Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

最自戀的乘方開方數字團體——位數根的快樂夥伴(二)

Sharkie Lin_96
・2016/12/29 ・3152字 ・閱讀時間約 6 分鐘 ・SR值 482 ・五年級

-----廣告,請繼續往下閱讀-----

今天來聊聊位數根的第二位快樂夥伴,數字的自戀組合團體——乘方開方表的故事。為什麼說乘方開方表是數字的自戀組合團體呢?平方是自己乘上自己自戀二次方(powers of 2),立方是自己乘自己再乘自己(powers of 3),總共要乘三次難道還不夠自戀嗎?

438264488_dc22d0cab7_z
為什麼說乘方開方表是數字的自戀組合團體呢?平方是自己乘上自己自戀二次方,立方是自己乘自己再乘自己,總共要乘三次難道還不夠自戀嗎?圖/By Kevin Simpson @ flickr, CC BY-SA 2.0

很早以前,有一天一個就讀國中二年級的少年在無聊的早自習差點打起瞌睡,心血來潮向老師借了一本數學課本,後面的附錄有著一個密密麻麻的表格,裡頭寫著數字 1, 2, 3, …, 100,還有他們的平方數 1, 4, 9,…,10000 與立方數 1, 8, 27, …, 1000000。大概是長這個樣子:

表 1:沒有開方的乘方開方表(節錄)

%e8%9e%a2%e5%b9%95%e6%88%aa%e5%9c%96-2016-12-28-15

這位少年不知道怎麼回事,動手計算了 N2 那一欄數字的位數根,看到 25 就直覺地把 2 加上 5 得到 7。不算不知道,一算就驚為天人(?)他驚奇地發現新的位數根數列有規律,不斷重複 1, 4, 9, 7, 7, 9, 4, 1, 9 這 9 個數字,一直到 100 都遵循著如此的規律,就像是一串咒語逃不出位數根的手掌心。

-----廣告,請繼續往下閱讀-----

那 N3 的位數根會不會也有規律?這次重複的是三個數字 1,8,9。那接下來的四次方、五次方一直到 n 次方(powers of n),也會有規律吧!?有了這麼多 powers 和咒語,可以召喚金剛戰士(Go Go Power Rangers!)的好朋友智多星來解惑嗎?雖然智多星是個遇到事件會呀呀叫的機器人,可現在的機器可以幫忙做很多事情,計算數字這種瑣碎的事情就交給計算機了。

發現這件事之後少年異常興奮睡意完全消失,所以他回到家以後馬上用電腦打開試算表軟體,先把 N 的更高次方 N4, N5, …, NK 全部的值都列出來,拿起計算機一個數字、一個數字地加求取位數根,直到試算表都出現了科學符號還停不下來。

這精神相當可敬但方法太傻了,還記得位數根的第一位快樂夥伴費波那契數列和他的兔子嗎?我們可以使用試算表的公式自動計算位數根,這裡也幫大家建立好了線上表格,點進去先觀察一下再回來讀文章,數學的樂趣源自於觀察。

藉由電腦輔助發現的規律如下表,D(N) 表示自然數 N 的位數根,K 表示非負整數,也就是從 0 開始的整數。

-----廣告,請繼續往下閱讀-----

表 2:自然數 N 在不同次方數的位數根

%e8%9e%a2%e5%b9%95%e6%88%aa%e5%9c%96-2016-12-28-151

為什麼表 2 裡頭 D(N6K+2) 的 2 次方前面要加一個 6K 呢?首先藉由現代智多星電腦的幫忙,在剛剛的線上表格發現了一件事情,N8 和 N2 的位數根 D(N8) 和 D(N2)這兩欄的數字是一樣的,而 N9 和 N3 的位數根 D(N9)和 D(N3)也是一樣的,以此類推,也就是說位數根的次方從 D(N8)開始就會重複。

首先,來探討 D(N) = 1 到 9 這九個數字隨著次方增加的變化:

D(N) = 1 那一列的數字都是 1,所以每 1 個次方皆重複一次;

D(N) = 2 那一列的的循環數字是 4,8,7,5,1,2,每 6 個次方重複一次;

其他數字以此類推可以產生下面這個表格,描述 D(N)= 1 到 9 時,其次方數的規律是每幾個次方重複一次:

