0

0
0

文字

分享

0
0
0

靈魂伴侶此生唯一──《如果這樣,會怎樣?》

天下文化_96
・2015/02/04 ・2442字 ・閱讀時間約 5 分鐘 ・SR值 532 ・七年級

Q: 如果每個人真的只有獨一無二的靈魂伴侶,也就是這茫茫人海中,隨機出現的唯一有緣人,那會怎樣?──班傑明.斯塔芬(Benjamin Staffin)

A: 那會是多麼可怕的惡夢啊!

6105070102_795230ee6d_z
如果每個人真的只有獨一無二的靈魂伴侶……圖 / By Casimaría @ flickr

獨一無二的隨機靈魂伴侶-這個觀念本身就問題多多。正如提姆.明欽(Tim Minchin)在《如果我不曾擁有你》(If I Didn’t Have You)歌裡所寫的:

你的愛是百萬裡挑一;
用任何代價都買不到。
可是其他九十九萬九千九百九十九的愛情,
算起來,其中有些也會一樣的好。

-----廣告,請繼續往下閱讀-----

可是,如果我們真的有一個命中注定、隨機分配的完美靈魂伴侶,而且我們跟其他任何人在一起都不會快樂,那怎麼辦?我們找得到彼此嗎?

假設你一出生,你的靈魂伴侶就選定了。你完全不知道那個人是誰,也不知道這個人在哪裡,可是當你們四目交接的那一剎那,馬上就會認出彼此。(老掉牙的浪漫愛情故事都是這麼演的。)

一堆問題馬上跟著來了。首先,你的靈魂伴侶還活著嗎?曾經活著的人有幾千億那麼多,而目前活著的人只有 70 億(也就是說,以人的死活狀況來看,死亡者的比率是 93 %)。如果我們都是隨機配成一對一對的,那我們的靈魂伴侶有 90 %的機率老早就死了。

圖片22
我們的靈魂伴侶有 90 %的機率老早就死了。圖/《如果這樣,會怎樣?》提供

聽起來怪可怕的!別急別急,還有更糟的:用膝蓋想也知道,我們不能只算那些已逝的人,必須把未來不知凡幾的人也算進去。想想看,如果你的靈魂伴侶是在遙遠的過去,那某人的靈魂伴侶一定也有可能是在遙遠的未來。畢竟,你的靈魂伴侶的靈魂伴侶,情況正是如此。

-----廣告,請繼續往下閱讀-----

所以我們不妨假設:你的靈魂伴侶和你生活在同時代。再者,為了避免事情變得太「驚悚」,我們還得假設:你和靈魂伴侶的年齡相差沒幾歲。(這比標準的「年齡差距驚悚公式」〈註 1〉更加嚴格,如果假設一個三十歲的人和另一個四十歲的人可以成為靈魂伴侶,而他們早在十五年前就意外相遇,這樣便違反了驚悚規則。)有了年齡相仿的限制條件,我們大多數人的潛在「適配對象」,大約有 5 億人那麼多。

可是性別和性傾向怎麼辦?文化呢?語言呢 ? 我們可以繼續用人口統計資料,試著進一步縮小問題的範圍,可是這麼一來,我們就會與「隨機靈魂伴侶」的概念漸行漸遠。在我們的假設情境下,你完全不知道你的靈魂伴侶是誰,直到你們互相看對眼為止。每個人只有一個目標:對準自己的靈魂伴侶。

遇見靈魂伴侶的機率極為渺小。每天與我們眼神交會的陌生人,人數可能從近乎 0(離群索居或住在小鎮裡的人)到成千上萬(時代廣場的警察)不等,但我們不妨假設,你目光鎖定的陌生人,每天平均有幾十個。(我很宅,這估計值對我來說絕對是大手筆。)如果其中有 10 %跟你年齡相近,一輩子差不多就有 5 萬人。既然你的潛在靈魂伴侶有 5 億人,這就表示,你這輩子找到真愛的機率只有萬分之一。

