Processing math: 100%

0

2
0

文字

分享

0
2
0

笛卡兒座標系:將思考推往高維度的世界——《用數學的語言看世界》

臉譜出版_96
・2018/01/14 ・3975字 ・閱讀時間約 8 分鐘 ・SR值 533 ・七年級

劃時代的想法「笛卡兒座標系」

15 世紀,古騰堡(Gutenberg)將活字印刷應用化之後,歐幾里德的《幾何原本》也變成活字版本了。從 1482 年威尼斯的初版開始, 世界上有超過一千種版本,可以說是除了《聖經》之外,銷量最多的 一本書。幾乎可以說《聖經》跟《幾何原本》是支撐歐洲文明的兩大支柱。

笛卡爾《談談方法》原版封面。圖/wikimedia commons

為歐幾里德的平面幾何帶來偉大變革的,是 1596 年出生的近代理性主義之父笛卡兒(Descartes)。笛卡兒在他的著作《談談方法》 中,提出追求真理的四大步驟:

1. 如果不是具有明證的真理,就不承認其為真。
2. 為了更加了解問題,要將問題分割成許多小問題。
3. 思考的順序是從單純的事物開始,依序往複雜的事物前進。
4. 小問題都解決了之後,將小問題全部列出來,看看是否有遺漏, 能不能涵蓋原本的大問題。

勒內·笛卡兒畫像,圖/by Frans Hals@wikipedia commons。

這也反應出了《幾何原本》的精神,從看起來理所當然的公理開始,一步步推導向複雜的圖形性質。

這個《談談方法》,是討論關於探討真理的方法的書籍序論。笛卡兒提出了一個幾何學上的新見解,做為這個方法的試論,那就是:

-----廣告,請繼續往下閱讀-----

「平面上的點都可以用一組兩個的實數來表示,也就是(x, y)」。

在平面上垂直相交的兩條線,分別稱為 x 軸以及 y 軸。為了表示平面上的點的位置,將點分別與 x 軸以及 y 軸做垂線,相交的點分別為 x 以及 y,於是這個點的位置就可以用 (x, y) 來表 示,這就是所謂的「笛卡兒座標系」(圖 6-10)。

雖然座標軸這個概念並不是笛卡兒發明的, 這樣的座標系也可以稱為「直角座標系」,但因為笛卡兒用這個座標系導入新的幾何學概念,所以我在此稱之為「笛卡兒座標系」。使用笛卡兒座標系的話,平面幾何的問題都可以代換成關於(x, y)的計算問題,連歐幾里德的五個公理, 都可以用笛卡兒座標來解釋了。

圖 6-10 笛卡兒座標系(直角座標系),圖/《用數學的語言看世界》提供。

例如,〈公理 3〉提到,平面上兩點(x1, y1)與 (x2, y2),以一點為圓心,求通過另外一點的圓的解。「圓」就是與某一點距離相同的 所有點的集合,所以首先計算這兩點的距離。 如圖 6-11,可以將(x1, y1)與 (x2, y2)的距離,也就是這兩點所連 結的線段想像成長方形的對角線。

根據畢氏定理,對角線的長度 r 的平方,就是長邊與短邊的平方和。也可以表示成:

-----廣告,請繼續往下閱讀-----

〈公理 3〉的「以(x1, y1)為中心,通過(x2, y2)的圓」就是與點(x1, y1)距離 r 的所有點的集合,因此滿足下面算式的所有(x, y)的集合就是解答。

(x - x1) 2 + (y - y1) 2 = r2

利用笛卡兒座標系,就可以將歐幾里德的幾何學問題化為方程式問題了。

圖 6-11 兩點間的距離 r,可以當作長方形的對角線來計算,圖/《用數學的語言看世界》提供。

用方程式解開美妙的「垂心定理」

2009 年,日本數學書房出版了一本名為《這個定理真美妙》(この定理が美しい)的書。這是一個大型企畫,由 20 位作者分別選出自己認為最美妙的數學定理,並且講述定理獨特的魅力,而我也選了「基本粒子論」中使用到的定理。在這本書中,京都產業大學的牛瀧文宏先生選了平面幾何的「垂心定理」。