-----廣告,請繼續往下閱讀-----

表 3

%e8%9e%a2%e5%b9%95%e6%88%aa%e5%9c%96-2016-12-28-152

同樣為了方便討論以及適當地呈現表格,取 6 (也就是 1, 2, 3, 6 的最小公倍數)做為次方數的規律個數。所以在表 2 第一列每一個次方前面要加一個 6K,表示每 6 個次方數一循環。

知道 6K 是怎麼來的以後,緊接著來探討一下是幾個數字一循環。除了 D(N2)那一欄是 9 個數字一循環,D(N4)、D(N5)、D(N7)也同樣是 9 個數字一循環;而 D(N3) 和 D(N6) 都是 3 個數字(1, 8, 9 和 1, 1, 9)即重複。同樣為了便於討論,在此使用 9 和 3 的最小公倍數 9,也就是 9 個數字一循環來表示。

為什麼表 2 是從 D(N6K+2)開始,為什麼不是從 D(N6K+1) 開始?還有為什麼這個表格沒有出現 3 和 6 這兩個數字?

-----廣告,請繼續往下閱讀-----

第一個問題是大家有發現到表 2 的 D(N) 和 D(N6K+7)的數字組成蠻像的嗎,9 個數字裡面有 7 個數字是一樣的,相似度高達 78 %,只有在 D(N) = 3 和 D(N) = 6 的時候數字不同。3 和 6 的平方都是 9 的倍數,所以 D(N) = 3 和 D(N) = 6 除了本身的一次方之後,平方之後的項都會是 9 的倍數,位數根也必為 9,自然而然在表 2 裡頭除了 D(N) 這一欄之外不會出現 3 和 6 這兩個數字。為了描述的一致性因此自然數 N 在不同次方數的位數根是從 D(N6K+2)開始。

原本只是一個國中課本必備的通常也沒人去翻閱的乘方開方表,竟然隱含了數字甚至次方的規律,一直到宇宙的盡頭也不會停止。發現數學規律感覺到的快樂,就像是發現控制籃板球的人就能控制整場比賽,那樣使人嘴角上揚。

p.s. 想要嘗試嚴謹證明位數根的加法律、乘法律、指數律的讀者,可以嘗試從這個地方開始思考。對任意自然數 X,X = 9K + D(X)。K 為非負整數,D(X) 為 X 的位數根。

生命靈數能代表宇宙的秩序?

看完上面的故事,覺得那位少年很瘋狂嗎?偷偷告訴你一個祕密,他常常觀察路上的車牌在腦海中自動計算找規律。(那位少年究竟是不是作者本人呢?)

其實他不是特例,因為,人類對數字的狂熱就是沒有極限!狂熱的代表是生命靈數(Numerology)也被稱為數秘學,好人一生會平安或不安的生命歷程都號稱和生命靈數脫不了關係。等等,在數學科普文章裡面介紹謎樣的生命靈數這樣科學嗎!?

-----廣告,請繼續往下閱讀-----

回答這問題之前,先告訴你們一件意外的事實,人們從古早時候就開始研究生命靈數並且樂此不疲,而畢達哥拉斯學派是發展最極致的一支,此學派源自希臘哲學家暨數學家畢達哥拉斯,畢氏定理的畢就是這個畢。

生命靈數家堅信每一個數字有自己的個性,可以利用數字更加瞭解自己以及世界,甚至預測未來趨勢。主要論點是人生和宇宙是一個有秩序的系統,而數字反映了其中的秩序,數字 1 至數字 9 各代表了不同的性格原型。因此發展了各種類型的生命靈數,像是以生日的年月日加總後的生命靈數,還有將英文姓名中的字母轉換成數字再進行加總的生命靈數。

3512721223_366c702026_z
生命靈數家堅信每一個數字有自己的個性,可以利用數字更加瞭解自己以及世界,甚至預測未來趨勢。主要論點是人生和宇宙是一個有秩序的系統,而數字反映了其中的秩序,數字 1 至數字 9 各代表了不同的性格原型。圖/By David Goehring @ flickr, CC BY 2.0

相信大家都可以了解最常見的「生命靈數」就是把生日的每一個數字加起來,加到不能夠再加就是生命靈數,用數學的說法就是生日的位數根。例如說泛科學的生日是 2011 年 11 月 4 日,生日位數根是 1。

