0

1
1

文字

分享

0
1
1

熷烏龍茶:以科學為本,解茶湯千年奧秘,創茶農百年志業

廖英凱
・2016/09/21 ・6871字 ・閱讀時間約 14 分鐘 ・SR值 584 ・九年級

原文刊載於科技大觀園〈承啟下一個台灣茶道百年志業的 「熷烏龍茶」〉。

本文基於著作人身份進行公開發表,相關內容不得被轉載或摘錄,以進行任何形式的利用,如有轉載、摘錄的需要,請洽科技部科技大觀園

 

「我說,人為什麼要喝茶?人活的好好的為什麼要喝茶?喔……到底是為了要回味兒。回什麼味兒?回甘甜的味兒,回甘甜和苦澀漸消的味兒,回養生和體驗的味兒,回悲歡離合喜怒哀樂的味兒,那……什麼樣的茶才叫好呢?」

(向李立群大師經典橋段致敬 =w=)

da-hong-pao-734225_640
飲茶對於台灣人來說,是已經有著漫長歷史的生活文化了。圖/aniu7839 @ pixabay

茶葉、茶道、茶產業伴隨著台灣的歷史,走過了上百個年頭。林立丘陵的茶園、旅客熙攘的精品茶坊、民族特色的採茶音樂,與店家琳瑯滿目的瓶裝茶和手搖杯。茶飲乘載了文化與歷史深植於我們的生活,就算不是精於茶道的雅士,你一定聽過廣告台詞中「回甘、不澀、養生解毒」等對於好茶的描述,也可能看過一些能讓茶變得更好喝的茶道技法。

若以科學的視角來看,這些更好喝或更養生的感覺與功效,代表有可能存在某種化學反應或物質參與其中。目前,中興大學生物科技研究所曾志正教授的團隊,正陸續以科學方法解析出這些物質,以此設計出風味獨特的「熷烏龍茶」,從原分子尺度的世界,我們得以一窺茶道千年的奧秘。

-----廣告,請繼續往下閱讀-----
實驗室
曾志正教授與實驗室學生成員。左起依序為:林欣怡、Nilubol Nuanjonkong、陳冠亨、施毓恩、曾志正教授、林逸喬、陳晴雯、謝聖國、吳婕如、盧安祺。

好茶三要素:回甘、不澀、能養生

回甘,糖無法欺瞞的味覺

回甘的滋味與程度,是判定好茶的重要指標。無須加糖,也無法用任何的糖來取代回甘的感覺。究其原因,是因為甘味也是一種味覺,與甜味有不一樣的機制。過去研究發現,舌頭的味蕾上,含有可辨識酸、鹹、苦、甜、甘等五種味覺接受器1。當熬煮魚、貝、鹹肉、大骨與蔬菜等食材時,釋放出來的谷胺酸鹽與核苷酸會分別扮演啟動分子與增強分子的角色,這兩種分子會與味蕾上的甘味接受器 T1T1 / T1R3 結合,使甘味接受器的結構改變,而傳送訊息至大腦引發甘味感覺。

具有回甘滋味的綠茶與烏龍茶也有著豐富的游離胺基酸(free amino acids)來引發甘味,以烏龍茶來說,茶湯內含有谷胺酸(glutamate)與茶胺酸(theanine),可做為啟動分子。雖然在茶湯內,扮演增強分子的核苷酸含量極低,但茶湯內仍有豐富的茶倍素(theogallin)與沒食子酸(gallic acid)可發揮類似功效,共同活化味蕾上的甘味接受器2

如何提升茶的甘味?

然而,除了透過選定茶樹品種與種植條件等來影響茶葉成分以外,製茶過程的各種工法,也會造成茶葉成分的改變。例如當烏龍茶經過反覆高溫烘焙時,烘焙過程會使有甘味的游離胺基酸因高溫而裂解,理論上會降低茶的回甘滋味。不過,茶葉原有的兒茶素與黃酮醇配醣體等多酚化合物,也因高溫而被大量降解成沒食子酸、楊梅黃酮(myricetin)與槲皮素(quercetin)。此時的烘焙烏龍茶湯,是以楊梅黃酮為主要啟動分子,槲皮素為次要啟動分子,以沒食子酸為增強分子,形成一個新的回甘分子組合。在分子動態模擬中發現,這組合所引發的甘味接受器緊縮程度(6.1 Å),比起一般烏龍茶湯的對甘味接受器的緊縮程度(8.2 Å)更佳3。這代表若想要提升茶的回甘滋味,可以藉由設計合適的烘焙製程,降解出完全不同的回甘分子組合,來達到更強的回甘滋味。

