0

1
1

文字

分享

0
1
1

熷烏龍茶:以科學為本,解茶湯千年奧秘,創茶農百年志業

廖英凱
・2016/09/21 ・6871字 ・閱讀時間約 14 分鐘 ・SR值 584 ・九年級

原文刊載於科技大觀園〈承啟下一個台灣茶道百年志業的 「熷烏龍茶」〉。

本文基於著作人身份進行公開發表,相關內容不得被轉載或摘錄,以進行任何形式的利用,如有轉載、摘錄的需要,請洽科技部科技大觀園

 

「我說,人為什麼要喝茶?人活的好好的為什麼要喝茶?喔……到底是為了要回味兒。回什麼味兒?回甘甜的味兒,回甘甜和苦澀漸消的味兒,回養生和體驗的味兒,回悲歡離合喜怒哀樂的味兒,那……什麼樣的茶才叫好呢?」

(向李立群大師經典橋段致敬 =w=)

da-hong-pao-734225_640
飲茶對於台灣人來說,是已經有著漫長歷史的生活文化了。圖/aniu7839 @ pixabay

茶葉、茶道、茶產業伴隨著台灣的歷史,走過了上百個年頭。林立丘陵的茶園、旅客熙攘的精品茶坊、民族特色的採茶音樂,與店家琳瑯滿目的瓶裝茶和手搖杯。茶飲乘載了文化與歷史深植於我們的生活,就算不是精於茶道的雅士,你一定聽過廣告台詞中「回甘、不澀、養生解毒」等對於好茶的描述,也可能看過一些能讓茶變得更好喝的茶道技法。

若以科學的視角來看,這些更好喝或更養生的感覺與功效,代表有可能存在某種化學反應或物質參與其中。目前,中興大學生物科技研究所曾志正教授的團隊,正陸續以科學方法解析出這些物質,以此設計出風味獨特的「熷烏龍茶」,從原分子尺度的世界,我們得以一窺茶道千年的奧秘。

實驗室
曾志正教授與實驗室學生成員。左起依序為:林欣怡、Nilubol Nuanjonkong、陳冠亨、施毓恩、曾志正教授、林逸喬、陳晴雯、謝聖國、吳婕如、盧安祺。

好茶三要素:回甘、不澀、能養生

回甘,糖無法欺瞞的味覺

回甘的滋味與程度,是判定好茶的重要指標。無須加糖,也無法用任何的糖來取代回甘的感覺。究其原因,是因為甘味也是一種味覺,與甜味有不一樣的機制。過去研究發現,舌頭的味蕾上,含有可辨識酸、鹹、苦、甜、甘等五種味覺接受器1。當熬煮魚、貝、鹹肉、大骨與蔬菜等食材時,釋放出來的谷胺酸鹽與核苷酸會分別扮演啟動分子與增強分子的角色,這兩種分子會與味蕾上的甘味接受器 T1T1 / T1R3 結合,使甘味接受器的結構改變,而傳送訊息至大腦引發甘味感覺。

具有回甘滋味的綠茶與烏龍茶也有著豐富的游離胺基酸(free amino acids)來引發甘味,以烏龍茶來說,茶湯內含有谷胺酸(glutamate)與茶胺酸(theanine),可做為啟動分子。雖然在茶湯內,扮演增強分子的核苷酸含量極低,但茶湯內仍有豐富的茶倍素(theogallin)與沒食子酸(gallic acid)可發揮類似功效,共同活化味蕾上的甘味接受器2

如何提升茶的甘味?

