1

3
1

文字

分享

1
3
1

在外太空好睡嗎? 無重力下,身體會有什麼變化?

PanSci_96
・2023/03/27 ・2850字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

2022 年底到 2023 年全年的宇宙,很熱鬧!

先是維珍銀河(Virgin Galactic)2022 年開賣太空旅行票,預計 2023 年第二季成行;貝佐斯的藍色起源 (Blue Origin)則在 2022 年完成了第 6 趟商業載人發射;至於馬斯克的 SpaceX,把富豪送上太空站已經見怪不怪了。

不過,宇宙對土生土長的地球人可是充滿未知風險的,人類對一件攸關性命的事仍然充滿疑問:人上了宇宙,身體會發生什麼變化?而我們又要怎麼應對呢?

人類在太空會發生的事,線蟲知道!

平民宇宙飛行成真之前,有意競逐太空的各國政府和企業都要先搞清楚一個關鍵問題:太空對地球人的身體有什麼影響?短期停留和長程旅行個半年一年,又有什麼樣的差別?

-----廣告,請繼續往下閱讀-----

解密的鑰匙在一個小小的生物身上:線蟲。

2022 年 11 月,15 萬隻秀麗隱桿線蟲(Caenorhabditis elegans)大軍上了太空。線蟲的長度大約 0.1 公分,從孵化到成蟲只要 3 天左右,全身上下只有大約 1000 個細胞,每個細胞都能被追溯發育過程;又有簡單的神經網,而且許多基因和人類有相似性,為一種非常常見的實驗動物。

日本東北大學研究團隊把一批體內神經元用螢光蛋白標記好的線蟲送上國際太空站,交給太空站的日籍宇航員進行試驗,紀錄牠們由孵化到發育成成蟲的過程,目的是追蹤宇宙的微重力環境對線蟲會造成什麼影響。

他們發現線蟲的肌肉蛋白質和粒線體內代謝酵素減少、體長縮短、運動能力變差,並且多巴胺的分泌量也下降,不過背後的原因還不清楚。多巴胺是一種神經間傳遞訊號的化學物質,和調節身體動作、學習、情緒等有關。人類如果缺乏多巴胺會出現肢體動作障礙,最明顯的疾病就是帕金森氏症。

他們也在部分線蟲的培養皿裡加進許多塑膠小顆粒,讓塑膠粒時時碰觸到這些線蟲,結果發現,有碰觸的線蟲和沒有碰觸的相比,多巴胺減退比較少,運動能力也比較好。東北大學團隊提出的看法是:「除了運動外,『接觸』的刺激很可能是人在太空長保健康的要素」。

-----廣告,請繼續往下閱讀-----
「接觸」的刺激很可能是人在太空保健的要素。圖/Envato Elements

如果假設被證實的話,接下來就有機會特別設計出一套能刺激肌肉的接觸療法,例如按摩或指壓,上太空的人就不必每天耗一大段時間運動了。

不過,線蟲到人類離得很遠,要等到成果恐怕還需要花不少時間。

一上宇宙,身體馬上知道!

自從第一個太空人上宇宙以來,斷斷續續有小規模試驗記錄太空人的身體變化,從中可以歸納出許多「太空症狀」,我們舉出前 5 種最有感的改變當作例子:

一、水分跑到上半身,變成滿月臉

-----廣告,請繼續往下閱讀-----

一到了宇宙,少了重力把身體的血液往下拉,加上腿部本來有許多塊肌肉,只要一站起來或走動,就會像幫浦一樣把血液往上推擠,避免積存在下半身;於是不少太空人上太空頭幾天就發生上半身水腫,最明顯的是兩腿變細像鳥腿,還擁有一張又紅又脹的圓臉。

二、暈太空艙

搭乘太空艙也會發生類似的「動暈症(motion sickness)」症狀。眼睛告訴我們在移動,位在耳朵深處負責身體平衡感和空間感的前庭系統卻難以判斷上下左右,兩者衝突會讓人感到頭暈、噁心、嘔吐。