可是很多人的生日位數根也是 1 耶,這樣可以說他們和泛科學的某些特性是共通的,因此成為泛科學的粉絲嗎?那其他生日位數根的粉絲呢?顯然沒法只用生日位數根解釋。宇宙之中若有規則存在,也必然超越了幾個數字加總後得到新數字代表的狀態。

-----廣告,請繼續往下閱讀-----

生命靈數之於數學,就像是占星術之於天文學,以及鍊金術之於化學[1]。所以生命靈數科不科學這件事和研究星座是類似的,大家對自己生命狀態感到不確定或混沌時,會特別容易自我投射到平常未曾留意的敘述之中。

對數字的狂熱,沒有極限

很多數學家、數學愛好者,或者顯然就是作者本人的那位少年,因為沉浸在自己的小世界,而且有時會莫名地嘴角上揚因而被稱為 geek;生命靈數愛好者對於探究命格或規律的興趣濃厚到發展出 Numerlogy 這門學問,並且認為數字能夠代表宇宙的秩序,看起來他們才是對數字最狂熱的一群人吧!

  • 此文作者本系列文章獲得臺北市政府文化局藝文補助

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
2

文字

分享

0
6
2
黃金比例如何啟發世界的「美」!
鳥苷三磷酸 (PanSci Promo)_96
・2021/07/19 ・3828字 ・閱讀時間約 7 分鐘

本文由 微星科技 委託,泛科學企劃執行。

  • 作者 / 曾繁安

人類總會不由自主地被閃閃發光的事物吸引,取名時加上「黃金」二字,好像就能讓身價大漲,變得受歡迎。不管是黃金海岸、黃金地段、黃金右腳、 黃金奇異果,黃金獵犬、黃金脆薯、黃金盔甲、黃金流沙包、黃金開口笑(大誤)……人們用黃金形容所有美好的事物,連「比例」也一樣。「黃金比例」被譽為最美好的比例,你一定聽聞過,如果人的臉蛋身體或畫作構圖越接近黃金比例,就越迷人的説法。然而一個數字比例,怎麼會和美學扯上關係?

人類探究黃金比例的歷史,可追溯至兩千多年前……

古希臘時代大約公元五百多年前,癡迷於數學的畢達哥拉斯,認爲數學可以解釋世上一切事物。他的教學吸引了一群熱心的追隨者,被稱爲畢氏學派。在旁人眼裏,畢氏學派恐怕是一群怪人:恪守極爲嚴格的生活條規,不可吃肉和豆類,還會進行高强度記憶力訓練和三省吾身等等。但畢氏學派對數學幾近狂熱崇拜,尤其對數字 5 和五角星形的迷戀,使他們成爲史上最早接觸黃金比例分割的一群人。將構成五角星形的線段分割,由短至長排列,把最短的兩條線段相加,恰恰等於第三條線段長;把第二短和第三短的線段相加,也會等於第四條線段,依序如是,顯示出黃金比例的奇妙!不過,他們並沒有進一步為這個神奇的發現加以解釋、定義和命名。

一直到公元前三百年,歐基里德所著的《幾何原本》問世,才有了對黃金比例最早的系統性論述。但你知道嗎?歐基里德也根本沒說過「黃金比例」一詞。後世所謂的「黃金比例」,其實是出現在《幾何原本》第四章的「極限與均值比例」(Extreme and mean ratio)。歐基里德對這個比例的說明如下:

-----廣告,請繼續往下閱讀-----

“A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the lesser.”

(一條線段如果切在「極限與均值比例」上,則線段的全長與較長分割段的長度比例,和較長分割段與較短分割段的長度比例相等。)

黃金比例的線段:a + b:a = a:b。圖/wikipedia

大家常常挂在嘴邊的黃金長寬比 1.618 ,就是從上圖的比例計算而來。只要把較短的線段 b 定義成 1 個單位,較長的線段 a 定義成 x 單位,再用一點國中數學上過的一元二次方程式,就能算出解答為 1.6180339887…… 或 0.6180339887…… 這兩個看~~~不到盡頭的無理數,都可被視爲黃金比例之值。就像另一位大名鼎鼎的無理數——圓周率,是以 「π」來表示,黃金比例也有自己的符號,叫做「φ」。「φ」一般念作 “ fai ” ,跟「π」押同韻,但捍衛正統希臘文念法的人可能會堅持念作 “ fee ”。