然而,除了透過選定茶樹品種與種植條件等來影響茶葉成分以外,製茶過程的各種工法,也會造成茶葉成分的改變。例如當烏龍茶經過反覆高溫烘焙時,烘焙過程會使有甘味的游離胺基酸因高溫而裂解,理論上會降低茶的回甘滋味。不過,茶葉原有的兒茶素與黃酮醇配醣體等多酚化合物,也因高溫而被大量降解成沒食子酸、楊梅黃酮(myricetin)與槲皮素(quercetin)。此時的烘焙烏龍茶湯,是以楊梅黃酮為主要啟動分子,槲皮素為次要啟動分子,以沒食子酸為增強分子,形成一個新的回甘分子組合。在分子動態模擬中發現,這組合所引發的甘味接受器緊縮程度(6.1 Å),比起一般烏龍茶湯的對甘味接受器的緊縮程度(8.2 Å)更佳3。這代表若想要提升茶的回甘滋味,可以藉由設計合適的烘焙製程,降解出完全不同的回甘分子組合,來達到更強的回甘滋味。

1
甘味接受器在楊梅黃酮和沒食子酸的影響下,結構開口由15.1 Å減少為6.1 Å 4

澀度,捉弄舌尖的觸覺

澀茶入口,真不是「滋味」。相較起回甘的美好,澀味在茶飲中則是個不受歡迎的嫌惡因子。但事實上,澀味並不是一種味覺,而是一種觸覺

目前已知可形成澀味的共有四類物質,分別為:多酚類物質(polyphenols)、金屬鹽類(metal salts)、有機酸(organic acids)、脫水劑(dehydrating agents)。以食物中常見的多酚類來說,多酚類物質當接觸到唾液中的唾澀蛋白群(PRPs)時,因唾澀蛋白群本身不具摺疊立體結構,所以會容易和多酚類物質互相纏繞聚集成不溶於水的沉澱物,而降低唾液潤滑口腔的效果,使得口腔內的神經細胞感受到壓力與觸覺,而形成皺縮、拉扯或縮攏的感覺,這一個感覺,就會被我們認知成「澀味」5

從茶的成分來看,茶的可溶性物質剛好以多酚類含量最高6,雖然這些茶多酚在近年來有許多以抗氧化效用為主的保健功效陸續被發現,但在烏龍茶與綠茶中,占茶多酚中含量七成的兒茶素類,以及總量雖只有兒茶素百分之一至千分之一,但引起澀味程度也是兒茶素百倍至千倍的黃酮醇配醣體,或是紅茶中的茶黃素與茶紅素等,都是導致喝茶時口腔感受到粗糙和皺縮等澀味感覺的主因。

高山茶,越高越甘甜不澀?

若想降低茶葉的澀味,除了沖泡時合適的溫度與時間等技巧來控制茶葉的物質溶出以外,也會受到茶葉種植時日照、紫外線、溫溼度等環境因子與發酵、烘焙和陳放等製茶方式的影響。例如烘焙時兒茶素與黃酮醇配醣體等多酚化合物被大量降解的狀況,剛好同時有降低澀味與轉化為回甘成分的功效。

曾志正教授的團隊,在 2012 年以種植於不同海拔的青心烏龍茶為標的,利用高效液相層析儀(high performance liquid chromatography, HPLC)進行分析,發現無論是新鮮葉片,或是初製茶(毛茶),兒茶素總含量均隨著種植海拔增加而遞減 7。這個關聯性很可能是因為不同海拔的溫度差異,影響了茶葉內特化酵素 ECGT 的活性。茶葉內的 ECGT 酵素可以將澀度較低的非酯性兒茶素轉化為澀度較高的酯性兒茶素。當溫度低於 20℃ 時,ECGT 的活性下降,使得茶葉中的酯性兒茶素較少,也減少了茶的澀度。這似乎與人們印象中越是高山的茶,品質則越好的印象吻合。

2
澀味強度較高的酯型兒茶素 ECG 和 EGCG,含量隨種植海拔升高而減少。

怎麼知道誰比較澀?

