Loading [MathJax]/extensions/tex2jax.js

0

1
2

文字

分享

0
1
2

黑膠唱片比 CD 好嗎?類比與數位錄音的差異——《好音樂的科學》

大雁出版基地_96
・2016/07/25 ・3031字 ・閱讀時間約 6 分鐘 ・SR值 501 ・六年級

自 1980 年代 CD 開始變得隨處可得後,針對 CD 提供的音樂品質是否勝過被它取代的黑膠唱片這個議題,便有了一番激烈的爭論。大多數的論點集中在「類比」和「數位」技術的差異上,因此我想在做更進一步的探討前,先說明這項差異為何。

黑膠6
黑膠唱片與播放唱盤。圖/flickr

類比/數位之間的差異

為了讓解說單純些,我並不會直接針對音樂來談,而是用影像的複製重製法來說明,這樣我就可以用畫的來舉例了。我們就先用「類比法」和「數位法」分別來複製一條波浪線好了。

類比重製

類比錄音系統採取的方式,只是單純地照著形狀,直接將一條擺動的線複製出來。就跟單車手沿著蜿蜒的鄉間小路騎往市區的做法很類似:單車手的路線有多準確,端視他的速度有多快、路徑有多曲折,以及中午花多少時間泡在酒吧裡等因素而定。

最典型例子就是你拿一張描圖紙和鉛筆,照著圖片描畫一樣,只要以等寬的線條很仔細地畫,很容易就能增加描圖的準確度。不過,有可能你所描畫的線條擺動的幅度太大,讓你很難精準地跟著畫出來。

-----廣告,請繼續往下閱讀-----

數位重製

但數位重製的做法則完全不同。「數位」這個字表示電腦必須將這項作業簡化成一連串「是」或「否」的指令。它會先將那張畫有擺動線條的頁面分割成許多小方格,接著電腦會將相機對著圖片檢視:「這塊小方格裡有黑線嗎?」並一一在所有的小方格裡進行這樣的程序。然後電腦會將所有「是」或「否」的答案儲存起來。當我們要電腦重製這張圖片時,它就會將所有答「是」的小方格畫成黑色的;而所有答「否」的都留白。這種系統的好處是,電腦能以無比精準的方式,記憶龐大數量的「是」或「否」答案,並準確無誤地將這項資料隨時予以儲存和重製,且沒有機器移動準確度的問題。而缺點則是,它的曲線是由小方格所構成的,因此若一開始設定的小方格不夠精細的話,所複製出來的圖案就不會像原本的曲線那般圓滑圖 12-2 中,我將效果良好的數位複製圖跟方格太大的圖,兩者之間的差異做了個比對。

DocHdl2OnPPMtmpTarget
數位複製技術的原理。這兩張圖都是由電腦將曲線分割成黑色小方格製作而成的數位影像,如果我們用的是數百萬個微小方格(如上方),就會看到一條圓滑的曲線;但如果方格設定得太大,就會像下方的線條一樣,圖片品質就會差很多,而曲線的形狀也只能被大致複製出來。現代高傳真設備採用的是極細微的「方格」,所以我們感覺不到數位化的存在。圖12-2/好音樂的科學

在知道了用於黑膠唱片製作上的「 類比技術」, 和用在 CD 製作上的「 數位科技」 之間的差別後, 現在我們可以來回答當初的問題了:「黑膠唱片比 CD 好嗎?」而答案則是……能分辨兩者之間差異的人非常非常少。

這項比較基礎建立在黑膠唱片保持在完美的狀態,且兩者用的都是很好的設備。這一點是由兩位音樂心理學家(Klaus-Ernst Behne 和Johannes Barkowsky)在 1993 年所證實的。他們找了 160 位「音樂系統迷」以及對 CD 和黑膠唱片有強烈好惡的人,請他們聆聽這兩種音樂重製的類型。即使黑膠迷一開始都認為,相較於黑膠唱片的「溫度」,CD 聽起來是「刺耳又呆板」,但其中卻只有 4 位能分辨他們聽的是否是 CD。而且,別忘了這批人可不是一般聽眾,他們都是相當有定見的發燒友。至於在一般聽眾間,搞不好每 100 人中只有不到 1 人能分辨 CD 和黑膠唱片聲音的差異,而且這還是在 1993 年時期的實驗。爾後的技術改良必定會再使能明辨兩者差異的人數下降,讓這種比較變得毫無意義。