三、睡不著,睡不好

-----廣告,請繼續往下閱讀-----

在宇宙會失眠的原因還不完全明朗,推測和生理時鐘的晝夜節律被打亂有關,與大腦的水分分布改變有關;還有其他因素,如:說狹窄空間的壓迫感、身在危險環境的緊張感,可能也會導致睡眠變差。

在宇宙會睡不好。圖/Envato Elements

四、眼睛容易出問題

太空人的眼球變形、視神經發炎,視線變模糊,有些人甚至無法完全康復,目前的假說是眼睛受到腦部組織液的壓迫,把眼球和視神經「壓壞」了。舉個實例,美國太空人菲利普斯(John Phillips)先前在國際太空站待了半年,視力從 1.0 降到 0.2。

再加上宇宙裡無時無刻有輻射線穿透太空艙的防護壁,也連帶會損傷眼睛,例如提高水晶體變成白色混濁的機率,也就是俗稱的白內障。

-----廣告,請繼續往下閱讀-----

五、肌肉和骨質流失,這可能是最嚴重的太空健康問題

在地表因為有重力,不論提、拉、扛、站都需要使勁,一旦到了太空,你的身體會判斷肌肉沒有必要強而有力,肌肉合成量因此變少;骨頭也不必堅固到撐起全身,不用那麼努力生成骨骼組織,鈣質也就流失了。

因此進入太空的人,最明顯的症狀就是肌肉變鬆垮、手腳沒力,最明顯的就是下半身肌肉萎縮。骨質以每個月 1% 到 1.6% 的速率流失,1 個月的損耗量就超過地球的 1 年;也因為骨鈣大量從尿裡流失,容易得腎結石。

其他的太空症狀,還包括免疫系統變弱、造血功能可能變差、肺部容積下降等,也都是需要面對的問題。

-----廣告,請繼續往下閱讀-----

如何克服這些人體變化

直到目前,其實都還沒有很好的辦法。

最常見的做法是要求太空人每天花大量時間運動,例如踏上跑步機每天快跑、用阻力訓練機進行重量訓練、踩固定式腳踏車鍛鍊心肺功能,保持肌肉、骨骼和心血管的強度。不過這只是治標,不能治本,只能減慢肌肉骨骼的流失速度,而且在太空中的運動成效差,舉例來說,在跑步機上 2 小時,大約只等於在地表跑 20 分鐘的效果。

好消息是,一些應用的研究已經開跑,把人在太空發生的退化和衰弱現象,類比到肌少症、帕金森氏症、多發性硬化症等肌肉或神經退化性疾病,觀察小動物在太空中從分子層面到生理層面的變化,想找出地球上病人生病的原因和解方;例如:接觸療法有機會用來刺激帕金森氏症患者的大腦分泌更多多巴胺,改善手腳顫抖、走路小碎步的症狀。

另外,也有新創企業把大腦神經細胞和微膠細胞(microglia)裝在培養箱帶上太空站,微膠細胞是一種能在腦內環境發揮免疫功能的細胞,科學家懷疑它因為某些不明原因暴走,損傷到腦神經細胞,是導致神經退化性疾病的原因之一。在微重力環境下,的確可以誘發培養箱裡的微膠細胞出現異常行為,抽絲剝繭找出是哪些基因和蛋白質失控,或許就可以解開腦部病變的謎團。

-----廣告,請繼續往下閱讀-----
人類一上到宇宙,就會出現一連串的「太空症狀」。圖/Envato Elements

整體來說,太空醫學發展的速度比起太空飛行技術進步慢了非常多,這是在未來平民太空時代勢必要彌補的落差。

不過,現在也有一些大學開始設立太空醫學課程,例如倫敦國王學院今年 9 月要開課的航空太空醫學(Aerospace medicine)碩士班,這現象一方面顯示出市場有迫切的需求,一方面也透露出「宇宙民主化」可能真的不遠了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
PanSci_96
1247 篇文章 ・ 2379 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
近零碳建築新趨勢:從節能創意到 2050 淨零轉型
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/23 ・3709字 ・閱讀時間約 7 分鐘

本文由 建研所 委託,泛科學企劃執行。 

根據聯合國統計數據,全球每年 38% 的溫室氣體排放,並非來自道路上的交通工具,而是由「現代都市與建築」所造成的。

我們如今站在兩條路徑的十字路口。一條是依賴更多水泥建築與空調系統來抵禦夏季酷暑,然而這樣的選擇只會加劇室外大氣的惡化。另一條則是徹底改革建築、用電、設計與都市規劃,不僅尋求低碳排放的建築方式,還要找出節能降溫的解決方案,實現事半功倍的效果。

然而,我們是否真的能將建築業的碳排放歸零?