1
甘味接受器在楊梅黃酮和沒食子酸的影響下,結構開口由15.1 Å減少為6.1 Å 4

澀度,捉弄舌尖的觸覺

澀茶入口,真不是「滋味」。相較起回甘的美好,澀味在茶飲中則是個不受歡迎的嫌惡因子。但事實上,澀味並不是一種味覺,而是一種觸覺

-----廣告,請繼續往下閱讀-----

目前已知可形成澀味的共有四類物質,分別為:多酚類物質(polyphenols)、金屬鹽類(metal salts)、有機酸(organic acids)、脫水劑(dehydrating agents)。以食物中常見的多酚類來說,多酚類物質當接觸到唾液中的唾澀蛋白群(PRPs)時,因唾澀蛋白群本身不具摺疊立體結構,所以會容易和多酚類物質互相纏繞聚集成不溶於水的沉澱物,而降低唾液潤滑口腔的效果,使得口腔內的神經細胞感受到壓力與觸覺,而形成皺縮、拉扯或縮攏的感覺,這一個感覺,就會被我們認知成「澀味」5

從茶的成分來看,茶的可溶性物質剛好以多酚類含量最高6,雖然這些茶多酚在近年來有許多以抗氧化效用為主的保健功效陸續被發現,但在烏龍茶與綠茶中,占茶多酚中含量七成的兒茶素類,以及總量雖只有兒茶素百分之一至千分之一,但引起澀味程度也是兒茶素百倍至千倍的黃酮醇配醣體,或是紅茶中的茶黃素與茶紅素等,都是導致喝茶時口腔感受到粗糙和皺縮等澀味感覺的主因。

高山茶,越高越甘甜不澀?

若想降低茶葉的澀味,除了沖泡時合適的溫度與時間等技巧來控制茶葉的物質溶出以外,也會受到茶葉種植時日照、紫外線、溫溼度等環境因子與發酵、烘焙和陳放等製茶方式的影響。例如烘焙時兒茶素與黃酮醇配醣體等多酚化合物被大量降解的狀況,剛好同時有降低澀味與轉化為回甘成分的功效。

曾志正教授的團隊,在 2012 年以種植於不同海拔的青心烏龍茶為標的,利用高效液相層析儀(high performance liquid chromatography, HPLC)進行分析,發現無論是新鮮葉片,或是初製茶(毛茶),兒茶素總含量均隨著種植海拔增加而遞減 7。這個關聯性很可能是因為不同海拔的溫度差異,影響了茶葉內特化酵素 ECGT 的活性。茶葉內的 ECGT 酵素可以將澀度較低的非酯性兒茶素轉化為澀度較高的酯性兒茶素。當溫度低於 20℃ 時,ECGT 的活性下降,使得茶葉中的酯性兒茶素較少,也減少了茶的澀度。這似乎與人們印象中越是高山的茶,品質則越好的印象吻合。

-----廣告,請繼續往下閱讀-----
2
澀味強度較高的酯型兒茶素 ECG 和 EGCG,含量隨種植海拔升高而減少。

怎麼知道誰比較澀?

澀味的多寡實在是評比茶葉品質的關鍵指標。然而澀味的感受機制與其他味覺不同,一整天的口腔狀態也會隨著飢餓、飽足、疲勞等有所差距。在茶業評比或競賽時,評審往往需要喝下相當多的茶湯樣品來給予評分。但是當唾澀蛋白與茶多酚物質結合沉澱於口腔時,人體無法在短時間重新補充唾液,並清除吸附於舌頭與口腔的沉澱物。這導致澀味會持續的累積而難以做到連續評比時的一致性,在過往的比賽中也往往引發不少爭議。