澀味的多寡實在是評比茶葉品質的關鍵指標。然而澀味的感受機制與其他味覺不同,一整天的口腔狀態也會隨著飢餓、飽足、疲勞等有所差距。在茶業評比或競賽時,評審往往需要喝下相當多的茶湯樣品來給予評分。但是當唾澀蛋白與茶多酚物質結合沉澱於口腔時,人體無法在短時間重新補充唾液,並清除吸附於舌頭與口腔的沉澱物。這導致澀味會持續的累積而難以做到連續評比時的一致性,在過往的比賽中也往往引發不少爭議。

為解決這個狀況,曾志正教授團隊發明了利用人造油體的技術作為澀度鑑定的方式。研究團隊是利用一個已知的基因序列來合成唾澀蛋白質,並利用芝麻油與磷脂質 DSPC 做成帶有唾澀蛋白的人造油體。這些人造油體如同許多微小的油滴般,均勻地懸浮在溶液中。

當人造油體溶液與茶湯混合時,油體上的唾澀蛋白會與茶湯中的導致澀味的茶多酚結合並互相牽引。若是茶多酚的濃度越高,則油體之間的聚集程度越強、上浮速率也越快,在溶液頂層產生可視的乳狀層也越厚。研究團隊發現這項實驗結果,與高效液相層析儀的成分分析和交由專業評委的盲測比對相符,相信此項科學檢驗技術的發展,能有效輔助茶葉評比,並提供茶農量化的分析數值作為茶質判斷的輔佐工具。

3
不同品種不同澀味程度的烏龍茶,在人造油體實驗中,從油體聚集上浮的厚度可以直接看出澀味分子的數量差異。

青心烏龍的養生秘方:體歸靈

喝茶,除了好喝以外,更有「養生」這一項頗受當代人重視的好處。茶裡有多種能促進身體健康的物質,自古以來也被視為是重要的中草藥。目前種植於台灣較高海拔地區的「青心烏龍」,更有著獨一無二的養生保健成分。青心烏龍在台灣的栽種史,起源於 1855 年舉人林鳳池先生自福建武夷山引進南投縣鹿谷鄉凍頂地區,種下了聞名百年的台灣凍頂烏龍茶產業。目前在台灣海拔七百公尺以上的茶園,也多以栽種青心烏龍茶種為主。

幾十年來,在許多飲用者的經驗上發現,喝青心烏龍茶後會比飲用其他茶種有明顯的飢餓感。一些茶行業者與茶農,也因大量飲茶之故而有食慾大增以及排便次數更頻繁的經驗。這代表著青心烏龍茶中,可能含有能產生飢餓感並促進腸胃蠕動的物質。發現這項物質的契機,是在 1999 年時,日本科學家 Masayasu Kojima,找到了一個能傳遞飢餓訊息的激素分子,並命名為飢餓素(ghrelin)8。飢餓素除了引發飢餓促進食慾,更能有效刺激生長激素的分泌,調節新陳代謝與心血管和腸胃的功能,還具有神經營養與保護中樞神經系統的效果。

這些關於飢餓素的敘述,與青心烏龍茶的飲用效果非常類似。自 2002 至 2014 年間,曾志正教授團隊在利用高效液相層析儀分析青心烏龍與其他常見烏龍茶種的研究中發現。有兩個微量成分,其含量在青心烏龍中明顯高於其他烏龍茶種。利用核磁共振光譜儀(NMR)解析結構後,發現這兩種微量成分的分子結構非常相似僅相差一個 OH 基。再歷經動物實驗確認這種微量成分可以引發飢餓感;從老鼠的腦下垂體細胞培養實驗中,發現微量成分如飢餓素一般可以誘導生長激素的分泌;在模擬分子對接的電腦運算中,也發現這種微量成分可以如飢餓素一樣被生長激素接受器結合而刺激生長激素分泌。

曾教授將這項微量成分命名為「體歸靈 (teaghrelin)」,亦稱為「茶飢素」,取其來自於茶(tea),又具有飢餓素(ghrelin)特性之故。這是目前發現在天然化合物中,唯一具有類似飢餓素效果的物質,這或許就可以解釋,為什麼過去經驗上覺得喝茶能促進食慾、頭腦清晰、活動力旺盛且抗老化的功效。