-----廣告,請繼續往下閱讀-----

建築的溫室氣體哪裡來?

在建築物 60 年的生命週期中,建材的碳足跡其實只佔 9.8%,因為建築一旦完成後,材料不會頻繁更換。相反,日常生活中的用電才是主要的碳排來源,占了 83.4%,其中大部分來自冷氣、照明和各種電器。

當然,讓大家集體關燈停用電器「躺平」來拯救地球,顯然不切實際。既然完全不消耗能源是不可能的,我們應該尋找更現實的解決方案。

現在就來看看全球七棟零碳建築之一——成大的「綠色魔法學校」,臺灣首座淨零建築,如何運用建築技術,成為當代永續建築的典範。這些技巧中,有哪些能應用到你我家中呢?

綠色魔法學校。圖 / 內政部建築研究所

為了省電要把煙囪塗黑、吸收更多太陽光?

都市裡,我們最大的挑戰之一就是夏天的高溫,水泥建築群在陽光的烘烤下,變成一個個巨大的窯爐。為了解決這個問題,綠色魔法學校在國際會議廳裝了一個煙囪,不過這不是為了讓窯爐更熱,而是用來降溫的。

-----廣告,請繼續往下閱讀-----

煙囪為什麼都都要蓋的那麼高?原來煙囪越高,上下的溫差越大。熱空氣因為密度低而向上移動,產生熱對流。溫差越大,這個熱對流就越強烈,這就是所謂的「煙囪效應」。在要幫室內降溫的情況下,我們的目的是產生更強的煙囪效應,抽走熱空氣,讓室溫下降。但這棟建築裡沒有火爐,而溫差不夠大時,這效應會變得微弱,那該怎麼辦?

綠色魔法學校提出了一個大膽的解法:在煙囪南面下半部改裝透明玻璃窗,並將煙囪內部塗成黑色,還加裝了黑色烤漆鋁板,這樣可以最大限度地吸收太陽光。每當艷陽高照,這個不插電的的「自然通風系統」就能自動啟動,創造局部的熱對流,帶動整根煙囪的熱氣向上移動,為室內降溫,達到節能效果。以熱制熱,完全反常識。

綠色魔法學校的特殊煙囪設計,玻璃引入太陽光。圖 / 泛科學攝影畫面截圖

幫室內降溫的最大原則是:通風。

實際上,不是人人家裡都有煙囪。但如果建築的高處沒有任何窗戶或通風設備,熱空氣就是會從屋頂一路往下蓄積在室內。因此,你也一定在許多工廠或民宅的屋頂看過一個不斷旋轉的小風扇,它們也是有異曲同工的效用。雖然不是高聳的煙囪,但特殊的渦輪構造,風吹過就會開始轉動,並連帶空氣排出室外。是個不用插電的通風球。

-----廣告,請繼續往下閱讀-----
綠色魔法學校館內動畫-室內通風排熱補冷。圖 / 泛科學攝影畫面截圖

綠色魔法學校的煙囪就是個效能更強的換氣機,足以讓 300 人大型會議廳的換氣次數,高達每小時 5 到 8 次,甚至能在室內颳起風速每秒 0.5 公尺的微風,是最舒適的環境。這些利用熱氣密度的差異來改善室內溫度的方法,又稱為「浮力通風」。

為了把通風貫徹到底,綠色魔法學校在建築的兩面裝設大量窗戶以及吊扇,來讓水平也能通風。這些我們習以為常的裝置,其實才是關鍵。靠吊扇的一點點電力讓自然風可以自由進出,耗費的能源,遠比冷氣還要少得多。