要介紹垂心定理,得先介紹三角形的垂線。由三角形的頂點向對邊做一條垂直的線,這條線就稱為垂線。三角形有三個頂點,理所當然就有三條垂線。所謂的「垂心定理」是指,這三條垂線必會相交在一個點,而這個點稱為垂心。

-----廣告,請繼續往下閱讀-----
三角形垂心:由三角形的頂點向對邊做一條垂直的線的「垂線」,三條垂線必會相交在一個點,而這個點稱為「垂心」。圖/wikimedia commons

兩條直線如果不是平行的話,一定會在某處相交,形成一個交點,這是理所當然的事情。但是三條直線,就不一定會相交在同一個點了。牛瀧先生在關於垂心定理的描述中提到,「當時身為中學生的我,被那個即使用盡了我的全力也無法到達的境界的證明所懾服,圖形的協調以及層層堆積的理論,使我確確實實感受到定理的美妙」。 古希臘時代流傳下來的,關於垂心定理的證明,巧妙的使用了輔助線,說是藝術也不為過。網路上有許多關於垂心定理的證明,有興趣的人不妨參考。

在這邊利用笛卡兒座標系來證明這個定理。證明中不講求細節, 只是希望大家能感受一下方程式的氣氛,體會一下「將幾何問題化成方程式」的感覺。

假設三角形的頂點為 a = (0,0),b = (p,0), c = (q,r)。頂點 c 對 ab 邊的垂線,可以用方程式表示為:

x = q

頂點 a 對 bc 邊的垂線也可以用方程式表示為:

頂點 b 對 ca 邊的垂線也可以用方程式表示為:

最初的兩個方程式是 x,y 的聯立方程式,求解之後可以得到 :

(x, y) =(q, (p - q)q/r)

這個解也能滿足第三個方程式。也就是說,這三個方程式有共同的一個解。換句話說,三條垂線具有一個共同的交點,也就是垂心。

這個證明不像古希臘流傳下來使用輔助線的證明方法那樣帶有藝術性。只是先將題目中的垂線利用笛卡兒座標表示成方程式,接著解聯立方程式,按照步驟機械式地一步步操作而已。但正是因為不需要靈感,所以只要知道解法,誰都可以證明出同樣的答案。

如果使用輔助線的證明方法是在田野間悠閒騎著腳踏車,享受著田園風景前進,那麼利用笛卡兒座標系的證明方法就如同搭上由精密機械組裝而成的新幹線呼嘯而過一般。笛卡兒座標終結了幾何學的牧歌時代,進入了重視效率的近代。

-----廣告,請繼續往下閱讀-----
利用尺規作圖畫出的正五邊型,圖/by Hkpawn@wikipedia commons。

有科學技術的地方,就有笛卡兒座標系

高斯定理:「如果圖形的邊長比,能夠利用加減乘除或是平方根的有限次數組合來表示的話,這個圖形就可以作圖,如果不能,圖形就不能作圖」也可以用笛卡兒座標系簡單解釋。作圖的基本規則是只使用尺跟圓規,所以又稱為尺規作圖。在笛卡兒座標系中,利用尺畫出的直線,可以表示為一次函數 y = ax + b,利用圓規畫出的圓是二次函數 (x - x1) 2 + (y - y1) 2 = r2

因此,重複這些步驟作圖得到的線段長的比值,就是一次方程式以及二次方程式相互組合的解,也就是「可以利用加減乘除或是平方根的有限次數組合來表示」。

笛卡兒座標不僅僅影響了幾何學,對於科學技術方面的影響更是廣泛且重大。笛卡兒出版《談談方法》的序文〈探討真理的方法〉時,剛好是伽利略的晚年。

伽利略發現了許多關於物質運動的重要現象,包括——

-----廣告,請繼續往下閱讀-----
  • 鐘擺的等時性」:鐘擺的擺動週期是固定的,與擺動幅度無關;
  • 自由落體法則」:物體落下時所需要的時間與物體重量無關;
  • 慣性法則」:以等速度移動的物體,在不施加外力的狀況下,會一直維持等速度運動;
  • 相對性」:在等速度移動的座標系中的力學法則,看起來與靜止座標系中的力學法則相同。