4
利用高效液相層析儀分析成分光譜,發現上圖的青心烏龍茶,比下圖四季春烏龍茶多了兩個獨特的成分9

熷烏龍茶與台灣茶製程技術產學聯盟

經歷反覆烘焙與陳放的「熷烏龍茶」

結合了對於回甘、澀味與體歸靈(茶飢素)的了解。曾志正教授選用發酵足的青心烏龍茶葉,以運用反覆烘培與陳放兩大工序,設計出主要以一至三年為期的「熷烏龍茶」製程,並以液相層析串聯質譜儀(LC/MS/MS)與氣相層析質譜儀(GC/MS)來分析茶葉成分在各個階段的變化。

質譜儀
曾志正教授團隊,利用質譜儀分析茶湯中的成分,來解析茶葉品質與製程的改良方向。

在過去累積的研究成果中,我們已經知道青心烏龍擁有獨特的體歸靈成分;而充分的發酵,意味著茶葉經過適度的氧化而轉化出更豐富的天然活性分子,得以參與後續烘焙與陳放工序的物理變化或化學反應。適當的烘焙溫度與時間,可以降低茶葉中的水分增加保存期限;高溫下的梅納反應(Maillard reaction)和熱裂解反應(pyrolysis)會產生褐色的類黑素而改變茶葉與茶湯的色澤,更會轉化出多種不同氣味的分子增加茶葉的風味10,11;也會使咖啡因揮發而明顯減少,帶有澀味的兒茶素與黃酮醇配醣體等多酚化合物,被大量降解成能提升甘味的沒食子酸、楊梅黃酮與槲皮素,因而使得茶葉透過加溫烘焙的化學反應平台,而有了溫潤渾厚又回甘的韻味。

烘焙
「熷烏龍茶」製程關鍵之一為找到合適的烘焙溫度與時間,降低澀味來源的兒茶素衍生物與黃酮醇配糖體,但又避免其他物質揮發與過高溫而炭化。

除了原料選擇、發酵程度與烘焙以外,曾教授也特別訂製了透氣良好的陶甕來陳放熷烏龍茶。「陳放」又稱「藏茶」,在數百年來茶品的保存的經驗上,人們已知道陳放的時間、環境,甚至是容器都會影響到茶葉的品質,甚至是改變茶葉的風味。曾教授的研究成果也發現,新鮮茶葉中較有刺激感揮發性香氣的的直鏈與支鏈碳氫化合物(長鏈烷類與長鏈酸類分子),在烘焙時的成分並無明顯改變,但長時間陳放過程緩慢的氧化或聚合變化卻能使這些影響氣味的揮發性分子遞減,而給予茶更溫和的香味表現12

陳放
「熷烏龍茶」製程另一關鍵為陳放,曾志正教授特別選定透氣性良好的陶甕,並適宜控制存放地點條件,讓茶葉中的直鍊與支鍊碳氫化合物得以降解。

台灣茶製程技術產學聯盟

教授
中興大學曾志正教授與設置於中興大學生物科技研究所的「熷烏龍茶製程展示場」。

然而,雖然累積了過去十幾年對於茶葉的科學基礎研究,也從而推出了具有獨特風味的優質茶品「熷烏龍茶」。但是,這完全不代表存在著一個萬用的 SOP 或技術,能讓所有茶農一以貫之地技轉利用。曾教授認為台灣的茶產業,正面臨著鑑別度不夠,以及技術外流的困境。國內各業者過去因採用相同的製程,或過分依賴經驗法則,導致各家所推出的茶品差異度並不大,在低鑑別度的狀況下,又受到進口廉價茶的衝擊,導致市場陷入了削價競爭的惡性循環。儘管偶有推出盛極一時的茶種或製茶方式,也會很迅速地外流到大陸與東南亞各地而失去競爭力。

曾志正教授認為現階段由學界投入資源研發製成再技轉給製茶業者的方式,僅能帶來短期的榮景,無法長期而有效地解決削價競爭與技術外流的產業困境。

目前,曾志正教授與十數間民間製茶業者組成了「台灣茶製程技術產學聯盟」。他們的重點不僅是研發更好的茶葉製程。而是教會茶農這些製程步驟的原理,讓每一個製茶者,可以根據自己茶園裡的作物特性,依照顧客的偏好口味,開發出自己獨一無二的產品。聯盟中的製茶者,可以將製茶過程中的半成品或完成品,送至中興大學分析茶品成分,並與曾教授討論茶品成分與製程的關聯性,再回頭修改如茶葉種植、烘焙時間溫度、陳放時間與環境因素等製程細節,最終找到最符合自己的茶葉製程。