圖片23
找到靈魂伴侶的機會只有萬分之一!圖/《如果這樣,會怎樣?》提供

隨著「孤老而終」的隱憂愈來愈明顯,社會可能會重新建構,盡量製造更多眼神交流的機會。我們可以安排大規模的輸送帶,讓整排整排的人從彼此的眼前經過……

-----廣告,請繼續往下閱讀-----
圖片24
排排站來看看。圖

……不過,如果「眼神交會效應」透過網路攝影機也行得通,那倒不如採用改良版的聊天輪盤(ChatRoulette)。

圖片25
網路的出現有更方便的方式。圖/《如果這樣,會怎樣?》提供

如果每人每天使用這個系統 8 小時,每星期 7 天,而且要花幾秒鐘才能決定某人是不是你的靈魂伴侶,那這個系統在幾十年內,應該可以讓所有人跟自己的靈魂伴侶配對成功。(理論上是這樣啦。我設計了幾個簡單的模式,估算人們要多久才能配對成雙、退出單身一族。如果你想嘗試利用數學來計算某種特殊設定,或許可以先從錯位排列問題著手。)

在現實世界裡,很多人根本找不出時間來談情說愛―幾乎沒有人能投入二十年的時間來做這種事。所以呢,大概只有「富二代」才能閒閒沒事坐在那裡玩「靈魂伴侶輪盤」。不幸的是,對於眾所周知的那 1 %來說,他們的靈魂伴侶多半會出現在另外的 99 %裡頭。如果只有 1 %的「富二代」使用這個系統,此 1 %當中會有 1 %透過這個系統配對成功,因此整體成功機率是萬分之一。

而那 1 %當中其餘的 99 % 〈註 2〉,會想盡辦法讓更多人進來這個系統。他們可能會去贊助慈善計畫,把電腦送到世界上的其他地方―有點像是慈善活動「每童一機」與美國最大約會網站「OKCupid」的混合體。「收銀員」和「時代廣場警察」這類職業會變得非常搶手,因為他們有很多眼神交流的機會。大家會一窩蜂擁向城市及公眾聚集場所去找尋愛情,就像現在這樣。

-----廣告,請繼續往下閱讀-----

可是,儘管一堆人在「靈魂伴侶輪盤」上度過幾年光陰,另一堆人努力保住「能與陌生人頻頻眼神交流」的飯碗,剩下的人但求好運上門,卻依然只有極少數的人能夠找到真愛。

既然這麼麻煩,壓力又這麼大,有些人乾脆作假。他們會去參加俱樂部,這樣就能和另一個孤單的人在一起,合演一齣「靈魂伴侶相遇」的假戲。他們會結婚,他們會隱瞞婚姻問題,他們會在朋友及家人面前強顏歡笑。

「隨機靈魂伴侶」的世界,會是個很孤單的世界。但願那不是我們生活在其中的世界。

註解:

  1. 詳見 xkcd 網站「約會對象」篇。
  2. 「我們就是那剩餘的 0.99 %!」

WS147_如果這樣會怎樣_正書封

 

本文摘自泛科學 2015 二月選書《如果這樣,會怎樣?》,天下文化出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
天下文化_96
142 篇文章 ・ 626 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

25
5

文字

分享

2
25
5
真正的隨機:史上最速亂數產生器
linjunJR_96
・2021/04/12 ・2451字 ・閱讀時間約 5 分鐘 ・SR值 521 ・七年級

圖/wikipedia

隨機性,在許多領域都扮演了不可或缺的角色。例如電腦信息的加密,還有模擬複雜物理系統等技術,都需要用到巨量的亂數資料。不過,這些隨機是怎麼來的呢?

當電腦計算 1+1 是多少時,它可以遵從既定的程序算出正確答案;但如果叫電腦隨便給你一個數字,它肯定不知道該怎麼辦。畢竟電腦不像人,可以隨便「想到」一個數字。電腦只能根據你的命令,算出你要的結果。

要得到「真正的隨機」並不如想像中簡單。當我們到廟裡擲筊,或是玩桌遊時丟骰子,得到的結果看似沒有規律,但其實不然。它們可以用簡單的電腦計算來預測,像是丟硬幣的結果,便早已被研究透徹。只要對初始條件有足夠良好的掌握(像是丟出的速度與角度等等),這類物品的行為都能用兩百年前確立的力學定律來精準預測,因此稱不上是「真正」的隨機;另外一個缺點在於,這類方法產生隨機結果的速度實在太慢,跟不上現代社會對於隨機資料的龐大需求。