為解決這個狀況,曾志正教授團隊發明了利用人造油體的技術作為澀度鑑定的方式。研究團隊是利用一個已知的基因序列來合成唾澀蛋白質,並利用芝麻油與磷脂質 DSPC 做成帶有唾澀蛋白的人造油體。這些人造油體如同許多微小的油滴般,均勻地懸浮在溶液中。

當人造油體溶液與茶湯混合時,油體上的唾澀蛋白會與茶湯中的導致澀味的茶多酚結合並互相牽引。若是茶多酚的濃度越高,則油體之間的聚集程度越強、上浮速率也越快,在溶液頂層產生可視的乳狀層也越厚。研究團隊發現這項實驗結果,與高效液相層析儀的成分分析和交由專業評委的盲測比對相符,相信此項科學檢驗技術的發展,能有效輔助茶葉評比,並提供茶農量化的分析數值作為茶質判斷的輔佐工具。

3
不同品種不同澀味程度的烏龍茶,在人造油體實驗中,從油體聚集上浮的厚度可以直接看出澀味分子的數量差異。

青心烏龍的養生秘方:體歸靈

喝茶,除了好喝以外,更有「養生」這一項頗受當代人重視的好處。茶裡有多種能促進身體健康的物質,自古以來也被視為是重要的中草藥。目前種植於台灣較高海拔地區的「青心烏龍」,更有著獨一無二的養生保健成分。青心烏龍在台灣的栽種史,起源於 1855 年舉人林鳳池先生自福建武夷山引進南投縣鹿谷鄉凍頂地區,種下了聞名百年的台灣凍頂烏龍茶產業。目前在台灣海拔七百公尺以上的茶園,也多以栽種青心烏龍茶種為主。

-----廣告,請繼續往下閱讀-----

幾十年來,在許多飲用者的經驗上發現,喝青心烏龍茶後會比飲用其他茶種有明顯的飢餓感。一些茶行業者與茶農,也因大量飲茶之故而有食慾大增以及排便次數更頻繁的經驗。這代表著青心烏龍茶中,可能含有能產生飢餓感並促進腸胃蠕動的物質。發現這項物質的契機,是在 1999 年時,日本科學家 Masayasu Kojima,找到了一個能傳遞飢餓訊息的激素分子,並命名為飢餓素(ghrelin)8。飢餓素除了引發飢餓促進食慾,更能有效刺激生長激素的分泌,調節新陳代謝與心血管和腸胃的功能,還具有神經營養與保護中樞神經系統的效果。

這些關於飢餓素的敘述,與青心烏龍茶的飲用效果非常類似。自 2002 至 2014 年間,曾志正教授團隊在利用高效液相層析儀分析青心烏龍與其他常見烏龍茶種的研究中發現。有兩個微量成分,其含量在青心烏龍中明顯高於其他烏龍茶種。利用核磁共振光譜儀(NMR)解析結構後,發現這兩種微量成分的分子結構非常相似僅相差一個 OH 基。再歷經動物實驗確認這種微量成分可以引發飢餓感;從老鼠的腦下垂體細胞培養實驗中,發現微量成分如飢餓素一般可以誘導生長激素的分泌;在模擬分子對接的電腦運算中,也發現這種微量成分可以如飢餓素一樣被生長激素接受器結合而刺激生長激素分泌。

曾教授將這項微量成分命名為「體歸靈 (teaghrelin)」,亦稱為「茶飢素」,取其來自於茶(tea),又具有飢餓素(ghrelin)特性之故。這是目前發現在天然化合物中,唯一具有類似飢餓素效果的物質,這或許就可以解釋,為什麼過去經驗上覺得喝茶能促進食慾、頭腦清晰、活動力旺盛且抗老化的功效。

4
利用高效液相層析儀分析成分光譜,發現上圖的青心烏龍茶,比下圖四季春烏龍茶多了兩個獨特的成分9

熷烏龍茶與台灣茶製程技術產學聯盟

經歷反覆烘焙與陳放的「熷烏龍茶」

結合了對於回甘、澀味與體歸靈(茶飢素)的了解。曾志正教授選用發酵足的青心烏龍茶葉,以運用反覆烘培與陳放兩大工序,設計出主要以一至三年為期的「熷烏龍茶」製程,並以液相層析串聯質譜儀(LC/MS/MS)與氣相層析質譜儀(GC/MS)來分析茶葉成分在各個階段的變化。