但是,即使發現了這麼多重大的發現,伽利略卻沒有完成力學體系,其中一個原因,或許是因為伽利略並不知道笛卡兒座標系吧。

伽利略畫像,圖/by Justus Sustermans@wikipedia commons。

在伽利略過世那年出生的牛頓,為了將力學以及重力學的法則用 數學方法表示時所使用的,正好就是笛卡兒座標系。從此以後,科學以及工程學的各式各樣方程式都可以利用笛卡兒座標系表示。

今日,只要是有科學技術的地方,就有笛卡兒座標系。例如,電腦螢幕或是手機畫面上的點的位置,就是轉換成笛卡兒座標系,以數字表示,而能使電腦處理畫面上的圖像。

將思考推往高維度的世界

笛卡兒座標還有另一個重大貢獻,它將人類的思考從平面中解放,前往更高維度。

-----廣告,請繼續往下閱讀-----

二維平面的點可以用一組兩個的數字(x,y)表示,三維空間的點也能用一組三個的數字(x,y,z)代表。在三維空間中畫出互相垂直相 交的三條直線,稱之為 x 軸、y 軸、z 軸,在三維空間的點,分別對 這三個軸做垂線,得到 x、y、z 的數值,這個一組三個的數值就是點的座標。

二維平面上兩點(x,y)與(x’,y’)的距離 r 的公式是:

同樣的,三維空間中兩點(x,y,z)與(x’,y’,z’)的距離 r 公式是:

利用座標表示點的位置的話,能夠簡單地表示比三維更高維度的空間。n 維度的空間,就是無數個由一組 n 個數的座標(x1,……,xn)所表示的點的集合。三維的世界是眼睛可以看到的世界,但我們還是會懷疑、思考看不到的四維以上的空間到底有沒有意義。然而,我們的日常生活所遭遇的事物之中,就隱藏著高維度世界。

-----廣告,請繼續往下閱讀-----

 

 

本文選自《用數學的語言看世界:一位博士爸爸送給女兒的數學之書,發現數學真正的趣味、價值與美》,臉譜出版

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
2

文字

分享

0
6
2
黃金比例如何啟發世界的「美」!
鳥苷三磷酸 (PanSci Promo)_96
・2021/07/19 ・3828字 ・閱讀時間約 7 分鐘

本文由 微星科技 委託,泛科學企劃執行。

  • 作者 / 曾繁安

人類總會不由自主地被閃閃發光的事物吸引,取名時加上「黃金」二字,好像就能讓身價大漲,變得受歡迎。不管是黃金海岸、黃金地段、黃金右腳、 黃金奇異果,黃金獵犬、黃金脆薯、黃金盔甲、黃金流沙包、黃金開口笑(大誤)……人們用黃金形容所有美好的事物,連「比例」也一樣。「黃金比例」被譽為最美好的比例,你一定聽聞過,如果人的臉蛋身體或畫作構圖越接近黃金比例,就越迷人的説法。然而一個數字比例,怎麼會和美學扯上關係?

人類探究黃金比例的歷史,可追溯至兩千多年前……

古希臘時代大約公元五百多年前,癡迷於數學的畢達哥拉斯,認爲數學可以解釋世上一切事物。他的教學吸引了一群熱心的追隨者,被稱爲畢氏學派。在旁人眼裏,畢氏學派恐怕是一群怪人:恪守極爲嚴格的生活條規,不可吃肉和豆類,還會進行高强度記憶力訓練和三省吾身等等。但畢氏學派對數學幾近狂熱崇拜,尤其對數字 5 和五角星形的迷戀,使他們成爲史上最早接觸黃金比例分割的一群人。將構成五角星形的線段分割,由短至長排列,把最短的兩條線段相加,恰恰等於第三條線段長;把第二短和第三短的線段相加,也會等於第四條線段,依序如是,顯示出黃金比例的奇妙!不過,他們並沒有進一步為這個神奇的發現加以解釋、定義和命名。