幫空調省電的最後一招,就是微環境控制。

綠色魔法學校透過屋頂植栽與造林改善微氣候。圖 / 綠色魔法學校

實際上魔法學校內還是找的到空調設備,並不是完全拔除不用。除了選用最高效率的主機,以及把室內循環做到最好以外,降低周遭環境溫度才能減低冷氣的負擔。要降低水泥叢林的熱島效應,需要植被與水體來做溫度調適。

在太陽照射下,水泥屋頂表面最高可以達到攝氏 70 度,如果屋頂有種植植栽,室內頂層樓板的表面溫度就可以維持在攝氏32 度以下。不用開電就先幫室內降溫。

-----廣告,請繼續往下閱讀-----

水也是關鍵的一環。一是水的比熱高,想打破水分子之間的氫鍵,需要大量的熱量,要讓一千克水的溫度升高一攝氏度,需要 4,200 焦耳的熱量,這可以避免溫度因為烈陽就快速上升。二是當溫度真的過高,水也會透過蒸發帶走熱量,讓溫度不至於向上飆。

魔法學校的屋頂花園使用水庫淤泥,研磨後燒製成的再生陶粒,裡頭混合了稻穀,結構極細,不會像有機土一樣分解消失,可以涵養水源,還不用動不動補土壤,不只降低屋頂植被的澆水次數,還能達到降溫效果。地面也採用透水鋪面,讓每一滴水都不浪費。

綠色魔法學校本名是成功大學的「孫運璿綠建築研究大樓」

2013 年被英國知名出版社羅德里其評為「世界最綠的建築」,並獲選為聯合國全球七棟零碳建築之一。

除了表彰之外,在認證上也確實取得了臺灣最高等級的「鑽石級綠建築」認證,以及美國最高級的「白金級綠建築」兩個綠建築認證。

-----廣告,請繼續往下閱讀-----

為了讓相同的成效可以陸續在全臺的所有建築上實現,臺灣在既有的綠建築標章體系上,擬定出了「建築能效評估系統 BERS」,針對關鍵的空調、照明、插座電器的用電狀況訂出明確的耗電密度指標得分。簡單來說,就是每平方公尺的面積上,每年平均的用電量。

建築能效標示。圖 / 內政部建築研究所

要打造一棟淨零建築,需要設計與材料硬體的相互配合。在日常用電這最大耗能項目上,能透過前面的淨零設計與智慧能源管理來減低能耗。而我們還沒提到的最後一塊拼圖,則是回到建築的建材本身。這部分減碳的方法有很多種,例如將傳統施作工法改為在工廠就完成模組化建材製造的「預鑄工法」,減少現場搭建鷹架、施工的步驟,達成減碳。又或是將部分建材更換為木、竹等負碳建材,甚至使用零廢棄物、能「循環使用」的建材。例如 2018 年亮相的臺中花博荷蘭館、或是 2021 年台糖在沙崙啟用的循環聚落。

建築物能夠完全不用電嗎?……電從哪裡來?

沒錯,連全球最綠的建築——綠色魔法學校,也無法做到完全不使用電力。正如前面提到的,建築的最大能源消耗來自日常使用,而這所「魔法學校」的成就,是成功將日常能源消耗降低,讓溫室氣體排放減少超過 50%。

這就是關鍵,減少一半後,剩下的部分就靠周邊的造林、太陽能和風能等綠色能源來補足。

-----廣告,請繼續往下閱讀-----

2022 年 3 月,國發會公佈了 2050 淨零排放的路徑圖,參考美國、日本、歐盟等國,制定了 2050 年達成淨零建築的目標。

這條路徑包含兩個核心目標:第一,所有建築物要在建築能效評估系統(BERS)中達到 1 級節能,甚至進一步達到「1+ 級」近零碳建築的標準,減少至少 50% 的能源消耗。第二,同步發展再生能源,讓這些近零碳建築朝淨零邁進。