-----廣告,請繼續往下閱讀-----
質譜儀
曾志正教授團隊,利用質譜儀分析茶湯中的成分,來解析茶葉品質與製程的改良方向。

在過去累積的研究成果中,我們已經知道青心烏龍擁有獨特的體歸靈成分;而充分的發酵,意味著茶葉經過適度的氧化而轉化出更豐富的天然活性分子,得以參與後續烘焙與陳放工序的物理變化或化學反應。適當的烘焙溫度與時間,可以降低茶葉中的水分增加保存期限;高溫下的梅納反應(Maillard reaction)和熱裂解反應(pyrolysis)會產生褐色的類黑素而改變茶葉與茶湯的色澤,更會轉化出多種不同氣味的分子增加茶葉的風味10,11;也會使咖啡因揮發而明顯減少,帶有澀味的兒茶素與黃酮醇配醣體等多酚化合物,被大量降解成能提升甘味的沒食子酸、楊梅黃酮與槲皮素,因而使得茶葉透過加溫烘焙的化學反應平台,而有了溫潤渾厚又回甘的韻味。

烘焙
「熷烏龍茶」製程關鍵之一為找到合適的烘焙溫度與時間,降低澀味來源的兒茶素衍生物與黃酮醇配糖體,但又避免其他物質揮發與過高溫而炭化。

除了原料選擇、發酵程度與烘焙以外,曾教授也特別訂製了透氣良好的陶甕來陳放熷烏龍茶。「陳放」又稱「藏茶」,在數百年來茶品的保存的經驗上,人們已知道陳放的時間、環境,甚至是容器都會影響到茶葉的品質,甚至是改變茶葉的風味。曾教授的研究成果也發現,新鮮茶葉中較有刺激感揮發性香氣的的直鏈與支鏈碳氫化合物(長鏈烷類與長鏈酸類分子),在烘焙時的成分並無明顯改變,但長時間陳放過程緩慢的氧化或聚合變化卻能使這些影響氣味的揮發性分子遞減,而給予茶更溫和的香味表現12

陳放
「熷烏龍茶」製程另一關鍵為陳放,曾志正教授特別選定透氣性良好的陶甕,並適宜控制存放地點條件,讓茶葉中的直鍊與支鍊碳氫化合物得以降解。

台灣茶製程技術產學聯盟

教授
中興大學曾志正教授與設置於中興大學生物科技研究所的「熷烏龍茶製程展示場」。

然而,雖然累積了過去十幾年對於茶葉的科學基礎研究,也從而推出了具有獨特風味的優質茶品「熷烏龍茶」。但是,這完全不代表存在著一個萬用的 SOP 或技術,能讓所有茶農一以貫之地技轉利用。曾教授認為台灣的茶產業,正面臨著鑑別度不夠,以及技術外流的困境。國內各業者過去因採用相同的製程,或過分依賴經驗法則,導致各家所推出的茶品差異度並不大,在低鑑別度的狀況下,又受到進口廉價茶的衝擊,導致市場陷入了削價競爭的惡性循環。儘管偶有推出盛極一時的茶種或製茶方式,也會很迅速地外流到大陸與東南亞各地而失去競爭力。

曾志正教授認為現階段由學界投入資源研發製成再技轉給製茶業者的方式,僅能帶來短期的榮景,無法長期而有效地解決削價競爭與技術外流的產業困境。

-----廣告,請繼續往下閱讀-----

目前,曾志正教授與十數間民間製茶業者組成了「台灣茶製程技術產學聯盟」。他們的重點不僅是研發更好的茶葉製程。而是教會茶農這些製程步驟的原理,讓每一個製茶者,可以根據自己茶園裡的作物特性,依照顧客的偏好口味,開發出自己獨一無二的產品。聯盟中的製茶者,可以將製茶過程中的半成品或完成品,送至中興大學分析茶品成分,並與曾教授討論茶品成分與製程的關聯性,再回頭修改如茶葉種植、烘焙時間溫度、陳放時間與環境因素等製程細節,最終找到最符合自己的茶葉製程。