當初歐基里德只説了這麽多,純粹是為了解釋數學幾何上的意義。但他想也想不到的是,這個「極限與均值比例」,會變成美的代言人,帶給未來人類無限遐想的空間。

數學與人文藝術匯集,文藝復興時期的「神聖比例」

現代人熟知的「黃金比例」一詞,一直到 1830 年代左右才被廣爲流傳。在此之前,它的地位曾被提升到更崇高、神聖的位置。文藝復興時期,被稱為「會計學之父」的數學家兼方濟會修士——盧卡.帕西奧利(Luca Pacioli),出版了名叫《神聖比例》(Divina scalee)的著作。他從歐基里德定義的「極限與均值比例」出發,對正多面體和半正多面體的性質做討論。

1509 年由盧卡·帕西奧利出版的《神聖比例》,書中插圖由達文西繪製。圖/wikimedia

帕西奧利在研究「極限與均值比例」時深受啟發,開始與他熟悉的神學進行連結。他發現這個比例中提到的三個線段(全長、長邊、短邊),都在描述同一條線,像極了基督教的神學觀,既聖父、聖子和聖靈是三位一體。而這個比值之解的無理數,所具備無法窮盡的性質,就如同凡人無法理解全能無限的上帝般,兩個線段之比例是相等的(全:長 = 長:短),則代表神永恆的不變性與無所不在的屬性。

-----廣告,請繼續往下閱讀-----

從數學上看見神學解釋的帕西奧利,遂將「極限與均值比例」改稱為「神聖比例」。他在著作中進一步以「神聖比例」分析古希臘羅馬建築與人體結構的比例。在他看來,被神所創造的人類,其軀幹比例也隱含了「神聖比例」。這些內容更深地加強了「神聖比例」與「美」之間的連接。

此後,「神聖比例」便與「宗教」和「美」脫離不了關係。帕西奧利對純數學理論進行宗教哲學解讀的突破,成功地讓這個神奇的比例跨出數學界的舒適圈,成為數學家、神學家與藝術家之間共同的話題,後來更在討論中逐漸演變成後世蔚為流行的「黃金比例」。帕西奧利可説是打開「黃金比例」知名度,背後不可或缺的功臣。

宇宙誕生以來就存在?藏在大自然中的密碼竟是「黃金數列」

儘管吉薩金字塔和帕特農神殿是否依照黃金比例建造,數學界和藝術界還在爭辯不休,但實際上不需要人爲設計,大自然本身就蘊藏著黃金比例的美麗。以描述「兔子生兔子」問題而聞名的費波那契數列(Fibonacci number),可説是黃金比例的孿生手足。費波那契數列第零項是 0,第一項是 1,從第二項以後的值,就是前兩項加起來的和,所以依序會是:

1、1、2、3、5、8、13、21、34、55、89、144、233……

-----廣告,請繼續往下閱讀-----
用費波那契數為邊的正方形,可以拼凑出的近似的黃金矩形 ( 1 : 1.618 ) !圖/wikimedia

文藝復興後期鼎鼎大名的天文學家克卜勒(Johannes Kepler)發現,把費波那契數列的後一項除以前一項的值的話,會是 1 / 1 = 1, 2 / 1 = 2,3 / 2 = 1.5,5 / 3 = 1.67, 8 / 5 = 1.6, 13 / 8 = 1.625, 21 / 13 = 1.615…… 計算到這裏,你是不是也察覺到其中奧妙?隨著數列遞進繼續相除,這個值竟會越來越趨近於黃金比例!也因此,費波那契數列的別名就叫做「黃金數列」。

大自然中的植物,其實都是深諳造物奧義的數學大師。試著數一數雛菊的花瓣數量,你會發現它們恰好都是 13、21 或 34 的費波那契數。葉子與葉子之間要怎麽喬位子,才不會擋住彼此吸收陽光?玫瑰的花瓣要如何排列,才會顯得漂亮對稱?松果上的種子要怎麽生長,才可以有效利用有限的空間?這些問題的答案通通都是:旋轉角度的比值(以 360° 為分母)要符合黃金比例!