對於丟硬幣的結果,只要對初始條件有足夠良好的掌握,這類物品的行為都能用力學定律來精準預測,因此稱不上是「真正」的隨機。圖/Giphy

至於使用電腦計算的結果呢?常見像是串流平台的隨機播放功能,以及粉專抽獎會用的亂數產生器,它們所呈現的隨機是演算法算出來的。隨機播放功能利用特殊的演算法,排列出一個讓你聽起來很隨興的歌單;一般的電腦亂數,只是將特定的「種子」數字丟進一個超複雜的算式,算出成串毫無規律的數字。這些方法雖然快速又實用,但終究是可以預期的。當亂數數量夠多時,往往可以發現某些規律;而可被預期的亂數若是用於加密或認證,便會成為駭客眼中的肥羊

-----廣告,請繼續往下閱讀-----

由量子世界尋求真正的隨機!

既然手邊的物品和電腦都不管用,科學家於是轉向微觀的量子世界。量子物理對世界的描述本身就是機率性的,因此物理學家可以從實際測量結果中汲取「正港的」隨機亂數。像是物質的放射性衰變或電路中的雜訊,都是常見的選項。這類過程雖然可以確保隨機性,但效率還是稍嫌太差,相關的實驗架設也相當費工。

不過就在今年二月,研究人員利用半導體雷射技術,打造出有史以來最快的亂數產生器:每秒 250 TB 的隨機位元,比先前的紀錄高出一百多倍。

雷射的產生牽涉到原子內的「電子躍遷」。在一般狀態下,大部分原子中的電子會按照高中化學課本中提到的「電子軌域」排列,這種排列方式稱為「基態」,代表原子中的所有電子,都處在最低能量狀態。

在原子接收一定的能量後,會有部分電子跳入高能量的軌域中,變成「激發態」,這時原子內的電子組態不穩定,電子會跳回低能量軌域中回到「基態」,並以光(輻射)的形式放出能量。圖/wikipedia

在原子接收一定的能量後,會有部分電子跳入高能量的軌域中,變成「激發態」,這時原子內的電子組態不穩定,電子會跳回低能量軌域中回到「基態」,並以光(輻射)的形式放出能量。

-----廣告,請繼續往下閱讀-----

而這些跳回的電子,如果都從同一個激發態回到基態,就會釋放出特定「頻率」與「能量大小」的光,以愛因斯坦的說法,從相同的激發態回到基態,會得到固定的「光子」,這是舊量子論的重要發現之一。提供原子特定的能量,讓原子放出光子,就可以激發出雷射。

利用電子躍遷的隨機性

但這件事情跟隨機性有什麼關係呢?電子躍遷本身就是具有隨機性的。

要激發雷射,其實事情並沒有那麼簡單,需要克服這個機率性。讓我們回頭看上面的敘述,「『大部分』原子中的電子會按照……」、「在原子接收一定的能量後,『有部分』電子跳入高能量的軌域中」,這些「大部分」、「有部分」,使得我們就算給原子固定能量,也未必能平穩釋放出特定光子,讓雷射光的強弱不穩定,也不會朝同方向射出。

因此雷射技術的重點之一,就是「光學共振腔」,將激發光子的物質放在共振腔中,放出的光子會在共振腔中來回游走,再次激發原子放出更多的光子,來增強雷射強度,並讓雷射光往特定方向射出。

-----廣告,請繼續往下閱讀-----

但是,「光學共振腔」強化雷射強度以及方向,但實際上雷射光的強度,仍然是由量子力學的隨機性所決定!如果我們能用感光元件捕捉雷射光線起伏不定的強度,再轉換為數位訊號,就能獲取珍貴且無法破解的隨機亂數。

蝴蝶結狀「光學共振腔」

這種想法雖有十幾年的歷史,不過由於技術上的限制,產率一直相當有限。而且一般方形共振腔產生的雷射,容易讓光強度陷入特定的規律,產生的隨機性也較低。為了解決這個問題,研究人員將共振腔的形狀改良為蝴蝶結狀。如此一來,在其中反彈的雷射光便能保有其當初紊亂的特性,且往特定方向射出。