「我的願景是,台灣百年的茶產業要怎麼走下去。」

思索台灣未來茶產業的發展,結合著茶農們世代傳承的土地經驗,曾教授累積數十載的科學基礎研究,正輔佐著我國的茶產業,承啟下一個台灣茶道的百年志業。

註:曾志正教授研究團隊獲科技部105年度「產學技術聯盟合作計畫」補助(計畫名稱:台灣茶製程技術產學聯盟(2/3),執行期間:2016/02/01~2017/01/31)。科技部推動「產學技術聯盟合作計畫」之目的,係為促使大專校院及學術研究機構有效運用研發能量,以其已建立之核心技術與相關之上中下游業界建構技術合作聯盟,以協助產業界提昇競爭能力及產品價值。

 


參考資料

-----廣告,請繼續往下閱讀-----
  1. Chandrashekar, Jayaram, et al. “The receptors and cells for mammalian taste.”Nature 444.7117 (2006): 288-294.
  2. Kaneko, Shu, et al. “Molecular and sensory studies on the umami taste of Japanese green tea.” Journal of Agricultural and Food Chemistry 54.7 (2006): 2688-2694.
  3. Li, Feng-Yin, et al. “Concurrent accumulation of myricetin and gallic acid putatively responsible for the umami taste of a specialized old oolong tea.”Journal of Food and Nutrition Research 1.6 (2013): 164-173.
  4. Kuo, Ping‐Chung, et al. “Changes in volatile compounds upon aging and drying in oolong tea production.” Journal of the Science of Food and Agriculture 91.2 (2011): 293-301.
  5. Kallithraka, S., J. Bakker, and M. N. Clifford. “Evidence that salivary proteins are involved in astringency.” Journal of Sensory Studies 13.1 (1998): 29-43.
  6. Lee, Ren‐Jye, et al. “Study of the release of gallic acid from (–)‐epigallocatechin gallate in old oolong tea by mass spectrometry.” Rapid Communications in Mass Spectrometry 24.7 (2010): 851-858.
  7. Chen, Guan-Heng, et al. “Catechin content and the degree of its galloylation in oolong tea are inversely correlated with cultivation altitude.” Journal of Food and Drug Analysis 22.3 (2014): 303-309.
  8. Kojima, Masayasu, et al. “Ghrelin is a growth-hormone-releasing acylated peptide from stomach.”Nature 402.6762 (1999): 656-660.
  9. Lo, Yuan-Hao, et al. “Teaghrelins, unique acylated flavonoid tetraglycosides in Chin-shin oolong tea, are putative oral agonists of the ghrelin receptor.” Journal of Agricultural and Food Chemistry 62.22 (2014): 5085-5091.
  10. Li, Feng-Yin, et al. “Concurrent accumulation of myricetin and gallic acid putatively responsible for the umami taste of a specialized old oolong tea.” Journal of Food and Nutrition Research 1.6 (2013): 164-173.
  11. Kuo, Ping‐Chung, et al. “Changes in volatile compounds upon aging and drying in oolong tea production.” Journal of the Science of Food and Agriculture 91.2 (2011): 293-301.
  12. Chen, Ying-Jie, et al. “Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old Tieguanyin oolong teas.” Food Research International 53.2 (2013): 732-743.

延伸閱讀

  1. 謝聖國, et al. “體歸靈 (茶飢素)-喝烏龍茶會肚子餓的活性成分.” Jour nal of Agriculture and Forestry 63.2 (2014): 75-82.
  2. 王美琪, 陳盈潔, and 曾志正. “熷烏龍茶-經反覆烘焙與陳放轉化出的精製烏龍茶.” Jour nal of Agriculture and Forestry 63.2 (2014): 83-90.
  3. 鍾澤裕, and 曾志正. “喝茶回甘的分子機制.” Jour nal of Agriculture and Forestry 63.2 (2014): 91-97.
  4. 施毓恩, et al. “喝茶澀味的分子機制與科學檢測茶澀度的技術發展.” Jour nal of Agriculture and Forestry 63.2 (2014): 99-106.
  5. 李欣潔, 陳冠亨, and 曾志正. “烏龍茶種植海拔高度與其茶湯澀度的關聯性.” Jour nal of Agriculture and Forestry 63.2 (2014): 107-113.
-----廣告,請繼續往下閱讀-----
文章難易度
廖英凱
30 篇文章 ・ 249 位粉絲
非典型的不務正業者,對資訊與真相有詭異的渴望與執著,夢想能做出鋼鐵人或心靈史學。 https://www.ykliao.tw/