對稱的玫瑰,決定其花瓣位置的角度遵循黃金比例。圖/Pixabay

不只是植物界,無論是鸚鵡螺貝殼的生長、鷹隼迫近獵物的飛行軌線,抑或衛星圖上熱帶氣旋的外觀,就連宇宙中漩渦星系的旋臂,都呈現遵循黃金比例的螺線。從小至可一手掌握的貝殼,大至遙遠光年之外的星系,都藏著黃金比例的身影。大自然對這個奇妙比值的鍾愛,讓科學家着迷不已。

黃金矩形中隱藏的等角螺線。圖/wikimedia

有生命的動植物和無生命的氣旋或星系,都不約而同服膺於一個神奇的比值,展現一種似乎自世界誕生以來就存在,難以撼動、一致而規律的美。同屬於大自然一份子的人類,也不停在各樣的建築或藝術品中追尋,渴望證明黃金比例與美的相關性。然而即使是世人眼中曠世巨作的大衛像,也沒辦法百分百貼近黃金比例,畢竟誤差永遠不能被全面消除,更別忘了有限的我們也無法窮盡無限的 φ 。正因爲黃金比例是一種人類無法徹底掌握的美,才迫使我們得以在追求美的道路上,不停努力地前進,再前進。

-----廣告,請繼續往下閱讀-----

連自然都青睞的「黃金比例」近乎是「美」的同義詞。而我們的身邊,又有什麼東西用到黃金比例呢?

沒錯!就是這台 Creator Z16 筆記型電腦。

採用 16 : 10 螢幕的 Creator Z16 ,比市售的 16 : 9 螢幕多了 11% 的可視空間,創作更加自由寬廣。此外,16 : 10 ( 1.6 )也非常接近黃金比例( 1.618 ),讓你在創作時,感受蘊含萬物奧秘、數學家兩千多年來淬鍊的「美」。

本著以人爲本的設計理念, Creator Z16 的觸控面板讓人可更直覺操作,隨時揮灑靈感。 90 Whr 的大容量電池搭配快充功能和 15.9 mm 纖薄金屬打造的 2.2 kg 機身,可完美配合現代人隨時行動隨地工作的步調。以 True Pixel 顯示技術打造的 QHD+ 超高畫質面板,加上獨家 True Color 技術於出廠前進行色彩校正,可以精準呈現璀璨畫面。

想堅持你對生活的美學,又不想放棄實用主義的追求?小孩子才做選擇,你可以通通都要!就讓融合黃金比例又兼具堅强實力的 Creator Z16,成為你的繆思女神吧!

-----廣告,請繼續往下閱讀-----

現在購買 Creator Z16 加贈價值 2190 元 Microsoft 365 個人版一年期!登記再抽潮到出水的 Porter 托特包,這麼好康還不快點到賣場逛逛

參考文獻

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
由泰利斯、畢達哥拉斯到亞里斯多德,古希臘如何開展科學思維——《月球之書》
時報出版_96
・2020/02/04 ・3327字 ・閱讀時間約 6 分鐘 ・SR值 544 ・八年級

-----廣告,請繼續往下閱讀-----

  • 作者/大衛.翁弗拉許;譯者/林柏宏

科學的起源:以真實性質的角度來理解自然

二十世紀物理學家理查. 費曼(Richard Feynman,1918-1988)認為,當代物理學奠基於巴比倫人的數學方法,他們會以數學的方式來闡述問題,這種經驗能夠讓人學會歸納,進而發現自然原理。歐幾里得(Euclid ofAlexandria,西元前三世紀中期到西元前 285 年)的治學方法則與此相對,這位希臘思想家運用基本的邏輯規則,從我們稱為公設的基礎事實推導出更多複雜的定理。

製作於十九世紀晚期的古希臘地圖。圖/時報出版提供

在大約西元前三百年時,歐幾里得的方法很流行,而他的演繹法發源於更早的幾世紀前,當時的希臘思想家剛開始大膽地以真實性質的角度來理解自然。

對於月亮、太陽與眾行星性質的了解要真正有所進展,希臘的天文學家就得接受量化的方法。他們會需要巴比倫人研究天文的方法,包含實際數學運算,以及從單調的天象觀測中蒐集大量資料。他們的研究必須將這些資料融合希臘文化特有的、探討本質的思維。這種思維是從西元前六世紀的愛奧尼亞人社群開始的。