一直到公元前三百年,歐基里德所著的《幾何原本》問世,才有了對黃金比例最早的系統性論述。但你知道嗎?歐基里德也根本沒說過「黃金比例」一詞。後世所謂的「黃金比例」,其實是出現在《幾何原本》第四章的「極限與均值比例」(Extreme and mean ratio)。歐基里德對這個比例的說明如下:

-----廣告,請繼續往下閱讀-----

“A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the lesser.”

(一條線段如果切在「極限與均值比例」上,則線段的全長與較長分割段的長度比例,和較長分割段與較短分割段的長度比例相等。)

黃金比例的線段:a + b:a = a:b。圖/wikipedia

大家常常挂在嘴邊的黃金長寬比 1.618 ,就是從上圖的比例計算而來。只要把較短的線段 b 定義成 1 個單位,較長的線段 a 定義成 x 單位,再用一點國中數學上過的一元二次方程式,就能算出解答為 1.6180339887…… 或 0.6180339887…… 這兩個看~~~不到盡頭的無理數,都可被視爲黃金比例之值。就像另一位大名鼎鼎的無理數——圓周率,是以 「π」來表示,黃金比例也有自己的符號,叫做「φ」。「φ」一般念作 “ fai ” ,跟「π」押同韻,但捍衛正統希臘文念法的人可能會堅持念作 “ fee ”。

當初歐基里德只説了這麽多,純粹是為了解釋數學幾何上的意義。但他想也想不到的是,這個「極限與均值比例」,會變成美的代言人,帶給未來人類無限遐想的空間。

數學與人文藝術匯集,文藝復興時期的「神聖比例」

現代人熟知的「黃金比例」一詞,一直到 1830 年代左右才被廣爲流傳。在此之前,它的地位曾被提升到更崇高、神聖的位置。文藝復興時期,被稱為「會計學之父」的數學家兼方濟會修士——盧卡.帕西奧利(Luca Pacioli),出版了名叫《神聖比例》(Divina scalee)的著作。他從歐基里德定義的「極限與均值比例」出發,對正多面體和半正多面體的性質做討論。

1509 年由盧卡·帕西奧利出版的《神聖比例》,書中插圖由達文西繪製。圖/wikimedia

帕西奧利在研究「極限與均值比例」時深受啟發,開始與他熟悉的神學進行連結。他發現這個比例中提到的三個線段(全長、長邊、短邊),都在描述同一條線,像極了基督教的神學觀,既聖父、聖子和聖靈是三位一體。而這個比值之解的無理數,所具備無法窮盡的性質,就如同凡人無法理解全能無限的上帝般,兩個線段之比例是相等的(全:長 = 長:短),則代表神永恆的不變性與無所不在的屬性。

-----廣告,請繼續往下閱讀-----

從數學上看見神學解釋的帕西奧利,遂將「極限與均值比例」改稱為「神聖比例」。他在著作中進一步以「神聖比例」分析古希臘羅馬建築與人體結構的比例。在他看來,被神所創造的人類,其軀幹比例也隱含了「神聖比例」。這些內容更深地加強了「神聖比例」與「美」之間的連接。

此後,「神聖比例」便與「宗教」和「美」脫離不了關係。帕西奧利對純數學理論進行宗教哲學解讀的突破,成功地讓這個神奇的比例跨出數學界的舒適圈,成為數學家、神學家與藝術家之間共同的話題,後來更在討論中逐漸演變成後世蔚為流行的「黃金比例」。帕西奧利可説是打開「黃金比例」知名度,背後不可或缺的功臣。