淨零建築路徑。圖 / 內政部建築研究所。

這個目標比你想像的要容易實現。比如,2023 年 12 月,台達電的瑞光大樓 II 就成功取得了「1+ 級」近零碳建築認證,並符合 0 級淨零建築規範。而在 2024 年 7 月,國泰人壽在臺中烏日的商辦大樓經過改造後,也達到 0 級淨零建築標準。這些案例證明了綠色魔法學校的成功經驗可以複製,不論是新建築還是舊建築,都能達成甚至超越淨零目標。

圖 / 台達電瑞光大樓 II
圖 / 國泰人壽臺中烏日商辦大樓

如果我們不想讓「每個夏天都是未來最涼的一年」這樣的預言成真,碳排歸零是必須要實現的目標。現在你知道,這個任務的關鍵就掌握在你我手中。就像選擇能源標章電器一樣,只要選擇符合 BERS 能效標準的建築,我們不僅能降低冷氣的依賴,也能節省電費,讓地球和你的荷包都雙贏。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
209 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
從太陽發光到生命突變,一切都歸功於量子穿隧效應?
PanSci_96
・2024/10/19 ・1957字 ・閱讀時間約 4 分鐘

在這個充滿光與生命的宇宙中,我們的存在其實與一種看不見的力量密切相關,那就是量子力學。沒有量子力學,太陽將不會發光,地球上的生命將無法誕生,甚至整個宇宙的運行規則都會截然不同。這些微觀層次的奧秘深深影響了我們日常生活的方方面面。

其中,量子穿隧效應是一個看似違背直覺但至關重要的現象,從太陽的核融合反應到基因的突變,這種效應無處不在,甚至還牽動著當今的高科技產業。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子穿隧效應?

我們可以將量子穿隧效應比作一個奇妙的穿牆術。想像一下,你身處一個被高牆包圍的城市,牆外是未知的世界。通常,如果你要越過這道牆,需要極大的力量來翻越它,或者用工具打破它。然而,在量子的世界裡,情況並不如此。

在微觀的量子力學世界中,粒子同時具有波的特性,這意味著它們並不完全受限於傳統物理的規則。當一個微觀粒子遇到能量障礙時,即使它沒有足夠的能量直接穿過障礙,卻仍有一定機率能出現在障礙的另一邊,這就是「量子穿隧效應」。粒子彷彿直接在牆上挖了一條隧道,然後穿越過去。

-----廣告,請繼續往下閱讀-----

這聽起來像魔法,但它背後有深刻的物理學道理。這個現象的發生取決於量子粒子的波動性質以及能量障礙的高度和寬度。如果障礙較矮且較窄,粒子穿隧的機率就較高;反之,障礙越高或越寬,穿隧的機率則會降低。

太陽發光:核融合與量子穿隧效應的結合

量子穿隧效應的存在,讓我們能夠理解恆星如何持續發光。以太陽為例,太陽內部的高溫環境為核融合反應提供了所需的能量。在這個過程中,氫原子核(質子)需要克服極大的電磁排斥力,才能彼此靠近,進而融合成為氦原子核。

然而,單靠溫度提供的能量並不足以讓所有質子進行核融合。根據科學家的計算,只有約10的 434 次方個質子中,才有一對具備足夠的能量進行核融合。這是一個極小的機率。如果沒有量子穿隧效應,這種反應幾乎不可能發生。

幸好,量子穿隧效應在這裡發揮了關鍵作用。由於量子粒子具有波動性,即便質子沒有足夠的能量直接跨越能量障礙,它們仍然能透過穿隧效應,以一定機率克服電磁排斥力,完成核融合反應。這就是為什麼太陽內部的核融合能夠源源不斷地發生,並且持續產生光與熱,讓地球成為適合生命生存的家園。

-----廣告,請繼續往下閱讀-----

量子穿隧效應與生命的演化

除了恆星的發光之外,量子穿隧效應還對生命的誕生和演化起到了關鍵作用。地球上物種的多樣性,很大一部分源於基因突變,而量子穿隧效應則幫助了這一過程。

DNA 分子是攜帶遺傳訊息的載體,但它的結構並不穩定,容易在外界因素影響下發生變異。然而,即使沒有外界因素的干擾,科學家發現 DNA 仍會自發性地發生「點突變」,這是一種單一核苷酸替換另一種核苷酸的突變形式。