「我的願景是,台灣百年的茶產業要怎麼走下去。」

思索台灣未來茶產業的發展,結合著茶農們世代傳承的土地經驗,曾教授累積數十載的科學基礎研究,正輔佐著我國的茶產業,承啟下一個台灣茶道的百年志業。

註:曾志正教授研究團隊獲科技部105年度「產學技術聯盟合作計畫」補助(計畫名稱:台灣茶製程技術產學聯盟(2/3),執行期間:2016/02/01~2017/01/31)。科技部推動「產學技術聯盟合作計畫」之目的,係為促使大專校院及學術研究機構有效運用研發能量,以其已建立之核心技術與相關之上中下游業界建構技術合作聯盟,以協助產業界提昇競爭能力及產品價值。

 


參考資料

  1. Chandrashekar, Jayaram, et al. “The receptors and cells for mammalian taste.”Nature 444.7117 (2006): 288-294.
  2. Kaneko, Shu, et al. “Molecular and sensory studies on the umami taste of Japanese green tea.” Journal of Agricultural and Food Chemistry 54.7 (2006): 2688-2694.
  3. Li, Feng-Yin, et al. “Concurrent accumulation of myricetin and gallic acid putatively responsible for the umami taste of a specialized old oolong tea.”Journal of Food and Nutrition Research 1.6 (2013): 164-173.
  4. Kuo, Ping‐Chung, et al. “Changes in volatile compounds upon aging and drying in oolong tea production.” Journal of the Science of Food and Agriculture 91.2 (2011): 293-301.
  5. Kallithraka, S., J. Bakker, and M. N. Clifford. “Evidence that salivary proteins are involved in astringency.” Journal of Sensory Studies 13.1 (1998): 29-43.
  6. Lee, Ren‐Jye, et al. “Study of the release of gallic acid from (–)‐epigallocatechin gallate in old oolong tea by mass spectrometry.” Rapid Communications in Mass Spectrometry 24.7 (2010): 851-858.
  7. Chen, Guan-Heng, et al. “Catechin content and the degree of its galloylation in oolong tea are inversely correlated with cultivation altitude.” Journal of Food and Drug Analysis 22.3 (2014): 303-309.
  8. Kojima, Masayasu, et al. “Ghrelin is a growth-hormone-releasing acylated peptide from stomach.”Nature 402.6762 (1999): 656-660.
  9. Lo, Yuan-Hao, et al. “Teaghrelins, unique acylated flavonoid tetraglycosides in Chin-shin oolong tea, are putative oral agonists of the ghrelin receptor.” Journal of Agricultural and Food Chemistry 62.22 (2014): 5085-5091.
  10. Li, Feng-Yin, et al. “Concurrent accumulation of myricetin and gallic acid putatively responsible for the umami taste of a specialized old oolong tea.” Journal of Food and Nutrition Research 1.6 (2013): 164-173.
  11. Kuo, Ping‐Chung, et al. “Changes in volatile compounds upon aging and drying in oolong tea production.” Journal of the Science of Food and Agriculture 91.2 (2011): 293-301.
  12. Chen, Ying-Jie, et al. “Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old Tieguanyin oolong teas.” Food Research International 53.2 (2013): 732-743.

延伸閱讀

  1. 謝聖國, et al. “體歸靈 (茶飢素)-喝烏龍茶會肚子餓的活性成分.” Jour nal of Agriculture and Forestry 63.2 (2014): 75-82.
  2. 王美琪, 陳盈潔, and 曾志正. “熷烏龍茶-經反覆烘焙與陳放轉化出的精製烏龍茶.” Jour nal of Agriculture and Forestry 63.2 (2014): 83-90.
  3. 鍾澤裕, and 曾志正. “喝茶回甘的分子機制.” Jour nal of Agriculture and Forestry 63.2 (2014): 91-97.
  4. 施毓恩, et al. “喝茶澀味的分子機制與科學檢測茶澀度的技術發展.” Jour nal of Agriculture and Forestry 63.2 (2014): 99-106.
  5. 李欣潔, 陳冠亨, and 曾志正. “烏龍茶種植海拔高度與其茶湯澀度的關聯性.” Jour nal of Agriculture and Forestry 63.2 (2014): 107-113.