宇宙誕生以來就存在?藏在大自然中的密碼竟是「黃金數列」

儘管吉薩金字塔和帕特農神殿是否依照黃金比例建造,數學界和藝術界還在爭辯不休,但實際上不需要人爲設計,大自然本身就蘊藏著黃金比例的美麗。以描述「兔子生兔子」問題而聞名的費波那契數列(Fibonacci number),可説是黃金比例的孿生手足。費波那契數列第零項是 0,第一項是 1,從第二項以後的值,就是前兩項加起來的和,所以依序會是:

1、1、2、3、5、8、13、21、34、55、89、144、233……

-----廣告,請繼續往下閱讀-----
用費波那契數為邊的正方形,可以拼凑出的近似的黃金矩形 ( 1 : 1.618 ) !圖/wikimedia

文藝復興後期鼎鼎大名的天文學家克卜勒(Johannes Kepler)發現,把費波那契數列的後一項除以前一項的值的話,會是 1 / 1 = 1, 2 / 1 = 2,3 / 2 = 1.5,5 / 3 = 1.67, 8 / 5 = 1.6, 13 / 8 = 1.625, 21 / 13 = 1.615…… 計算到這裏,你是不是也察覺到其中奧妙?隨著數列遞進繼續相除,這個值竟會越來越趨近於黃金比例!也因此,費波那契數列的別名就叫做「黃金數列」。

大自然中的植物,其實都是深諳造物奧義的數學大師。試著數一數雛菊的花瓣數量,你會發現它們恰好都是 13、21 或 34 的費波那契數。葉子與葉子之間要怎麽喬位子,才不會擋住彼此吸收陽光?玫瑰的花瓣要如何排列,才會顯得漂亮對稱?松果上的種子要怎麽生長,才可以有效利用有限的空間?這些問題的答案通通都是:旋轉角度的比值(以 360° 為分母)要符合黃金比例!

對稱的玫瑰,決定其花瓣位置的角度遵循黃金比例。圖/Pixabay

不只是植物界,無論是鸚鵡螺貝殼的生長、鷹隼迫近獵物的飛行軌線,抑或衛星圖上熱帶氣旋的外觀,就連宇宙中漩渦星系的旋臂,都呈現遵循黃金比例的螺線。從小至可一手掌握的貝殼,大至遙遠光年之外的星系,都藏著黃金比例的身影。大自然對這個奇妙比值的鍾愛,讓科學家着迷不已。

黃金矩形中隱藏的等角螺線。圖/wikimedia

有生命的動植物和無生命的氣旋或星系,都不約而同服膺於一個神奇的比值,展現一種似乎自世界誕生以來就存在,難以撼動、一致而規律的美。同屬於大自然一份子的人類,也不停在各樣的建築或藝術品中追尋,渴望證明黃金比例與美的相關性。然而即使是世人眼中曠世巨作的大衛像,也沒辦法百分百貼近黃金比例,畢竟誤差永遠不能被全面消除,更別忘了有限的我們也無法窮盡無限的 φ 。正因爲黃金比例是一種人類無法徹底掌握的美,才迫使我們得以在追求美的道路上,不停努力地前進,再前進。

-----廣告,請繼續往下閱讀-----

連自然都青睞的「黃金比例」近乎是「美」的同義詞。而我們的身邊,又有什麼東西用到黃金比例呢?

沒錯!就是這台 Creator Z16 筆記型電腦。

採用 16 : 10 螢幕的 Creator Z16 ,比市售的 16 : 9 螢幕多了 11% 的可視空間,創作更加自由寬廣。此外,16 : 10 ( 1.6 )也非常接近黃金比例( 1.618 ),讓你在創作時,感受蘊含萬物奧秘、數學家兩千多年來淬鍊的「美」。

本著以人爲本的設計理念, Creator Z16 的觸控面板讓人可更直覺操作,隨時揮灑靈感。 90 Whr 的大容量電池搭配快充功能和 15.9 mm 纖薄金屬打造的 2.2 kg 機身,可完美配合現代人隨時行動隨地工作的步調。以 True Pixel 顯示技術打造的 QHD+ 超高畫質面板,加上獨家 True Color 技術於出廠前進行色彩校正,可以精準呈現璀璨畫面。

想堅持你對生活的美學,又不想放棄實用主義的追求?小孩子才做選擇,你可以通通都要!就讓融合黃金比例又兼具堅强實力的 Creator Z16,成為你的繆思女神吧!

