0

0
0

文字

分享

0
0
0

卸妝油會長痘痘?一篇文章帶你全面破解卸妝產品!

MedPartner_96
・2016/09/02 ・5269字 ・閱讀時間約 10 分鐘 ・SR值 489 ・五年級

cosmetics-106982_1920-768x462
圖/MedPartner提供。

自從人類發明化妝品以來,就開始了卸妝的歷史。卸妝的產品百百種,但基本上我們可以從屬性上分類,從比較水的的到比較油的,依序可以分為:卸妝水、卸妝凝膠、卸妝慕斯、卸妝乳、卸妝霜、卸妝油(在這中間可能還會有一些東西,廠商實在太會變東西出來了)。這些琳琅滿目的各種產品,你到底要怎麼挑選?究竟卸妝油跟青春痘到底有什麼愛恨情仇的糾葛?且讓我們繼續看下去……。

按照規矩,一切要從基礎來。讓你的大腦有越來越多東西,你的錢包才不會越來越空。並且不要忘記,所有的保養與保健,最基本的原則是要先求不傷身體,再講求效果。至於到底有沒有效果?要禁得起理論檢驗和可受公平且驗證的實驗。

想搞懂卸妝,先要認識角質層

大家應該都有化妝的經驗吧?如果沒有,那應該至少有擦過防曬的經驗吧?大家有沒有想過,為什麼這些要擦在臉上的東西都油油的嗎?這其實是有道理的啊!我們一起來看看這張皮膚的切面圖。

2
圖/MedPartner提供。

今天底下的那堆東西我們都不講了,只講角質層。基本上你上妝或者卸妝,都是在這一層的表面動作。

-----廣告,請繼續往下閱讀-----

角質層(stratum corneum)是皮膚的最外層,由 15 至 20 層已經死亡的角質細胞堆疊形成。底下的基底層會一直分裂出新的細胞,逐漸往上移動,所以上面死亡的角質細胞脫落後,底下的細胞就會推上來,再繼續形成新的角質層,是一個長江後浪推前浪,前浪死在沙灘上的概念。

人類的角質層,基本上可以把它視為皮膚最外層的防衛。這個概念很重要。為什麼要有角質?它就是保護你皮膚的角頭,不讓外面的小混混進去。角質就是不希望你表皮底下的身體部分,跟外界的東西可以隨隨便便有什麼交流啊!你想想看要是你今天臉沾到屎,屎就直接進入你皮膚內,你可以接受嗎?至少我是不行啦……。

但角質基本上不光是個硬漢,其實它也有顆柔軟的心。在角質細胞內,含有一些天然保濕因子(我知道你們眼睛發亮了),是具有吸水性的,可以讓皮膚免於太乾燥。在角質細胞間則含有脂質雙層的結構,可以產生防水的作用。這兩種性質的巧妙結合,就是最天然的保濕結構喔!所以你看,在人的表皮,會有一層皮脂腺分泌的油脂,加上角質細胞之間的脂質雙層,這些油就可以做到不錯的保濕。

補充說明:

  • 天然的保濕因子有:乳酸、尿素、游離氨基酸、PCA……等物質。
  • 脂質雙層的結構有:膽固醇、脂肪酸、神經醯胺……等物質。

油水不相溶!極性、非極性的概念

這個時候要呼喚你的國中或高中理化老師了。(已經忘記的自己出去教室外面蹲著繼續聽)

-----廣告,請繼續往下閱讀-----

物質有分成極性和非極性,水就是一個極性物質,油就是一個典型的非極性物質。同性相溶是一個物理法則(為什麼同性相容,請去問高中化學老師,我就不搶他工作了),所以油跟水基本上是不會混在一起的。因為極性、非極性的概念可能太複雜,接下來你可以試著把它理解成,水水(極性)跟油油(非極性)的概念。

但要記住另外一個東西「醇類」,酒精就是這個。他基本上還是偏向極性,也就是跟水比較好的,但相對水,他的「非極性程度」已經算強了,所以你應該有聽過有酒精可以擦拭掉油污這件事情吧?好,問題來了!你的皮膚表面是油油的,那你如果想要在皮膚表面抹一層化妝品,還黏得上去,那你覺得化妝品本身應該要是油油的還是水水的?

說水水的舉手。去教室外面蹲。已經在教室外面還答錯的就跪著仔細聽啊!

