子場也含有量子的擾動。這些小小的擾動在短時間內暴脹過程中,急速膨脹,延伸至宇宙視界的彼端,造成現今宇宙中不同區域的密度差異,這也是形成星系的種子

CMB 觀測到的「溫度擾動」,正是暴脹時期產生之暴脹子場的量子擾動。

-----廣告,請繼續往下閱讀-----

另外,在重力波方面,暴脹時期不僅會產生前述密度(溫度)的擾動,也會產生「時空擾動」。急速膨脹的過程中,真空會一直變化,成對產生重力子,這與黑洞周圍產生霍金幅射的機制類似。

學者們認為這種重力波現今仍存在,稱其為「原始重力波」。因為整個宇宙都存在這種重力波,所以也叫做背景重力波。若能檢出這種背景重力波,不只能成為暴脹理論的證據,也會是宇宙起源相關研究的一大步。

原始重力波就像是背景雜訊一樣,在宇宙四處飄蕩

黑洞雙星的合併會產生重力波,不過當重力波通過地球,被 LIGO 觀測到時,該事件便已結束。不只是黑洞,中子星雙星的合併、超新星爆發也一樣。

不過,暴脹時期產生的重力波並非如此。當時整個宇宙充滿了重力波。不過這種重力波就像白噪音般的存在,很難分析這種波的狀態,所以也叫做背景重力波。若依波的種類來分,可以將其算在駐波。如何找到這種駐波,是我們現在的課題。

-----廣告,請繼續往下閱讀-----
重力波可以分成兩種,來自近期星體活動的重力波,以及來自宇宙誕生的背景重力波。圖/台灣東販

與光波不同,重力波的偏振方式可以分成十字形(+)與交叉形(×)2 種,如下圖所示。十字形的偏振會往縱向與橫向伸縮、交叉形偏振則會往斜向伸縮,如其名所示。這兩種波疊合後,會變成圖中右方的樣子,往外傳播。

隨著時間的經過,來自黑洞的重力波會持續前進;但暴脹時期產生的重力波為「背景重力波」,是一種駐波,就像噪音一樣充滿在整個宇宙中。如果能發現這種波,就能證明暴脹理論。

重力波由十字形、交叉型兩種偏振方式所組成。圖/台灣東販

宇宙之窗:暴脹子場是什麼?

暴脹時期產生的「暴脹子場」究竟是什麼樣的東西呢?

重複一次,暴脹子場被認為是某種未知、很重的純量場,其質量上限在 1013GeV 以下。目前這個低能量宇宙中,已經不存在暴脹子場。即使透過粒子對撞,產生目前可達到的最高能量(數 10TeV,相當於數 10 京度的溫度),也沒辦法產生這種場。

-----廣告,請繼續往下閱讀-----

每種基本粒子都有著伴隨其出現的「量子場」。

譬如希格斯場會伴隨著希格斯玻色子出現。就希格斯場這種純量場而言,其存在機率最高的期望值稱做場值(真空值),是希格斯玻色子的位置。而場值周圍存在所謂的量子擾動。這種量子擾動只有在微觀尺度下有意義。

在我們生活的巨觀尺度下,幾乎察覺不到任何量子擾動,所以我們平常的生活並不會意識到它們。

我們周圍有許多電路會用到二極體。在微觀尺度下看這些電路,會看到粒子般的電子周圍有量子擾動,這種量子擾動對二極體來說相當重要。

在這種量子擾動下,電流只能沿著電路中可跳躍量子擾動的方向流動,二極體才有如此特別的性質,可見量子論也是現代科技中的重要理論。

所以說,考慮初期宇宙中暴脹子場的量子擾動,可以知道當宇宙還很小時,暴脹並非在宇宙中的各個地方同時間發生。宇宙中各個地方開始暴脹與結束暴脹的時間都不一樣。

量子擾動除了會造成時間擾動,在某些條件下,我們也可以在巨觀視界下感受到密度和溫度的擾動。圖/台灣東販

量子擾動會造成時間擾動,不過在暴脹這種急速膨脹後,會轉變成超越視界的古典擾動,所以我們會在巨觀視界下觀察到,各個地方都有著不同的密度。這就是所謂的「密度擾動」或「溫度擾動」。

總而言之,最初產生量子擾動後,隨著空間的急速膨脹而迅速延伸,轉變成了空間性的密度擾動。

備註

  • 暴脹理論與大霹靂的名稱

1981 年,佐藤勝彥在大統一模型的框架下,提出真空相變會造成宇宙呈指數函數膨脹的理論。同年,古斯也發表了同樣的想法。自宇宙誕生的瞬間起(依大統一理論,約為 10−38 秒後~10−36 秒後)宇宙會以超越光速的速度,呈指數函數膨脹,然後轉變成大霹靂的「火球」宇宙。

1980 年時,為修正愛因斯坦的重力觀點,學者們提出了以指數函數膨脹中的宇宙。

而在 20 世紀初,多數學者認為「宇宙永遠不會改變」(宇宙穩態論),沒有開始,沒有結束,大小也永遠不會改變。不過宇宙穩態論的擁護者霍伊爾(Fred Hoyle)曾在某個廣播節目中說「宇宙的開始?那是大霹靂的觀點(the ‘big bang’ idea)」,於是「大霹靂」這個名稱就定了下來。

當時連愛因斯坦都相信宇宙穩態論,否定膨脹宇宙。不過在觀測結果陸續出爐後,哈伯(Edwin Hubble)、勒梅特(Georges Lemaître)等人成功說服了愛因斯坦接受宇宙正在膨脹。

——本文摘自《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》,2022 年 6 月,台灣東販,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。