許多這類 CD、黑膠的爭論,是來自於人類對傳統技術的留戀,這種情懷甚至可追溯至山頂洞人對於青銅箭頭跟新發明的鑄鐵箭頭何者較優的激烈爭論。在 1930 年代時,由於新的錄音技術能妥善處理音量大和音量小的樂曲,因而樂迷們反而懷念以前舊唱片上出現在管弦樂曲高潮時,那種破音效果的刺激感。之後到了 1963 年時,在一篇針對當時最新 RCA Dynagroove 錄音技術的評論中,也指出某些聽眾發現這個新式的、更柔和的聲音太過乏味。我個人則認為,比較黑膠唱片跟 CD 之間的聲音差異,跟那些中央空調的滴答聲、交通噪音,以及從背後傳來幽幽地問這首爵士樂還要演奏多久的聲音……相較之下,就沒什麼意義了。

-----廣告,請繼續往下閱讀-----
黑膠6
尋找失落的黑膠唱片也是老樂迷的樂趣之一。圖/Pixabay

CD和 MP3 技術之間的差異

假設我們正置身一場演唱會,聆聽 Psychedelic Death Weasels 樂團演唱他們的搖滾史詩之作「Is my cocoa ready yet, luv?」。

在浪漫低吟的主調中,我們可以清楚地聽見所有樂器,包括由歌手所彈奏的音響吉他在內。不過,當樂團表演重搖滾合唱時,我們就只能聽到貝斯、鼓聲和電吉他的聲音,觀眾們可以看到那位歌手仍在彈著音響吉他,但他發出的聲音卻完全被淹沒在其他那些大聲演奏的樂器中。

倘若將這首樂曲錄製在 CD 上的話,每種樂器所發出的每個聲音,都會被忠實地記錄成數位資料,即使是重搖滾合唱時那聽不到的音響吉他聲也一樣。至於在數位錄音過程中,不論是「被掩蓋」的吉他聲還是音量大的樂器聲,都會以同樣的資料量予以記錄。但不論在演唱會中還是從 CD 上,你都聽不見那些「被掩蓋」的聲音,因此這些忠實記錄的資料一點意義也沒有,但由於錄音設備不懂如何取捨,因此還是會自動地一一記錄下來。

這種某一樣樂器被其他樂器「淹沒」或「掩蓋」的情形,在任何一種音樂類型的表演中都會發生,有時如上面舉的例子,一種樂器會被掩蓋數秒或甚至長達數分鐘的時間,不過在許多例子中,樂器聲只會被掩蓋幾分之一秒,比如一聲巨大的鼓聲就可能會將整個搖滾樂團或管弦樂團的聲音掩蓋掉。

-----廣告,請繼續往下閱讀-----

除了這些被掩蓋的聲音外,CD中亦包含許多我們聽不到的東西,如超出人類聽覺範圍的超高低頻率即是。在前面的章節我們說過,樂音是由一組「關聯性高」的頻率家族所構成的:即基本頻率、基本頻率的 2 倍頻率、3倍、4倍、5倍頻率等等。

當我們彈奏某樣樂器所能發出最高的音時,其中所產生的某些泛音就會超出我們的聽力範圍了。同樣地,有些低音組合也會產生人耳聽不到的次聲波,雖然有時你感覺得到。在 CD 上這些聽不到的聲音全部都會被儲存並播放出來,即使我們根本聽不到也一樣。

在 1980 和 90 年代時,有一群極度聰明的科學家和工程師,發展出一種利用電腦來辨認 CD 上所有被掩蓋和聽不到的聲音的方法,且一旦找出這些聲音後,就會將它們清除,並將去掉了這些無用資訊的音樂再錄製一次。CD上大約有百分之九十的資訊都可以用這種方式去除,以製作成 MP3 檔案。當然,這樣一來就等於你可以將 10 張 CD 的量放在1張 CD 上,或者也可以將它們以數位資料形式儲存在電腦上或個人音響裝置,像是 iPod 等等並播放出來。雖然 MP3 技術將原始音樂演出中大部分的資料都去掉了,但一般聽眾並無法分辨以 CD 和 MP3 所播放音樂的差異。

黑膠7
數位錄音的播放方式從 CD 演進到 MP3。圖/flickr

書封

 

 

 

你知道最早被記錄下來的完整樂曲竟然是古希臘的搖滾樂嗎?為什麼身為亞洲人的我們,比較容易擁有「絕對音感」?從科學的角度書寫音樂的故事。 《好音樂的科學:破解基礎樂理和美妙旋律的音階秘密》,大雁文化出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
大雁出版基地_96
5 篇文章 ・ 8 位粉絲
一個支撐成熟編輯人獨當一面、有利中小品牌生存發展的書業基地。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
1