油油的東西當然要跟油油的東西才比較能結合啊!懂嗎?

-----廣告,請繼續往下閱讀-----

所以化妝品多數都屬於油性,或至少要有「界面活性劑」。在有些產品標示上,不一定寫的是界面活性劑,可能是寫「乳化劑」,基本上作用是一樣,就都是一個油跟水之間的中間人角色啦!

好啦,我知道有人要問什麼是界面活性劑了啦~

什麼是界面活性劑?

這又要叫你高中化學老師出來了。(老師好忙)

因為油跟水就是不相溶,但是我們又硬是想要它們在一起怎麼辦?這個時候就需要一個中間人,也就是界面活性劑。你可以把界面活性劑想像成一個雙面人,他有兩隻手臂,一隻手是油油的,一隻手是水水的。所以你洗過碗吧?還是各位千金小姐沒洗過碗啊?洗碗精就是一種標準的界面活性劑,一隻手抓住碗上的油,另外一隻手抓著清洗用的水,接下來水跟油就融合在一起,呈現一個乳化的樣子(不要跟我說他不是白色的,只是形容油水混合啦)你就可以輕易把碗上的油沖洗掉啦~

-----廣告,請繼續往下閱讀-----
3
圖/MedPartner提供。

好,突襲考試!!!既然油跟水是不能混合的,化妝品主要是偏油的,那為什麼可以用卸妝水洗他?卸妝水不是水嗎?這題答對有加分。好啦,因為卸妝水裡面有界面活性劑的成分啦!就可以讓他不用這麼油,就可以帶走油油的化妝品了。(答對的請學藝股長登記,下課交給我)

為什麼需要卸妝?

你覺得化妝品把你的毛孔蓋住一整天都不清掉可以嗎?化妝品內常常含有許多附著用的粉劑加上油脂。另外既然要化妝,當然有色素。簡單一點想像好了,你覺得臉上抹上一層染成紅色的麵粉混豬油,在外面走一整天,然後再睡一個晚上,會發生什麼事情?不太清楚會發生什麼事情的,去看痘痘粉刺懶人包第一集第二集~ 那邊講得非常清楚。

什麼時候需要卸妝?

1. 上濃妝的時候(色素多,色素通常需要大量油脂或界面活性劑才能附著)。
2. 使用抗汗、抗水效果強的化妝品時(一樣需要許多脂溶性物質輔助)。
3. 使用防水效果的防曬產品時。

makeup-402533_960_720
色素越多,越需要大量油脂或界面活性劑才能附著。圖/pixabay

如果你只是在都市中生活,也沒上什麼妝,那基本上一般空氣中的髒污,只需要用溫和的洗面乳洗去就可以。甚至如果在外面暴露的時間少,皮膚也不算太油,也沒用化妝品的情形下,常常都只用清水沖洗幾次而已。

-----廣告,請繼續往下閱讀-----

擦了防曬就一定要卸妝嗎?

這部分的說法專家們並沒有非常一致。有些人認為防水力沒特別強的防曬用品,只要洗面乳就可以;但也有人認為這樣程度的防曬,跟抹了化妝品沒有兩樣。而我個人比較傾向還是需要卸妝,但除非是防水力很強的防曬乳,否則不必用到卸妝油。至於身體部分的防曬,通常使用一般肥皂或沐浴乳就可以。

如何選擇卸妝產品?

4
圖/MedPartner提供

來,跟哥一起唸這段 RAP~

YO~

淡妝就選水一點,

濃妝就用油一點。

乾性肌膚讓他油一點,

油性肌膚當然水一點。

混合肌膚就分區域卸妝。

敏感肌膚就要避免刺激物質,

避免使用含有酒精類、精油類、香料類的產品,

產品的酸鹼性儘量讓 pH 值接近正常肌膚(約 pH5.4 到 pH5.5)。

(YO~ BROTHER~誰跟你真的在 RAP 啊,不要太認真啊 XD)

當然會有人問,如果我濃妝又油性肌怎麼辦?