隨機的雷射光源被 254 像素的高速攝影機拍下,每個像素受到的光強度也被證實為相互獨立,因此成就了 254 條同步生產線,一同產出隨機亂數,使效率遠遠勝過以往一次只能記錄一個像素的做法,創下每秒 250 TB 的紀錄。

現今電腦運作的時間尺度最快不超過幾 GHz,因此這次的 250 THz 創舉難以發揮全部的實力。如果犧牲一些效率,用較簡單的偵測裝置來取代高速攝影機,可以讓整個裝置變得更加輕巧,提升實用性。在不久的將來,史上最速的亂數產生機制,或許可以直接容納於單一晶片之上。

-----廣告,請繼續往下閱讀-----

參考資料:

-----廣告,請繼續往下閱讀-----
所有討論 2
linjunJR_96
33 篇文章 ・ 973 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

0
1

文字

分享

0
0
1
民調結果一致,該懷疑抑或是才可信?計算此一「抽樣分佈」發生的機率
林澤民_96
・2019/07/04 ・3104字 ・閱讀時間約 6 分鐘 ・SR值 548 ・八年級

民進黨初選民調,其五個執行單位的結果一致且相近,是否值得懷疑?

今年度民進黨黨內總統初選民調結果。(點圖放大)

關於這個問題,民進黨的官方答覆是:「此次總統初選民調方式,各執行單位的成功樣本高達 3200 份以上(95%信心水準下,抽樣誤差為正負1.7%),且為本黨民調中心抽樣提供給五家民調單位同時訪問,在相同的抽樣架構、相同的問卷題目、相同的訪問原則、相同的訪員訓練,相同的加權方式之下執行。有相近的民調結果才顯見此次總統初選民調的品質值得信賴,如果五家單位的民調結果差異過大,那才是值得擔憂的事。」

這個答覆令人滿意嗎?

-----廣告,請繼續往下閱讀-----

民調得出接近的結果,究竟是否有「異常」?先從假設談起

同一個結果的解讀完全不同。圖/pixabay

五個單位關於蔡英文支持度的結果分別為:36.5721%、36.1190%、36.6532%、34.5323%、35.5072%,其平均數為 35.6768%。五單位的結果偏離平均數最大值為 1.1445%,這個值比 95% 信心水準下的抽樣誤差正負 1.7% 要小很多。

按照民進黨的說法,似乎各單位民調結果越相近,民調的品質越值得信賴,真的是這樣嗎?五個單位的結果距離其平均數不超過 1.1445% 的機率是多少?如果這個機率甚小,難道我們不應該擔憂?

要探討這個問題,必須要做一些假設,以下的假設其實不盡成立,但本文的目的並不在於檢定這些假設的真假,而是在於利用統計學「抽樣分佈」(sampling distribution)的概念來看在「正常」狀態下,五個重複樣本結果相近的程度是否有「異常」的跡象。做這些假設只是為了要提供一個「正常狀態」的框架而已。

-----廣告,請繼續往下閱讀-----

假設一:各民調單位的樣本是同一母體的的隨機樣本,其樣本數同為 N=3200。

這個假設除了樣本數外,會有很多爭議。

第一、所謂母體是指甚麼?全體合格選民?當然不是。

民進黨所從以抽樣的母體其實有兩個:市話號碼和手機號碼。這是兩個不一樣的母體,而且不論分別開來或合併起來,都不能反映全體合格選民。

第二、各單位的樣本是市話加手機混合母體的隨機樣本嗎?當然不是。

根據民進黨的計算,市話被抽中的機率是 0.19%,手機被抽中的機率是 0.05%。既然市話跟手機被抽中的機率不一樣,各單位的混合樣本就不是混合母體的隨機樣本,更不是全體選民的隨機樣本。

如果民進黨能把市話樣本和手機樣本分別開來,則市話樣本可以說是市話母體的隨機樣本,手機樣本可以說是手機母體的隨機樣本。但因為民進黨只公布每單位市話和手機混合樣本的資料,這裡的假設只是純粹正常狀態的假設。

-----廣告,請繼續往下閱讀-----

假設二:支持度的母體參數值(π)可以用各單位樣本支持度(P)的平均數來估計。

本來在同一母體重複抽取足夠多的隨機樣本時,樣本的平均支持度會是母體真正支持度的不偏估計。但如果這些重複樣本不是隨機樣本,則這個假設不必然成立。另外,五個重複樣本並不能算「足夠多」,所以這個假設也只是純粹假設。

假設三、各樣本對人口變數的加權對結果的影響可以忽略。

這個假設通常是可以接受的,但因為民進黨未公布未加權的結果,加權究竟影響有多大也無從得知。

根據這些假設,得到此結果的機率是……?