文字

分享

0
0
1
忠泰美術館新展《未來的生命,未來的你─數位、機器與賽博格》9/9 登場
PanSci_96
・2023/09/08 ・6294字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

15 組國內外藝術家與團隊開啟新生命與未來情境的提問、想像與思索

「你是否曾想像,在身體中植入機械,人機融合並化身為賽博格的自己?」

忠泰美術館即將於 9 月 9 日至 2024 年 1 月 28 日推出全新當代藝術展《未來的生命,未來的你數位、機器與賽博格》(The Future Life, Future You – Digital, Machine and Cyborgs)。延續上檔展覽中以建構城市與文明的基礎「人」出發,由反思擁有肉身的「人類」存在與本質,進一步探問「生命何為」,思考人與科技共構的未來生命情境與議題。本展邀請沈伯丞擔任策展人,匯集來自英、美、法、日、德國與埃及、西班牙、墨西哥、臺灣共 15 組國外內藝術家與團體,帶來 6 組全球首展與 4 組全臺首度亮相的新作,透過 AI 演算、大數據、深偽技術、穿戴裝置、賽博格等科技與藝術的結合創作,映射出藝術家們對未來生命形貌的多元想像。

生命何為:生命是什麼?能做什麼?為了什麼?

當 AI 人工智慧、機械穿戴手臂從科幻電影橋段躍入我們的日常生活中,科技改變生活,也逐漸影響了生命的樣貌與演化,生命開始超越人類肉身的物理型態時,我們又該如何去思考未來的生命與生活?忠泰美術館本次邀請沈伯丞擔任策展人,以其長期的藝術計畫「再・創世:智慧生命的衍生型態」研究為基礎,從生命是一個持續發展中、創造中的概念出發,策劃當代藝術展《未來的生命,未來的你─數位、機器與賽博格》,從藝術視角思辨,當科技介入了生活與生命,生物六大分類之外是否還將多出「科技界」?物競天擇「演化論」與科技始終來自於人性的「控制論」交會之下,未來的生命與生活情境又會有怎樣的想像。

沈伯丞表示:「展覽所意欲投射的並非僅是關乎生命的『科技』,更是關乎新科技情境中『生命樣態』的人文思索與美學關懷。」,展覽邀請了 Aiden Faherty、Hassan Ragab、Jake Elwes、JIZAI ARMS project team、Mal Bueno、Markos Kay、Martin Backes、Moon Ribas、Patrick Tresset、Universal Everything、陳乂、陳萬仁、陽春麵研究舍─陳姿尹、莊向峰、黃新、蘇匯宇,國內外共 15 組用創作回應科技浪潮的藝術家與團隊,透過3個子題「流動的生命與身體」、「數位裡的你與數位的它」和「機器、人與賽博格」,引領觀者凝視現場作品,直面新生命與新生命情境的提問、想像與思索。

「流動的生命與身體」 當科技鬆動了生命與身體定義

地球上的生命經歷數十億年的自然演化,形成了如今的物種樣貌,隨著科技的日新月異,無序且隨機的自然演化過程被演算與邏輯控制。隨著科技而流動的生命觀點與身體型態,恰是「人擇」的證明,人與動物、有機體與無機體,現實與虛擬之間的邊界逐漸模糊鬆動,生命與身體的型態也有了更多的解讀。

-----廣告,請繼續往下閱讀-----

英國藝術家傑克.艾維斯(Jake Elwes)首度在臺展出的〈Zizi 動起來:深偽變裝烏托邦〉,將深偽技術(deepfake)與酷兒群體結合,從 AI 演算中誕生的變裝皇后們,在如同櫥窗的螢幕中不斷流轉變換軀體與角色,企圖反思人工智慧的族群概念,打破固化的性別與身體定義。臺灣藝術家蘇匯宇的〈The White Waters〉三頻道錄像作品,以「後人類」敘事補述經典傳說《白蛇傳》,從文本中人、蛇異種的身體流動,解構生物界的邊界。埃及建築師哈桑.拉賈(Hassan Ragab)的系列影像,提取人與建築的影像,透過 AI 圖像生成系統 Midjourney、Stable Diffusion 等,將建築從「生活機器」,幻化為能走秀、跳舞的人形「生物活體」。