原則是:把化妝品清乾淨最重要。把濃妝先用偏油的卸妝產品移除後,再使用溫和的洗面乳,移除卸妝油的成分。洗面乳最好不要含有過多酸類或顆粒這類會過度去角質的成分,不然可能過度傷害角質層,變成敏感性的肌膚。

-----廣告,請繼續往下閱讀-----

用完卸妝產品之後就沒事了嗎?其實還是要洗臉!

wash_the_sadness_away_by_quiddityboom
卸完妝後洗臉仍然是必要的步驟!圖/fabysalmeron

卸妝產品並不是你臉上正常有的東西。所以用了它,就等於是在你臉上又抹了一層產品一樣。在卸妝後,確保卸妝產品有被清乾淨是重要的。一般來說,含有界面活性劑的卸妝產品,都可被清水帶走。但我通常會不太放心,所以會用溫和一點的洗面乳或肥皂再清洗一次。

但有個特別要注意的,就是卸妝油!使用卸妝油後,會需要高一點的溫度才能洗去。(你有沒有洗過碗?如果要把油洗掉,用冷水容易還是熱水容易?)但皮膚其實不太適合用太高溫的水洗。所以你可以用大概最高 40 度左右的溫水沖洗,或者是選擇用溫和的界面活性劑(洗面乳或肥皂)去清洗掉臉上的卸妝油。不然這些油蓋住你的毛孔,馬上就要長粉刺跟痘痘啦~

過度去角質的問題

除了油不油的問題以外,常常卸妝產品也會加入一些去角質的成分,不外乎是化學性的酸類去角質,或者是物理性的砂狀物質或微粒。如同一開始講的,健康的角質,需要的是「平衡」。過度去角質,過度去除正常臉上的皮脂,會產生的問題主要就是敏感性的肌膚!所以在一系列的保養過程中,請務必好好研究,你手上的哪些產品有去角質的作用?最好是至多有一種就好。如果每種都有去角質功效,那你離角質受傷應該就不遠了……。

人工合成脂的問題

這是什麼?怎麼剛才好像沒講到?不要驚慌。基本上既然是卸妝油,那你首先就要有油啊!那油從哪裡來?目前常見的有植物油礦物油,還有「人工合成脂」。因為純的植物油跟礦物油成本較高,所以許多產品都會添加人工合成脂,成本相對就比較低。在這些人工合成脂中,最惡名昭彰的是以下兩位:

-----廣告,請繼續往下閱讀-----

十四酸異丙酯(Isopropylmyristate,IPM)
十六酸異丙酯(Isopropylpalmitate,IPP)

送個小小記憶法給大家:每次看到這兩位出現,都會讓我忍不住想到兩個法國人:喜歡打仗的法王路易十四跟最後被送上斷頭台的路易十六。這兩個人工合成脂的刺激性強、而且容易導致青春痘,在選購產品的時候,如果有看到這兩位,儘量避開啊~

界面活性劑的問題

很多卸妝產品為了讓油脂混合,也會加入界面活性劑,在清潔過度或者是對界面活性劑過敏的人,也可能因此長粉刺或痘痘。很多事情都是過猶不及,沒有界面活性劑就沒辦法洗,有界面活性劑,也可能產生一些相對應的過敏,真的很兩難啊!

卸妝的順序

這個大家一直要我寫。但偏偏我覺得不一定有什麼標準答案。所以我只能試著按照學理跟經驗,提供一個方向性的建議,你要自己變什麼花式我是真的沒有意見啦,要倒立卸妝也行,歡迎拍照上傳打卡給大家參觀一下。

化濃妝時,可以使用卸妝棉吸附一些偏油性的卸妝產品,先敷在妝最濃的地方,讓他們彼此混合,大概一分鐘左右的時間。接下來用卸妝棉把大多數的化妝品抹去,再使用溫和性的洗面乳,搭配溫水,把卸妝產品還有一些殘餘的化妝品洗掉。但是對於卸妝棉,其實個人有些疑慮,認為這樣是過度的物理性摩擦刺激。所以基本上,還是建議各位朋友,沒事就不要化濃妝。漂亮的肌膚就是最好的化妝品啊!!!

而淡妝時,可以用不那麼油的卸妝產品,均勻塗抹在臉上之後,之後再用溫水沖洗乾淨即可。如果覺得臉上還是有黏黏油油的感覺,再使用溫和洗面乳輕輕按摩洗淨。

另外一定要提醒的!卸妝產品不適合停留在臉上過久,所以整個過程儘量原則上不要超過三分鐘啊!