量子穿隧效應讓氫原子隨時可能在 DNA 結構中進行位置轉換,從而導致鹼基對的錯位,這在 DNA 複製過程中,可能會引發突變。這些突變若保留下來,就會傳遞給下一代,最終豐富了基因與物種的多樣性。

量子穿隧幫助促進 DNA 突變,協助生命的演化與物種多樣性。圖/envato

半導體技術中的量子穿隧效應

除了在宇宙和生命中發揮作用,量子穿隧效應還影響著我們的日常生活,尤其在現代科技中。隨著半導體技術的發展,電子設備的體積不斷縮小,這也讓電子元件的性能面臨更大的挑戰。

-----廣告,請繼續往下閱讀-----

在微小的電子元件中,量子穿隧效應會導致電子穿過元件中的障礙,產生不必要的漏電流。這種現象對電晶體的性能帶來了負面影響,因此設計師們需要找到方法來減少穿隧效應的發生,以確保元件的穩定性。

雖然這是我們不希望見到的量子效應,但它再次證明了量子力學在我們生活中的深遠影響。設計更有效的半導體元件,必須考慮到量子穿隧效應,這讓科學家與工程師們需要不斷創新。

量子力學是我們宇宙的隱藏力量

量子穿隧效應看似深奧難懂,但它對宇宙的運作和生命的誕生至關重要。從太陽的核融合反應到基因突變,甚至現代科技中的半導體設計,量子力學影響著我們生活的方方面面。

在這個充滿未知的微觀世界裡,量子現象帶來的影響是我們難以想像的。正是這些看似不可思議的現象,塑造了我們的宇宙,讓生命得以誕生,科技得以發展。當我們仰望星空時,別忘了,那閃耀的光芒,背後藏著的是量子力學的奇妙力量。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1247 篇文章 ・ 2379 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
深海發現大型礦場和「暗氧」!是能源危機的希望還是潘朵拉之盒?
PanSci_96
・2024/09/21 ・2329字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

深海的暗氧:無光環境中的神秘氧氣生成

深海,被譽為地球最後的未開發疆域,隱藏著許多不為人知的奧秘。數千公尺深的海底沉積了數量龐大的多金屬結核,這些礦物因含有大量珍貴金屬,對現代技術,尤其是能源轉型,至關重要。然而,科學家在探索這些結核的過程中意外地發現了一種神秘的現象:暗氧,即在無光的深海環境中生成氧氣的過程。這一發現不僅可能改變我們對海洋生態系統的理解,還可能重新定義地球早期生命起源的故事。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

長期以來,科學界普遍認為氧氣的生成依賴於光合作用。光合作用是植物、藻類及一些細菌透過陽光將水和二氧化碳轉化為有機物並釋放氧氣的過程。這一過程主要發生在地球表層和淺水區域,是維持大氣和海洋中氧氣含量的核心機制。根據這一觀點,只有在陽光能夠到達的區域,氧氣才能被生成。因此,對於深達數千公尺的深海區域,我們的認識是,氧氣主要來自於表層水透過洋流輸送到深處。

然而,深海中缺乏光源,光合作用無法進行,這意味著氧氣在深海中的供應受到限制。雖然洋流能夠在一定程度上將氧氣輸送到深海,但這一過程極其緩慢,往往需要數百年甚至上千年才能完成一次循環。因此,科學家一直認為深海是一個缺氧的環境。

多金屬結核的發現,是新能源的關鍵,還是海洋生態的災難?