美術館還將於 11 月中旬加碼開放忠泰企業大廳展區,展出英國藝術團體Universal Everything的知名作品〈變形〉,巨型人形影像,邁著未曾停止的步伐,宛如電影《驚奇4超人》般從石頭、火、水、金屬等自然的元素不斷地演化變形,映照著生命與人類的演化從不止息。

「數位裡的你與數位的它」 演算法環境中人類與生命的形象

當生命與身體在演化與演算交會時被重新定義,數位維度中對「自我」與「他者」的認知也將有所轉變。

1、「你」:人類於演算環境中的形象

關於人類於數位環境中對「自我」的認定,甫獲得林茲電子藝術獎的臺灣藝術團隊陽春麵研究舍─陳姿尹、莊向峰,於本展中將得獎作品《Inter net》系列延伸出兩組全新現地創作,接續探討 AI 演算中「我」的形象。空間互動裝置〈Inter net – Labeling me〉中,可見 AI 判讀標記、搜尋引擎記錄,以及機器人與觀者「眾包標註」下的「我」的形象。單頻道演算影像裝置〈The Portrait – The Crowd’s Portrait of Me〉與〈The Portrait – My Self-Portrait〉將描述藝術家的文本轉換成特徵向量,以看似雜訊的影像,勾勒出數位足跡中的認知肖像。

-----廣告,請繼續往下閱讀-----

陳萬仁作品〈歪腰一下〉,位於美術館天井中,讓觀者以仰望的視角,觀看由藝術家 3D 繪製的人形,將現實去背進行數位縫合,行走於數位時空裡無止盡的空循環與延伸。墨西哥藝術家馬爾.布埃諾(Mal Bueno)全球首次展出的作品〈終曲〉,將與作品互動的觀者形象上傳到數位維度中,直覺呈現數位演算法中的「你」。

2、「它」:演算誕生的新生命型態

當現實生活中的元素與概念轉化成編碼再重新生成,人的意識與選擇,又會如何影響新生命情境?臺灣藝術家黃新的全新創作〈生成速寫:多肉植物園〉即時演算影像裝置,便是將多肉植物由演算法生成速寫畫,以程式的幾何造型來解構日常的場景。陳乂的人造風動模擬裝置〈風場〉,以風量、風向與風的聲音資訊作為採集與實驗項目,將 AI 演算法生成的數據模型匯入機械裝置結合,由蘆葦般的發光體演繹一段模仿自然風吹的搖曳姿態。

以數位人造生命為題,英國藝術家馬科斯.凱(Markos Kay)的〈非生物起源〉,直接在數位環境中生成擁有鮮豔色彩,如同細胞般的新物種,藝術家試圖透過創作生命探詢生命起源。在 TikTok 抖音擁有超過 50 萬粉絲的「Coolacloy」,創作者是來自美國的藝術家艾登.費海提(Aiden Faherty),本次展出的影像作品〈穿越超驗森林之旅〉為藝術家首次於國際間展出的作品,透過 AI 深層學習模型捕捉自然界資訊生成的生態系,讓觀者進入現實與想像無縫融合的《愛麗絲夢遊仙境》。

德國藝術家馬丁.貝克斯(Martin Backes)的擴增實境創作〈我知道什麼?我只是個機器?!〉,讓觀眾透過行動裝置與懸浮在美術館空間內的正圓球形機器人相遇、對話,藝術家試圖透過 AR 擴增實境昭示數位維度裡的新生命型態。

-----廣告,請繼續往下閱讀-----

「機器、人與賽博格」 人與科技重新共構的生命情境

科技趨勢預言家凱文.凱利(Kevin Kelly)曾提出「科技界」的概念,即科技體為生命的第七種型態,而人工智慧的發展,彷彿回應著此概念,預告了人與機器之間的新關係網路。法國藝術家帕特里克.特雷塞特(Patrick Tresset)透過作品〈人類研究 #2─公雞與狐狸等的大虛幻〉,思考著機器、人之間的多重可能性。機器手臂進行素描繪圖,如同人類般觀察、提筆,探索著機器如何學習成人的過程,同時也由此行為反思機器的「創作」是否為創作?是否為「藝術」?