5388139473_73d28e7122_z
漂亮的肌膚就是最好的化妝品!圖/Tom Merton@Flickr

如果我真的不知道自己什麼肌,也還是搞不懂這些產品怎麼辦?相信自己的皮膚,如果有問題它會告訴你。只要使用後粉刺或痘痘增多,或刺激性很強,代表你就是不適合這個產品,這是個不變的大原則。不太可能有個適合你的產品,會讓你這麼不舒服的!這個跟使用 A 酸之後的爆痘期必須忍耐一陣子可是完全不一樣啊!(使用 A 酸之後的爆痘期這個之後找機會講)

上完今天的課,大家有沒有搞懂卸妝到底是怎麼回事了呢?如果沒有的話,好,你繼續問,我繼續寫…。

大家可能覺得奇怪,我幹嘛講這麼多基礎的物理化學?其實我的想法很簡單,我有再多時間,也不可能一一破除各種迷思。但是科學的知識和清晰的邏輯可以幫助你!那些有趣的知識,不應該只存在課本裡,然後考完就忘,這些知識是實際應用在我們生活的每個層面,只是你沒發現而已。之後你也可以嘗試著開始看看產品後面的那些化學物質,試著把在這邊看到的知識拿去檢驗它,你會發現,其實當一個聰明的消費者,其實也沒有這麼難啦!

這是一場「知識跟邏輯」對抗「不實廣告跟謬論」的革命!

要讓大家理解知識,搞懂邏輯,是非常辛苦的。如同上面你看到的這篇文章一樣,要下非常大的苦工。但是唬爛你、說什麼強者我朋友用了就是有效這類的屁話,卻是花不上什麼成本的,而且還可以因此獲得很大的利益。所以這場革命,本就注定是一場苦戰。我需要更多專家的加入,整理更多更棒的知識,也需要所有在看文章的你,幫忙傳播出去。良幣有沒有一天也能驅逐劣幣呢?我不知道。但我知道,願意閱讀而且分享的你,一定會是選對邊的人。


愛美是每個人的天性,不過對你而言光是看滿架的化妝品、保養品,各種醫美產品就令你眼花撩亂,更別說還有玻尿酸、膠原蛋白、類固醇這些有聽沒有懂的名詞來搗亂嗎?如果你想要聰明的美,不想要被各種不實廣告唬得團團轉,那麼接下來泛科學這位新的合作夥伴 MedPartner 美的好朋友,就是你我的好朋友。

本文轉載自MedPartner 美的好朋友

-----廣告,請繼續往下閱讀-----
文章難易度
MedPartner_96
49 篇文章 ・ 18 位粉絲
一位醫師用一年時間和100萬,夢想用正確醫美和保養知識扭轉亂象的過程。 Med,是Medicine,醫學的縮解。Med 唸起來也是「美的」。我們希望用醫學專業,分享更多美的知識。Partner則是我們對彼此關係的想像。我們認為醫師和求診者不只是醫病關係,更應該是夥伴關係。 如果您也認同我們的理想,歡迎和我們一起傳播更多正確的醫美知識。 我們的內容製作,完全由MedPartner專業醫療團隊負責,拒絕任何業配。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

16
8

文字

分享

0
16
8
除汙妙方清單!多種混合使用會更乾淨嗎?
姚荏富_96
・2021/02/05 ・3572字 ・閱讀時間約 7 分鐘 ・SR值 502 ・六年級

-----廣告,請繼續往下閱讀-----

A 編按:廚房的油汙是大掃除的大魔王!網路上流傳的各種去除油污妙方,你知道哪些是有用的嗎?

 

《用科學拯救怦然崩潰的髒亂,這樣的掃除你洗翻嗎?》專題為你簡介去除油污的基礎原理,從科學的角度分析網路上的妙方是否屬實?讓你用對方法面對令人崩潰的油汙!

年前打掃就像一級戰區,偏方真的管用?

年關在即,講到除舊布新的代表性活動當然就是家家戶戶都會做的「大掃除」喇。

不過要說到家裡藏污納垢的一級戰區,那非屬廚房莫屬,積滿油煙的抽油煙機、滿是油漬的牆壁,無一不讓清掃者頭痛不已。這時你要不是去超市買個超強效的清潔劑,就是上網找找有沒有什麼去汙妙方。可是,買強效清潔劑又要擔心成分不夠天然去汙能力太強會不會傷皮膚傷身體(不過筆者是不太吃天然這套喇);上網查妙方又要擔心妙方會不會其實是偏方,不好用就算了,還讓大掃除變成搞得像 color run 現場,想要把家裡整理乾淨到底有沒有這麼難呀?