在這樣的背景下,科學家對深海進行了更深入的探索,並發現了錳結核(英語:Manganese nodules),又被稱為多金屬結核這一珍貴資源。多金屬結核是富含金屬的岩石,其主要成分包括鈷、錳和鎳等金屬。這些結核廣泛分佈於全球深海區域,尤其是太平洋海域,儲量高達數兆噸。這些金屬對綠色能源技術,如電池生產,具有極高的價值,吸引了全球各國的關注。

-----廣告,請繼續往下閱讀-----

然而,這些結核不僅是地球資源的寶藏,它們還隱藏著另一個重要的發現。2013 年,科學家安德魯·斯威特曼(Andrew Sweetman)在太平洋克拉里昂-克里珀頓區域進行深海研究時,意外地發現,在封閉的深海水域中,氧氣濃度竟然有所增加。這一現象引發了科學界的極大關注。

科學家探索深海的多金屬結核時,意外發現「暗氧」的存在。 圖/envato

暗氧的生成機制

斯威特曼的研究團隊推測,深海中的多金屬結核可能在某些化學條件下,充當了天然電池。這些結核通過電化學反應將水分解為氧氣和氫氣,從而在無光的環境中產生了氧氣。為了驗證這一假設,團隊在實驗室中模擬了深海環境,並確實觀察到氧氣從結核生成的現象。

不過,這一過程並非如想像中簡單。根據實驗數據,某些海底結核表面的電壓僅為 0.95 伏特,卻能夠生成氧氣,這與理論上需要的 1.6 伏特電壓不符。研究團隊進一步推測,這可能與結核的成分有關,例如含鎳的錳氧化物可能起到了催化作用,降低了反應所需的能量。此外,結核表面的不規則排列及空隙可能也促進了電子轉移和水的分解。

暗氧的發現挑戰了我們對氧氣生成的傳統理解。過去我們認為,地球上的氧氣主要來自於光合作用,但這一現象表明,甚至在無光的深海環境中,氧氣也能通過無機物的電化學反應生成。這意味著,我們對於地球早期氧氣循環及生命演化的認識可能存在重大疏漏。

-----廣告,請繼續往下閱讀-----

尤其值得注意的是,多金屬結核的形成需要氧氣,而這些結核大量出現在深海中,是否表明早期地球上就已經存在非光合作用的氧氣生成機制?如果是這樣,暗氧是否可能推動了地球上生命的起源?這一問題仍然未有定論,但暗氧的發現無疑為生命起源的研究開闢了一條新的途徑。

未來的挑戰:開採深海資源還是守護地球最後的「淨土」?

除了科學研究的價值,多金屬結核也吸引了全球對於深海資源開採的興趣。這些結核富含稀有金屬,特別是對電池生產至關重要的鎳和鈷。然而,大規模的深海開採可能會對海洋生態系統造成嚴重破壞。

對於發現的深海資源,是要開採?還是選擇守護海洋生態? 圖/envato

首先,深海採礦可能導致噪音和光污染,破壞深海生物的棲息地。此外,採礦過程中產生的懸浮物可能對海洋生物,尤其是水母等生物造成生理負擔。研究顯示,水母在模擬的採礦環境中會因應對懸浮物而消耗大量能量,這可能削弱其免疫系統並降低生存率。

因此,雖然深海資源的開採看似能解決當前的能源危機,但國際間對此議題的爭議仍然持續。全球已有32個國家支持暫停或禁止深海採礦,呼籲進行更多的生態影響研究以確保環境保護。

-----廣告,請繼續往下閱讀-----

暗氧的發現,不僅為科學研究帶來新的挑戰,也為深海資源的開採提出了更高的要求。在能源危機與生態保護之間,我們需要尋找平衡點。未來的技術或許能夠在不破壞環境的情況下,模擬自然過程生成多金屬結核,從而實現可持續的資源開採。

此外,暗氧現象的發現也為探索外星生命提供了新的思路。當我們在其他行星上發現氧氣時,不一定意味著那裡存在光合作用生物,可能是類似多金屬結核的無機反應在默默進行。這一發現或許將改變我們對地外生命的定義與尋找方式。

深海的秘密仍在不斷被揭開。從暗氧的發現到多金屬結核的開採,這片未開發的疆域將在未來的科學探索與資源爭奪中扮演至關重要的角色。無論是能源危機的解決還是生態系統的保護,我們都應以謹慎且負責任的態度面對這一未知的領域,避免打開潘朵拉之盒。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。