數感宇宙探索課程,現正募資中!

文章難易度

3

4
3

文字

分享

3
4
3

一生可以聆聽的聲音總量是註定的?戴上你的聽力計算機!

雅文兒童聽語文教基金會_96
・2022/05/17 ・3915字 ・閱讀時間約 8 分鐘
  • 文/黃上維 聽力師|雅文兒童聽語文教基金會

「早上跑了五圈操場,晚上吃個雞排加珍奶應該還好吧……」、「昨天買了一雙限量版精品鞋,這個月就不吃晚餐了……」,生活中充滿算數題,來決定我們的生活習慣與行為,其實,在聽力學領域中,也有類似概念哦!聽的刺激不夠,聽覺系統解析的功能會逐漸衰退;聽的刺激太多,聽覺系統也會感到疲勞或損傷。到底聽多少,才能剛剛好?今天就帶你揭密聆聽的守則。

世界衛生組織(World Health Organization,WHO)統計全球已超過 5% 人口有失能性聽力損失。然而,多數聽力損失可被預防,調查發現將近 50% 的年輕人使用過高的音量聆聽個人音訊設備,約 40% 經常去娛樂場所的人(包括演唱會、運動賽事)則暴露在過久的高音量下[1]。 WHO 為此著手訂定「安全聆聽」的保健策略,如同醫師及藥師給藥時會算劑量,安全聆聽需要計算聲音暴露容許量(sound allowance)。

聽得「過久」或「過大聲」都會造成傷害

聲音是一種能量,基於相等能量原理(equal energy principle),無論能量在時間上的分佈如何,相同聲能的聲音會造成一樣的永久性聽力變化,表示「長時間聆聽較低的音量」會產生與「短時間聆聽非常的大音量」相同的影響。

WHO 提出兩種標準,均以七天作為一周期[2]。當聲音能量加倍(以 3 分貝為級距),容許的時間要減半,如下圖所示,健康成人適用一般標準;「兒童、耳毒性藥物服用史」等對噪音更為脆弱的族群則適用敏感標準,其將風險起始點下修至 75 分貝(dBA)的聲音每周聆聽 40 小時。此外,視障、認知困難者及老年人,考量聽力一旦損失,對其產生的負向影響將更大,也應選用較嚴謹的標準[3]

WHO 聲音暴露容許量。分貝越高,容許時間越少。圖/作者,製作自參考資料 2

聽起來不難嗎?生活中的聲音有多大聲

當我們在身處安靜室內,隔著一張桌子與朋友聊天時,說話音量的分貝就已經有 55-60 分貝(dBA);此時若環境變得吵雜,我們也會不自覺提高說話音量,分貝來到 65 分貝,如此可見生活中的大聲音是無所不在。美國 3M 公司團隊針對超過 1700 種職業、娛樂、社區等噪音源進行實際量測或整理文獻,發表了各項分貝數值[4],本文整理生活常見情境,並將分貝範圍達 75 分貝以上者,標為警示音量。

常見聲音音量分布。淺色底表示範圍,深色底表示平均值。圖/作者,製作自參考資料 4

現在我們來將分貝數對應 WHO 的「成人聲音暴露容許量」,以果汁攪拌機為例,平均音量是 82 分貝,一周應避免超過 25 小時的從旁聆聽,這似乎是件輕鬆的事!(除非你家開果汁店那就另當別論);然而交通機車噪音平均達到 98 分貝,一周應避免超過 40 分鐘的騎乘,對被譽為「機車王國」的台灣而言,似乎就沒有那麼容易。