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
黃瓜也可以當甜點?瓜籽肉會發出碘的味道?探索瓜味的多重宇宙——《料理滋味創意地圖》
積木文化
・2024/08/19 ・1432字 ・閱讀時間約 2 分鐘

黃瓜 CONCOMBRE

黃瓜可以只做成冷盤沙拉,也能在鹽水、英式醃菜中展現出多種滋味,甚至可以煮成配菜。它的滋味比看起來的要複雜許多:很明顯它有綠質及強烈的葉綠素滋味,但也有碘和奶油味。沒有交集的兩個世界,讓這種蔬菜能往兩種滋味方向去發揮!

黃瓜的芳香輪,解鎖更多黃瓜搭配。 圖/積木文化《料理滋味創意地圖

正確切削黃瓜:善用皮與苦味的微妙平衡

黃瓜外皮呈綠色並略帶苦味,想當然爾也有葉綠素滋味⋯⋯我們去皮不是為了美觀,而是要除掉這種苦味。又或者,我們可以刻意保留全部或部分黃瓜皮,對這有點侵略性的味道做進一步運用。經過斟酌的苦味能帶來無可否認的餘韻,也讓這種蔬菜含水量相當高的芳香特性變得複雜。薄荷、蒔蘿、青蘋果等「綠色」食材會凸顯出黃瓜的清新。

善用瓜味,或許會有意想不到的美味。 圖/積木文化《料理滋味創意地圖

籽肉的碘香秘密:黃瓜與海鮮、乳製品是絕配

為何把黃瓜的果肉跟籽吃進嘴裡時,能感受到碘味和奶油味呢?答案是因為醛類*1,存在於麵包皮和多種油裡。出乎意料的是,黃瓜能跟海藻、牡蠣、麵包和奶油做組合。為了發揮這些香氣,我們不妨將乳酸化合物(芒果、荔枝等)搭配帶乳香的乳狀食物(如希臘優格,這解釋了希臘沙拉醬﹝Tzatziki﹞*2 之所以成功的原因。或是藍紋乳酪、昂貝爾藍紋乳酪﹝Fourme d’Ambert﹞、馬斯卡彭乳酪也可以),以及一些像孔德里約(Condrieu)這樣帶奶油香味的酒。有了黃瓜內部的果肉跟籽,這些組合就保證成功。

*1:主要為 (E,z)-2,6- 壬烯醛、2-壬烯醛(non-2-énal)。

-----廣告,請繼續往下閱讀-----

*2:譯注:以希臘優格和黃瓜碎粒為主要材料的沙拉。

除了海鮮、乳製品之外,還有其他食物也可以嘗試看看。 圖/積木文化《料理滋味創意地圖

來試試吧!甘納許巧克力黃瓜

  • 準備甘納許:煮滾 300 毫升的水,加入 1 克洋菜粉,離火並倒進 150 克的黑巧克力碎片攪打混合,再倒進容器裡約 1 公分高度,隨後放進冰箱至少一小時。
  • 準備黃瓜:將黃瓜(用果汁機)榨成汁。提取 150 毫升,取其中一半與 1 克洋菜粉和一茶匙糖一起煮沸。離火,將剩下的另一半加進去,放涼後小心地倒在巧克力甘納許上(約 0.5 公分高),然後放進冰箱。
  • 擺盤:切成固定長度(約 6 公分長,1.5 公分寬)。可和黑巧克力圓脆片(Tuiles)一起食用。

不同變化:富含葉綠素的活力蔬果汁

選擇未處理過的小黃瓜,連皮榨汁,增強青綠及微苦滋味。這種富含葉綠素的果汁可以調味油醋汁、雞尾酒(琴酒等)和西班牙冷湯。可以將果汁冷凍在冰塊盒裡供多次使用。

——本文摘自 拉斐爾.歐蒙(Raphaël Haumont)、提耶里.馬克思(Thierry
Marx),《料理滋味創意地圖:法國材料物理化學專家聯手米其林主廚,15種香調、80種常見蔬果食材的氣味因子,探索 1,500 種創新風味搭配!》,2024 年 8 月,積木文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。