為了讓大家可以對清潔去汙可以有更多的理解,筆者在這裡將和大家用簡單的國中理化介紹幾個常見的去汙原理,配合網路上常見的妙方做分析,帶大家看看網路上的妙方到底有多少可以通過科學的檢視呢?

年前家家戶戶都會大掃除。圖/Pexels

除舊布新不再麻煩,科學方法讓你事半功倍

首先在去汙原理的部分我們可以簡單分成三種常見的方法

第一種.物理去汙

用鋼刷來刷鍋子上的污垢、或是牙膏裡會添加小顆粒作為研磨劑以達到清潔效果,都是利用附著物與被附著的硬度差異不斷摩擦來達到物理去污的效果。這也是最常見也最好懂得去汙方法。

第二種.界面活性劑

我們生活中用的肥皂、以及市面上賣的合成洗碗精、清潔劑也都是利用介面活性劑的原理來做設計的。這應該是目前最廣泛使用而且大家在理化課程裡都會講解到的去汙方式。

-----廣告,請繼續往下閱讀-----

介面活性劑基本上是長碳鏈的有機鹽類,他會用長碳鏈的親油端附著在油汙上,當油汙被許多介面活性劑的親油端包覆起來後,用水沖洗,介面活性劑就會利用他親水端的特性帶著油汙一起被水沖洗掉。

利用介面活性劑親水端的特性帶著油汙一起被水沖洗掉。圖/Pexels

第三種.相似者互溶

水洗不掉沾油漆,必須要要用香蕉油才可以洗掉,或是使用卸妝油來卸妝都是利用「相似者互溶」的原理。

有機物跟有機物會互溶,無機物跟無機物互溶,但有機物跟無機物不會互溶,說的簡單點,就是油溶油、水溶水的概念。這是比較化學一點的方法,有學到高中化學的應該會略知一二。

這三種是比較常見的方法,當然實際上在去汙這件事上我們還可以用氧化還原之類的化學方法或是酵素清潔之類的生物方法,但就以妙方的角度來說,用上面三種方式來做討論應該就很夠了。那接下來我們就來看看網路上介紹的妙方吧。

-----廣告,請繼續往下閱讀-----

用科學的觀點還看網路上的除汙妙方

妙方一.小蘇打去汙

單用小蘇打(碳酸氫鈉)來去油汙是可以的。小蘇打本身帶有弱鹼性,而鹼可以跟酯類發生水解得到脂肪酸鹽(也就是皂化反應),產生脂肪酸鹽後他們就可以藉由清水沖洗來去除污垢,不過這邊發生的水解,並不在很多油脂和強鹼的環境,所以在反應的過程中不會出現大量肥皂,但同樣具有去汙效果。

在使用上我們可以直接將小蘇打粉撒在油汙上靜置,或者將小蘇打加水變成糊狀覆蓋於油汙上,甚至是調成小蘇打水沾在抹布上做擦拭都會有一定的清潔效果。

除此之外小蘇打不只可以去汙,他還有除臭的功能,所以除了去除油污之外想去除異味一樣可以灑一些小蘇打粉來達到除臭的效果唷。

碳酸氫鈉結構式。圖/Wikipedia

妙方二.小蘇打+醋 or 小蘇打+檸檬酸

網路上有很多小蘇打 combo 酸性溶液的去汙組合,這些組合的去汙理由不外乎就是小蘇打本身去有去汙能力(正確),而醋或者檸檬酸也具有去汙(嚴格來說是鹼性汙垢)與殺菌效果(正確),在加上兩者混合時會產生氣泡所以有去汙效果(不正確)。

-----廣告,請繼續往下閱讀-----

有學過基礎化學的人應該都知道酸鹼會中和,也就是酸加鹼會變成鹽加水,那我們把小蘇打與酸性物質的反應寫出來(我們先用醋來表示)