隱形聽力殺手:環境噪音及娛樂噪音

交通機車噪音除了來自周遭車輛與自體引擎外,氣流吹向安全帽框所產生的風切聲(wind noise)也是一來源,因此噪音量與車速、安全帽種類都有關。早在 30 年前就有研究發現,當騎乘車速約莫每小時 50 公里,佩戴全罩式安全帽的耳邊噪音量較高,為 95 分貝、佩戴 3/4 罩安全帽的耳邊噪音量較低,為 89 分貝;隨著車速提高至約莫 80 公里,兩者分別上升至 103、98 分貝(Ross B.C. , 1989)。看來,機車族不僅要思考哪種安全帽可以保護頭部安全,還得思考該如何在騎車時也保護耳朵的健康。

騎個車也可能會讓自己過度暴露在噪音中?圖/pexels

此外,隨著 3C 產品與藍芽技術推層出新,聽穿戴科技(hearable tech)結合音樂通話、健康追蹤、導航等需求,已成為「人耳兩機」的時尚趨勢,但常見智慧型手機連接耳機的最大輸出音量高達 113.1 分貝[6],當我們使用耳機聆聽,更應當留意音量大小,特別是周遭環境較吵雜時,若為了蓋過捷運、鐵路等交通噪音而不自覺加大音量,結果恐怕得不償失。

「相等能量原理」不是算命神器,你的聽力也要靠自己努力

噪音性聽損實為多重致因、複雜表徵的疾病,不單與聲音大小有關,也不單只損害「察覺」聲音的能力。首先是個體的易感性(susceptibility),基因變異或高血脂將使個人對噪音的暴露更脆弱,而營養均衡的飲食或自體生成的熱休克蛋白(能維持細胞活性、幫助細胞修復的蛋白質)則可提高個人的保護力[7][8];再者是細胞損傷的針對性,噪音導致的暫時性聽損雖有機會恢復,但長期來看恐加速與老化相關的聽損,且噪音對聽覺神經結構的破壞,將使「分辨」聲音的能力也退步[9]。因此雖單靠相等能量原理難以完美詮釋終身的噪音危害,但作為基礎的估算仍有其價值。

善用工具!落實安全聆聽

為了盡可能減少噪音性聽損的風險,許多防音防護具(hearing protection devices)已經上市,除了一般通用的耳塞、耳罩,依照不同款式與材質、正確配戴與否,所能帶來的噪音衰減評比值(Noise Reduction Rating,NRR)在 0-35 分貝間[10];臺灣亦有不少助聽器公司,能由專業聽力師為我們取下專屬耳型(ear impression),再製作成客製化耳塞,更貼合個人的耳道以提高舒適。

在特殊製防音具中,分為基於音量水平(level-dependent)或基於頻率均等的衰減(uniform attenuation)。音量水平僅針對高音量衰減,而能保留安靜情境中較低音量的語音溝通需求,通常可應用在營造、紡織、航空等高噪職業。簡單來說,這樣的技術可以過濾機械運作時產生的大聲噪音,讓作業員較輕鬆聽到其他同事的說話聲。均等的衰減技術則考慮傳統耳塞對高頻率音的衰減大於低頻率音,因此在設計上利用聲學特性對高頻音產生額外共振,這樣就能留有貼近原音的清晰音質,可供音樂家、音響工程師,及講求高音質的大眾使用[11]

客製化防噪耳塞,結合內部音管做濾音功能,預期能達到頻率均等的衰減。圖/作者

人人在手的安全聆聽幫手

響應 WHO 與國際電信聯盟(International Telecommunication Union)在 2019 年提出的安全聆聽設備標準[2],許多手機與耳機製造商已開始著手在軟硬體端導入 WHO 的聆聽標準,可由「設定」內的「聲音與觸覺回饋/音效與震動」或下載應用程式做設定,功能雖因廠牌有異,但多涵蓋下述項目:

  1. 耳機高音量通知:當聆聽超過聲音累積允許量時發出通知提醒。
  2. 降低耳機高音量:選定設備最高音量限制,系統會分析耳機音訊並降低任何超出的音訊。
  3. 即刻檢視耳機音量:在聆聽音訊時,查看當前的音量變化。
  4. 個人化音訊調節:輸入專屬的聽力圖,系統能根據個人在不同頻率的聽力程度客製化調整音訊,使聆聽感受更清晰,或許你就能稍微調降整體音量,延長聆聽的允許時間。
  5. 累積耳機音量:部分根據耳道聲學,自動計算一段時間的耳內音量,標示使用狀況屬於正常或大聲;或將聲音暴露容許量以百分比告知每日/每周聆聽的餘額。
  6. 累積環境音量:自動計算一段時間的環境音量,標示正常或大聲;或將聲音暴露容許量以百分比告知每日/每周接觸的餘額。
為了一生的聽覺健康,記得落實安全聆聽的守則。圖/pexels

噪音對健康的影響不止於聽覺,也與睡眠障礙、新陳代謝與心血管疾病、兒童的認知表現下降有關[12]。因此不論先天的聽力基礎如何,聽力保健是人人都要關心的健康議題。大家不妨現在就拿起手機與耳機、開始設定,讓智慧 3C 發揮「智慧生活」的價值,協助你我「落實安全聆聽」吧!

參考資料

  1. World Health Organization. (2021). World Report on Hearing, 40,65. Available at:https://www.who.int/publications/i/item/world-report-on-hearing
  2. World Health Organization. (2019). Safe listening devices and systems: a WHO-ITU standard, 15-16. Available at:https://www.who.int/publications/i/item/9789241515276
  3. Berglund, Birgitta, Lindvall, Thomas, Schwela, Dietrich H & World Health Organization. Occupational and Environmental Health Team. (‎1999)‎. Guidelines for community noise, 35. Available at:https://apps.who.int/iris/handle/10665/66217
  4. Elliott H. Berger, Rick Neitzel, & Cynthia A. Kladden. 3M Personal Safety Division. (2015). Noise Navigator: Sound Level Database, 39-46 Available at:https://multimedia.3m.com/mws/media/888553O/noise-navigator-sound-level-hearing-protection-database.pdf
  5. Ross B. C. (1989). Noise exposure of motorcyclists. The Annals of occupational hygiene, 33(1), 123–127. https://doi.org/10.1093/annhyg/33.1.123
  6. Kim, G., & Han, W. (2018). Sound pressure levels generated at risk volume steps of portable listening devices: types of smartphone and genres of music. BMC public health, 18(1), 481. https://doi.org/10.1186/s12889-018-5399-4
  7. Le, T. N., Straatman, L. V., Lea, J., & Westerberg, B. (2017). Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. Journal of otolaryngology – head & neck surgery, 46(1), 41. https://doi.org/10.1186/s40463-017-0219-x 
  8. 張寧家(2011)。 影響台灣勞工噪音性聽力障礙易感性相關因子之研究。高雄醫學大學醫學研究所博士學位論文。 
  9. Wu, P. Z., O’Malley, J. T., de Gruttola, V., & Liberman, M. C. (2021). Primary Neural Degeneration in Noise-Exposed Human Cochleas: Correlations with Outer Hair Cell Loss and Word-Discrimination Scores. The Journal of neuroscience, 41(20), 4439–4447. https://doi.org/10.1523/JNEUROSCI.3238-20.2021
  10. Centers for Disease Control and Prevention, USA. (December 11, 2018). How Do I Prevent Hearing Loss from Loud Noise? Retrieved from https://www.cdc.gov/nceh/hearing_loss/how_do_i_prevent_hearing_loss.html
  11. Patricia A. Niquette. (Mar 7, 2007). Uniform Attenuation Hearing Protection Devices. Retrieved from https://hearingreview.com/hearing-products/uniform-attenuation-hearing-protection-devices
  12. Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., & Stansfeld, S. (2014). Auditory and non-auditory effects of noise on health. Lancet, 383(9925), 1325–1332. https://doi.org/10.1016/S0140-6736(13)61613-X

數感宇宙探索課程,現正募資中!

所有討論 3
雅文兒童聽語文教基金會_96
8 篇文章 ・ 15 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。