-----廣告,請繼續往下閱讀-----

現在購買 Creator Z16 加贈價值 2190 元 Microsoft 365 個人版一年期!登記再抽潮到出水的 Porter 托特包,這麼好康還不快點到賣場逛逛

參考文獻

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
227 篇文章 ・ 315 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

1
2

文字

分享

2
1
2
花了三百年才證明的世紀難題:費馬的最後定理
數感實驗室_96
・2019/08/17 ・2551字 ・閱讀時間約 5 分鐘 ・SR值 538 ・八年級

數感實驗室/朱倍玉

如果有人突然問你:   a^{2}+b^{2=} ? 台灣學生大概像膝反射一樣,自然而然地答出  c^{2}

直角三角形,直角的兩鄰邊長的平方和等於斜邊長的平方。這是人人都熟悉的畢氏定理,也是百年數學之謎「費馬最後定理」的一部分。

費馬提出的世紀難題

費馬的本業是律師,但因為熱衷數學研究而被譽為業餘數學王子。圖/wikipedia

-----廣告,請繼續往下閱讀-----

費馬(Pierre de Fermat)是 17 世紀的一名律師,數學是他業餘的興趣,當時與他書信往來的包括了笛卡爾、帕斯卡、惠更斯等歷史上知名的數學家。雖然費馬本業跟數學天差地遠,但他相繼提出微積分、機率論與數論的研究,在數學界的貢獻不輸職業數學家,也因此獲得「業餘數學家王子」的封號。

研究《算數》(Arithmetica)這本書時,費馬在書的空白處寫下「  a^{n}+b^{n}=c^{n} ,當   n>2   時無正整數解」,並且用拉丁文留下一句話「我發現了一個極為美妙的證明,可是空白處太小所以沒寫下來」。

短短一條小學生就能理解的式子,再加上一句話,卻讓後世的數學家們花了足足三百年,直到 1995 年才由懷爾斯(Andrew John Wiles)教授完成證明,而這項證明,被稱為上個世紀的大任務。

(2019/8/20) 編按:原文提及費馬定理時敘述為「無解」,實為「無正整數解」,特此更正。

-----廣告,請繼續往下閱讀-----

懷爾斯在費馬的出生地前留影,其後是「費馬猜想」的雕刻。圖/wikipedia

立志要趁早,十歲許願解題的懷爾斯

這個世紀大任務的起點是懷爾斯 10 歲那年。他在圖書館翻閱一本講述費馬最後定理歷史的書,當時,他便對費馬留下來的難題產生濃厚興趣。在其他人才正要認識三角形的年紀,懷爾斯已經下定決心要解決這道流傳百年的難題。正好,又提供大家一個立志要及早的偉人例證。

跟很多成就大事的人一樣,懷爾斯在研究費馬最後定理的過程並非一帆風順。他踏入數學界的時期,正好是數學界準備放棄費馬最後定理的時候。大多數學家認為費馬最後定理無法證明,紛紛轉往其他領域。懷爾斯的指導教授也不例外,要懷爾斯放棄夢想,別白忙一場。也因此除了夢想外,他同時開始研究橢圓曲線註1這個領域。

然而事實上在更早以前,日本數學家谷山豐和志村五郎提出「谷山-志村猜想」,他們認為橢圓曲線與「模形式」註2可能有關聯。但是,橢圓曲線或是它與模形式的關聯跟費馬最後定理有什麼關係呢?1985 年,德國數學家佛列(Gerhard Frey)將谷山-志村猜想與費馬最後定理連結,他認為谷山-志村猜想可能可以協助完成費馬最後定理的證明。

-----廣告,請繼續往下閱讀-----

後來,法國數學家賽爾(Jean-Pierre Serre)、美國數學家里貝特(Ken Ribet)也投入研究。他們發現只要證明出谷山-志村猜想就可以完成費馬最後定理的證明,才再次啟動懷爾斯的世紀難題證明之路。