1 NaHCO3 + 1CH3COOH → 1CH3COONa + 1CO2 + 1H2O

從這個反應可以知道小蘇打與酸性物質的反應,會產生的是二氧化碳以及水還有鹽類,裡面能夠有去汙效果只有反應物的小蘇打以及酸,他們反應生成的鹽類、二氧化碳以及水基本上並沒有任何的去汙效果,所以你在混合的過程裡就把可以去汙的東西都給反應掉了呀!這可不是1+1=2的去汙數學問題,從化學的觀點來看,頂多是1+1<2的去汙效果。(你要是酸跟鹼的量還算的剛剛好的話甚至會變成1-1=0的去汙效果)

所以小蘇打 combo 酸性物質的去汙方法嚴格來說是無效的!如果你真的想要達到去汙的效果,我建議先用小蘇打清理過一次,把小蘇打清理掉後再用酸清理一次,這樣才能達到比較好的去汙效果。

小蘇打加檸檬酸會產生酸鹼中和反應。圖/Wikipedia

妙方三.橘子皮檸檬皮+酒精或是醋來製作天然清潔劑

網路上有流傳著用柑橘類的皮來做清潔劑的妙方,他的做法基本上是蒐集大量柑橘類的皮然後將其浸泡在酒精或是醋(有機溶劑)當中,浸泡幾天(或是加熱水沸)即可得到具有去汙能力還有柑橘香味的清潔劑了。

-----廣告,請繼續往下閱讀-----

從化學觀點來看這個浸泡的動作其就是一個萃取的過程,把柑橘類的皮裡面具有去汙能力的有機物質 (D-Limonene) 萃取到有機溶劑中,如此一來就可以利用其相似者互溶的特性來溶解我們要去除的油汙,以達到去汙效果。

當然如果你沒時間浸泡或是煮柑橘的皮的話,你也可以直接在柑橘皮上噴上白醋,也會有一定的去汙效果。

使用柑橘類的皮來做清潔劑。圖/Pexels

妙方四.啤酒+牙膏

這是筆者在麒X啤酒官網上找到的妙方,當下看了覺得很鬧,但他基本上還是有清潔效果的,因為牙膏本身含有研磨劑成分可以幫助物理上的去汙,而且牙膏含有介面活性劑可以幫助油水混合,而啤酒裡的酒精也可以溶解油汙達到一定的去汙效果,但筆者並沒有找到啤酒本身比較特效的去汙成分,所以大家如果家裡有沒喝完的啤酒可以拿來用一下,但嚴格來說這個妙方就是牙膏+酒精的組合。

至於網路上有一種說法是啤酒中的啤酒酵素也具有去汙效果,這部分筆者並沒有找到相關的資料足以佐證啤酒具有這樣的功能,所以對網路上這樣的說法保持懷疑的態度。

-----廣告,請繼續往下閱讀-----
啤酒加上牙膏的去汙妙方。圖/Pexels

妙方五.熱水

其實看了一堆去汙妙方,我們可能都還把目光集中在想有沒有什麼神奇的化學反應可以達成去汙的任務,但當我看到熱水的時候才發現,對呀!還有熱水。

我們都有學過溶解度跟溫度有關,而且就算不溶於水只要溫度比較高,油汙也會變得比較好清洗,這種利用物理條件來影響油汙特性的方法,也不失為一個好方法,所以最後一個妙方就頒給我們的熱水!

熱水可以利用溶解度與溫度的關係去除污漬。圖/Pexels

經過以上分享不曉得大家對去汙方法的理解有沒有更多的認識了呢?其實只要用前面的三種常見的去汙邏輯,基本上就可以分析出我們市面上看到的各種去汙技巧到底有沒有效(當然用強酸鹼來清洗或是生物方法並不在這三種選項裡面),阿如果懶得分析也沒關係,至少下次家人想用小蘇打+醋來當清潔,記得趕快阻止他,不要再浪費東西了(喂)。

參考資料

  1. 科技大觀園—清潔劑
  2. 環保署49期電子月刊 只要清潔不要毒| 正義出版事業有限公司/安立出版社
  3. KIRIN官方網站《太神奇了bar!啤酒大掃除撇不公開》
-----廣告,請繼續往下閱讀-----
姚荏富_96
3 篇文章 ・ 6 位粉絲
成大化學畢,文字/影像工作者,LIS初代科學史圖書館,著有《科學史上最有梗的20堂化學課》。興趣廣泛,涉足科普寫作、影像製作、投資理財、社會觀察、社群經營......技能樹持續擴張中,目標是將學會的知識或技能用有趣簡單的方式分享給大家。