愛奧尼亞地區位於今日土耳其西部沿岸的城市與島嶼,最早開始推斷大自然是可探究、可預測的希臘人都來自這一帶,他們認為大自然的運作與眾神的意志無關。這種去除神祕面紗的世界觀由米利都的泰利斯起頭,從而解放了愛奧尼亞人的思考,開始為自然現象提出物理學的解釋模型,對科學的進步發揮了重要作用。

-----廣告,請繼續往下閱讀-----

然而,希臘世界另一邊的哲學家都反對泰利斯的論點,這些哲學家的根據地是位於南義大利的希臘殖民地─大希臘(Magna Grecia)。

在這場論爭裡,一些大希臘區的哲學家其實是最早發現月亮是球形而非一圓盤的人,有一批大希臘的人還引進了會讓希臘天文學突飛猛進的數學知識。但是,大希臘區並無科學思維,這裡的人高張神祕主義,鄙視實證精神,影響力最大的神祕主義團體還掩蓋、打壓與其主張相左的新發現。

諷刺的是,這個神祕主義勢力團體的創始人,出生於愛奧尼亞區中心地帶薩摩斯島(Samos)的畢達哥拉斯(Pythagoras,約西元前 570-495),其實就學於泰利斯門下,並由此展開他的學術之路。

泰利斯預測日食,阻止戰爭

要是西元前二千六百年就有諾貝爾和平獎,肯定會頒發給米利都的泰利斯。

他出生時,正是巴比倫文明崛起,催生出前所未有的知識創發活躍期,他也漸漸愛上數學與天文學。愛奧尼亞隸屬於呂底亞王國(Lydian),不過泰利斯或許去過巴比倫,不然就是取得了巴比倫的天文學文獻。不管是哪種情形,泰利斯都認識到日食與月食的沙羅週期,這與他的想法不謀而合,他本來就認為神明與自然無涉。

泰利斯畫像。描繪這位希臘天文學家的是荷蘭次畫家兼版畫家雅各·德·葛恩(Jacob de Gheyn),這是他 1616 年完成的作品。十七世紀時,荷蘭的鏡片磨製技術領先全球,因此這幅畫時空錯亂地讓泰利斯帶著一副眼鏡,泰利斯預測了西元前 585 年的一場日食。圖/時報出版提供

-----廣告,請繼續往下閱讀-----

當時呂底亞正與其敵對國之一,米迪亞(Media)交戰,泰利斯知道雙方指揮官都是迷信的人,便提出警告說,眾神要求他們休兵,並且會在西元前五百八十五年春季的某一天使太陽暗下來,以表明神意,其實泰利斯根據沙羅週期進行計算後,已經得知這一天應該會發生日食。

儘管泰利斯自己未察覺,但當他如此運用沙羅週期時,實際上計算的正是月球在太陽前方的移動。總之,日食確實出現了,戰事也平息了,泰利斯在愛奧尼亞聲名大噪,想向他學習自然研究的人蜂擁而至,其中一位就是從薩摩斯島搭船前來的畢達哥拉斯。

當時的米利都是個富庶的港口城市,當地的希臘居民不願向帝國統治者效忠,他們獨立自主,擁抱新知,或許是因為常從各地的航海貿易商口中得知新觀念,長此以往,泰利斯與其他米利都人的思考方式開始變得新穎激進。

比方說,他們認為地震是由於海中巨浪擊打陸地,土地陸塊是來自海水淤積堆造而成。這些關於自然的解釋終究會被證明並不正確,但重要的是,當時他們的想法和其他地方的人不一樣,他們的想法是可以接受驗證、有可能被否證推翻的,與那些虛無縹緲的神明無關。

-----廣告,請繼續往下閱讀-----

泰利斯和在他之後的愛奧尼亞人之所以與眾不同,乃在於他們斷定,認識自然是可行的,可以接受觀察與分析─ 而且,對於他們之中某些人而言,也能透過試驗實證。

為封口無理數的發現而殺人的畢達哥拉斯

薩摩斯的畢達哥拉斯是目前已知世上最早指出月亮是球狀的第一人,他會這麼想或許一開始源自觀察的結果,例如發現月球明暗分界線(lunarterminator)是彎曲的,這道線區分了月球被照亮與未被照亮的兩部分。