機器學著成為人,而人則試圖將肉體改造為混合機器的「賽博格」。被喻為世界上第一位女賽博格藝術家的西班牙藝術家穆恩.里巴斯(Moon Ribas),通過將地震傳感器植入體內,讓身體與大地的律動結合一體。首次在臺展出的作品〈在蒙塞拉特山等待地震〉為一支雙人舞作,由地球掌控節奏和強度,而藝術家則透過接收地震波動的強弱來詮釋舞曲。日本東京大學實驗室研究計畫的自在肢計畫團隊(JIZAI ARMS project team),則以外掛型態研究開發穿戴式機器人模組《自在肢》,形似電影角色「八爪博士」的穿戴肢,能由使用者自由改變其穿戴型式,試圖探索賽博格社會中,不同「數位賽博格」之間所能發生的互動。

忠泰美術館導入 AI 技術應用 生成語音導覽、展覽主視覺

忠泰美術館持續透過當代藝術展覽及視角回應美術館長期關注的「城市」與「未來」議題,忠泰基金會執行長李彥良表示:「科技帶領著當代生活不停地變動與發展,也改變著人們的生活型態與認知。我們該如何在這樣的環境中找到適應並前進的方式?希望藉由本展所開啟的對話,能提供我們對於近未來想像的素材與方向。」

-----廣告,請繼續往下閱讀-----

館方也嘗試於展覽周邊事務中導入 AI 技術應用,包括結合 Bing Image Creator AI 繪圖工具製作的展覽主視覺,以及 AI 聲音生成技術製作的語音導覽等。本展中多件影像創作,忠泰美術館與連續 17 年全球電視銷售第一的三星電子攜手合作,使用擁有 AI 影像升頻技術的 Neo QLED 8K,結合量子 Mini LED 背光與金屬量子點顯色技術,呈現藝術家於數位維度的創作中,新物種、新生命情境的絢麗幻想。《未來的生命,未來的你》從 9 月 9 日展至明年 1 月 28 日,期間將陸續推出展覽系列專題講座、電影與漫畫共享沙龍、專家導覽等多元活動,邀請觀眾一同想像「未來的生命,未來的你」。更多展覽活動與看展優惠資訊,詳見美術館官方網站。

【展覽資訊】

展覽名稱|未來的生命,未來的你─數位、機器與賽博格

展覽期間|2023.09.09(六)-2024.01.28(日)

-----廣告,請繼續往下閱讀-----

展覽地點|忠泰美術館、忠泰企業大廳(臺北市大安區市民大道三段178號)

開放時間|週二至週日 10:00-18:00(週一休館);忠泰企業大廳作品展出時間請見官網參觀資訊

參觀資訊|全票 100 元、優待票 80 元(學生、65 歲以上長者、10 人以上團體);身心障礙者與其陪同者一名、12 歲以下兒童免票(優待票及免票須出示相關證件)

週三學生日|每週三憑學生證可當日單次免費參觀

-----廣告,請繼續往下閱讀-----

官網|https://jam.jutfoundation.org.tw/exhibition/4337

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
迴盪在耳際的聲音——迴響與聆聽知多少!
雅文兒童聽語文教基金會_96
・2023/06/28 ・2048字 ・閱讀時間約 4 分鐘

  • 文/樊家欣|雅文基金會聽語科學研究中心 助理研究員 

P. LEAGUE 最大咖球星林書豪加盟鋼鐵人隊,帶領鋼鐵人打出新氣象,並獲選為籃球單月最有價值球員「三連霸」,堪稱史上第一人!你,也愛打籃球嗎?當你在體育館時,是否有察覺到周圍的聲音跟平常不太一樣呢? 

迴響,能讓聲音隔空變魔術!

體育館一般有挑高的設計以及較大的室內容積,當其中有聲音產生,傳遞到周圍較硬的介質表面「反射」回來,而產生延遲和失真的現象,稱為「迴響(Reverberation)」。由於空間容積與迴響時間成正比,空間越大,迴響時間隨之延長。沒有進行吸音處理的體育館,運球聲、腳步聲、群眾吆喝聲等人造聲音將迴盪在空間中,聲音必須經過更長的時間才會完全消失,使人在體育館倍感喧騰。

 聲音傳遞出去遇到牆面,反射回來形成迴響。圖/shutterstock

善用設計,打造餘音繞樑的迴響聲學空間 

迴響在不同的空間,會因周圍反射的材質,展現不同的聲景樣貌,例如:音樂廳就是利用各種不同的「形狀」「材質」來平衡聲音,再將之導向聽眾。

早期音樂廳的「形狀」只有鞋盒式,台北國家音樂廳就是歐洲數百年經典傳統鞋盒式音樂廳,平面觀眾席的聲響很好,但是後面的眺望台座位,由於天花板空間被擋住,與前面造成相異聲場,聲音就顯得不夠飽滿;而高雄衛武營音樂廳,其內部設計柏林愛樂廳一樣,採用的是葡萄園式音響設計,所有觀眾皆處在同一個屋簷下,觀眾席如同葡萄園般由舞台四周錯落展開,享受相同的音場,因此聲響均等優美。