卡茲協助懷爾斯完成證明費馬最後定理的最後一哩路。圖/wikipedia

於是,長達 7 年的時間,懷爾斯致力於研究谷山-志村猜想與費馬最後定理,他也找來另一位數學教授卡茲(Nicholas Katz)加入研究。懷爾斯是一個很低調的人,為了避免引起眾人的懷疑與關注,他在學校開設新課程,好讓卡茲協助他找到證明費馬最後定理所需要的最後一項工具──類數公式註3

由於懷爾斯從未說明開課目的,也沒向學生解釋這個公式將幫助他們通往費馬最後定理,只是不停地證明,難度相當高,搞到最後台下聽眾就只剩下卡茲。不久後,懷爾斯正式完成所有證明。他選擇在劍橋大學舉辦三場研討會,對外宣稱研討會的內容討論的是橢圓曲線和模形式,完全沒提到費馬最後定理。

-----廣告,請繼續往下閱讀-----

當時有些謠言,這場研討會似乎有更勁爆的突破要發生,許多學者因此前來。研討會上,懷爾斯從橢圓曲線、模形式,一路證明到費馬最後定理,帶給台下聽眾滿滿的驚喜。隔天報章雜誌上,到處都在報導世紀難題已經解決的喜訊。

Diophantus-II-8-Fermat
儘管過程如此曲折,世紀難題終究還是從未竟之謎的名單中消除了。圖/wikipedia

以為解開了嗎?過程曲折離奇

然而「福兮,禍之所伏」,驚喜後面還藏了一個巨大的驚嚇。當懷爾斯的證明手稿進入審查階段,卡茲與懷爾斯反覆驗證時,他們找到一處先前完全沒發現的錯誤。

人們尖銳地檢視著懷爾斯的失誤,漫天的喜訊瞬間化成毫無遮掩的嘲諷。懷爾斯接受訪問時也表達,在備受矚目的狀態下進行研究並不是他的風格。他把自己關在書桌前,試圖解決這個錯誤,然而不論怎麼做都沒辦法突破。

-----廣告,請繼續往下閱讀-----

就在陷入絕望之際,他偶然在桌邊看到一份關於「岩澤理論」的論文。一時靈光乍現,他運用了岩澤理論來化解掉原先證明的錯誤,完成證明。1995 年,世紀難題才正式從未竟之謎的名單中消除。

「或許,我能給出關於我研究數學的歷程最貼切的描述,就是進入一棟大房子。當一個人開始探索第一個全黑的房間時,裡頭一片漆黑,他會在家具中邊跌倒邊摸索。漸漸地知道家具的位置。六個月後,你會找到開關並且打開燈。開燈的那一瞬間,整個房間被光線壟罩,你終於,能清楚地看見你站在哪裡」

——懷爾斯(Andrew John Wiles)

BBC拍攝了一部關於破解費馬最後定理的紀錄片,這段話正是懷爾斯在片頭的開場白。

破解費馬最後定理的世紀任務就像是完成一場接力式的拔河比賽,仰賴歷史上許多數學家的一臂之力,更需要在時間的沖刷與眾人的關注下承擔壓力的決心。從這個例子我們也可以看到,數學不是計算,更不是算得快就叫數學好。它是思考與邏輯,能讓許多人投入一生也樂此不疲的遊戲。

今年的 8 月 17 日,正好是費馬的 418 歲生日,特別寫這段費馬留給後人的禮物來祝他生日快樂!

-----廣告,請繼續往下閱讀-----

註釋:

  1. 橢圓曲線(Elliptic Curve)是二元三次曲線的一種形式,其圖形並非橢圓,而是圓環狀。
  2. 模形式(Modular forms)是具有極複雜對稱性的複數平面函數。
  3. 類數公式(Class number formula)與環的有限序列有關。

資料來源:

-----廣告,請繼續往下閱讀-----
所有討論 2
數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/