畢達哥拉斯畢竟是泰利斯的學生,而且比同時代的人更早認出晨星(the MorningStar)與暮星(the Evening Star)是同一顆物體─ 金星。這種認知來自於觀察,雖然畢達哥拉斯後來排斥觀測,轉而堅持藉由純粹的思索即可了解宇宙。

繪有畢達哥拉斯的十八世紀蝕刻畫,以義大利畫家拉斐爾(Raphael,1483-1520)在〈雅典學院〉(The School of Athens,1511)一畫中對這位希臘思想家模樣的詮釋為摹本。圖/時報出版提供

-----廣告,請繼續往下閱讀-----

旅居埃及多年,又去了巴比倫之後,畢達哥拉斯帶來了一項定理,直角三角形斜邊圍成的正方形面積,等於兩短邊各自圍成正方形的面積和。這不是他自己想出來的,埃及人與巴比倫人早將這觀念實際運用在生活中好幾百年了,巴比倫甚至發展出三角學這門數學。無論如何,由於畢達哥拉斯將這個定理引介給希臘人,未來幾世代探究大自然所需的數學知識才有機會出現。

但對畢達哥拉斯而言,數學不僅是工具,而是宗教信仰。

球狀月亮的想法只是畢達哥拉斯兄弟會神祕思想的一部分,畢達哥拉斯在位於義大利的克羅敦殖民地(the Croton colony)創立了這支教派。畢達哥拉斯教徒主張天界的「星球和諧」,認為月亮與其他星體不只是球形,而且是完美球形,繞著絕對的圓旋轉,每顆星球會產生特定的音符。再加上畢達哥拉斯輕視觀測法,凡是和其完美和諧觀念牴觸的新發現都一貫打壓。

其中一例是他的學生發現數字 2 開平方根會得到無理數,也就是無法化作分數,不能以兩個整數做為分子與分母來表示。謠傳畢達哥拉斯為了封口,謀殺了那個學生。

但他並不需要依靠暴力來提倡自己的學說。不久後,柏拉圖(Plato,約西元前 427-347)將熱心採納畢達哥拉斯的神祕主義,包含那些完美球形、圓形軌道、對觀察實測的輕蔑,以及阻撓接下來幾世紀科學進展的一切花俏玩意兒。

-----廣告,請繼續往下閱讀-----

採納實證主義的亞里斯多德

和他的老師柏拉圖比起來,亞里斯多德比較有科學精神。

雖然兩人的出發點都是想將畢達哥拉斯、巴門尼德提倡的這類神祕主義哲學與愛奧尼亞人的自然主義整合在一起,柏拉圖終究傾向了神祕主義,亞里斯多德則對愛奧尼亞思維更有好感。若提到愛奧尼亞的實證主義(empiricism)── 主張知識必須透過感官作用的經驗才能取得,兩人的分歧會特別明顯。

義大利文藝復興時期畫家拉斐爾在〈雅典學院〉(1511)一畫中描繪了古典時期眾多知識界巨星。正中央兩位面對面的人是柏拉圖(左)與亞里斯多德(右)圖/時報出版提供

愛奧尼亞人泰利斯觀察尼羅河的沉積土層後,做出了假設,認為全世界的大塊陸地都是經由類似過程,從一原始大洋中形成的。而泰利斯的學生、米利都的阿那克西曼德(Anaximander of Miletus,西元前 610-545)觀察幼魚和人類的差異,並在看過化石骨骼後,構想出早期版本的生物演化假說。綜合他們的所見所聞,愛奧尼亞人了解到,大自然不停地在變動。

亞里斯多德在研究如生物這一類地球上的物質時,大致上採納愛奧尼亞式的實證主義與變化觀念,可是一旦主題來到天象,他就表現出神祕主義的遺緒。畢達哥拉斯有個很妙的想法,認為天上的星體都是繞著正圓形軌道轉的完美球形,亞里斯多德深受此思想荼毒,同時還採用巴門尼德的主張,認為萬物恆定不變,結果形成了以下觀點:

-----廣告,請繼續往下閱讀-----

星星、太陽與行星都是恆久不變的,有永遠固定的幾何形狀,地球是墮落不潔的,也因此不完美。違背這完美理念的還有月球表面的暗黑地貌,亞里斯多德對此的解釋是,月球和地球走太近了,太靠近存在於地表上的汙染,指的就是人類和其他生命形式。

——本文摘自《月球之書》,2019 年 9 月,時報出版

 

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。