-----廣告,請繼續往下閱讀-----

從細部來看,「材質」平坦而堅硬的表面能反彈聲音、柔軟的表面可吸收聲音,粗糙的表面則會將入射的聲波散射。在牆壁和天花板上裝設經特別設計的嵌板,就能使聲音在抵達你的耳朵之前,先被調整並優化[3]。藉由空間整體的設計,能讓迴響成為小精靈,締造優美的聲學空間。

打造餘音繞樑的音樂廳。圖/shutterstock

迴響時間過長,對聆聽語音是個壞消息⋯⋯

美國國家標準協會(American National Standards Institutes, ANSI)於 2002 年建議迴響時間(Reverberation Time)少於 600 毫秒(= 0.6 秒)有最佳的語音理解和學習。在安靜的情境中,如果反射回來的語音較早抵達聽者的耳朵,則原聲和迴響會在聽覺系統裡整合,可能提升語音辨識度(Speech Recognition);而較晚抵達的迴響,則不會與原聲有加成的作用,反而會遮蔽或模糊原本的聲音,而使語音辨識表現下降。除了語音辨識度之外,也可能因聲音的失真,而使聆聽變得費力。

聆聽費力度(Listening Effort)為一更敏感的指標,在一些迴響時間過長的情境中,即使語音辨識度沒有下降,但聆聽者可能因著迴響,而使聆聽造成負擔,或進一步使記憶或理解力下降[5],相關文章可以參考連結。因此,迴響時間過長,會提高語音辨識的難度和增加聆聽費力度。

善用科技,讓聽損者輕鬆聽清楚

一般人在有迴響的地方聽講可能會覺得比較不清楚或費力,而對於有聽力損失的人來說,會更容易受到迴響的不利影響[4] [6]。因此,許多配戴助聽器或人工電子耳的聽損者,在聽講或聲音環境較為複雜的地方會搭配使用輔助聆聽裝置(Assistive Listening Device),如T線圈(Telecoil,又稱 T-coil)、藍芽及數位遠端麥克風等。此類裝置可將聲音訊號轉換,以無線的方式傳輸至助聽器/人工電子耳,來克服環境中迴響的干擾或距離因素,幫助聽損者聽得更清楚也更輕鬆[1] [2],相關文章也可參考連結

-----廣告,請繼續往下閱讀-----

綜言之,迴響在不同的聲學空間會產生不同的效應:在設計不良的空間會產生聽覺上的干擾,而在好的聲學空間則能使聆聽成為一種享受;另外,藉著輔助聆聽裝置也能幫助我們克服迴響等外部因素而有好的聆聽

  1. 吳彥玢(2019)。助聽器使用者使用數位遠端無線麥克風系統與動態調頻系統之比較〔未出版之碩士論文〕。國立台北護理健康大學語言治療與聽力研究所。
  2. 林郡儀、張秀雯(2016)。校園聽覺環境及聽覺輔具之應用發展。輔具之友,39,29-34。
  3. 凌美雪(2018年08月14日)。鞋盒式或葡萄園式、柏林愛樂黃金之音怎麼聽?自由時報。ltn.com.tw
  4. Brennan, M. A., McCreery, R. W., Massey, J. (2021). Influence of Audibility and Distortion on Recognition of Reverberant Speech for Children and Adults with Hearing Aid Amplification. Journal of the American Academy of Audiology, 33, 170-180. Doi: 10.1055/a-1678-3381.
  5. Picou, E. M., Gordon, J., Ricketts, T. A. (2016). The Effects of Noise and Reverberation on Listening Effort in Adults With Normal Hearing. Ear and Hearing,37(1), 1-13. Doi: 10.1097/AUD.0000000000000222.
  6. Xu, L., Luo, J., Xie, D., Chao, X., Wang, R., Zahorik, P., Luo, X. (2022). Reverberation Degrades Pitch Perception but Not Mandarin Tone and Vowel Recognition of Cochlear Implant Users. Ear and Hearing, 43(4), 1139-1150. Doi: 10.1097/AUD.0000000000001173.
-----廣告,請繼續往下閱讀-----
雅文兒童聽語文教基金會_96
61 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。