根據假設一,應用中央極限定理(CLT)可以導出樣本支持度 P 的「抽樣分佈」是常態分佈:

P~N(π,π(1-π)/N)

-----廣告,請繼續往下閱讀-----

其期望值π 是母體支持度,變異量是 π(1-π)/N。值得注意的是:變異量是 π(1-π) 的函數,因為 π 增加時 1-π 減少,π 減小時 1-π 增加,這個分佈的「胖」、「瘦」對 π 並不敏感。因為這樣,以下機率的計算與母體支持度大小的關係不大,關係較大的是五樣本支持度相近的程度。

我們先分析蔡英文支持度的相近程度,再用同樣的方法分析賴清德、韓國瑜、柯文哲的支持度。根據上面的假設,蔡英文母體支持度參數值估計為π=0.356768,由此求出的變異量是 0.0000717139,標準差是 0.008468。所以:

P~N(0.356768,0.008468^2)

也就是平均數為 0.356768,標準差為 0.008468 的常態分佈。這個常態分佈就是上面所說的「正常狀態」,當足夠多的機構「在相同的抽樣架構、相同的問卷題目、相同的訪問原則、相同的訪員訓練,相同的加權方式之下執行」執行民調時,其所得到的樣本支持度理論上應該遵行這個常態分佈。我們要算五個單位結果那麼相近的機率必須要在這個常態分佈之下來算。

-----廣告,請繼續往下閱讀-----

在這樣的常態分佈之下,每一樣本支持度距離 35.6768% 不超過 1.1445%,也就是落在 (34.5323%,36.8213%) 區間內的機率是 0.823463,這就是下圖曲線下藍色區域的面積。


如果要算五個民調的支持度同時落在此區間內,則其機率是 0.823463^5≈0.38

這個機率是大是小呢?

一般所說的「信心區間」可以有兩個意義。 以支持度比例來說,教科書所說的信心區間是指樣本比例加減由樣本比例算出來的抽樣誤差估計值所得到的區間。但如果我們知道母體比例,則也可以把母體比例加減由母體比例算出來的抽樣誤差來建構信心區間。

這裡因為假設二,我們可以從第二種意義來看待「95%信心區間」:樣本支持度落在以母體支持度為中心的這個區間的機率為 0.95。如果我們有五個重複樣本,則這五個樣本的支持度全部落在「95%信心區間」之內的機率是 0.95^5≈0.77。

-----廣告,請繼續往下閱讀-----

上面算出的 0.38 是在正常狀態之下,五個重複樣本支持度距離母體支持度不超過 1.1445% 的機率。

如果有天你因為摸彩而中獎,想必不會覺得有啥好奇怪的。圖/immigrationhadley

現在民進黨五個執行單位得到的蔡英文支持度均在此區間之內,因此有 0.38 機率發生的事件發生了,這樣奇怪嗎?如果摸彩中獎的機率約 0.40,而你中獎了,你會覺得有人作弊讓你中獎嗎?我想多數人不會覺得這樣中獎有什麼好奇怪的。

這機率可以看做是統計檢定的 p值,也就是數據與假設相諧的程度。0.38 比 0.77小,但它並未小到讓我們得出數據與假設不相諧的結論。

-----廣告,請繼續往下閱讀-----

當然,就如統計檢定 p>0.05 並不代表虛無假設為真一樣,它也不足以讓我們做出假設一至三為真的結論。(請參考拙作〈看電影學統計:p值的陷阱〉)

究竟是差異大的民調能讓人放心,還是差異小的呢。圖/pexels

用同樣的方法分析各單位測得的賴清德、韓國瑜、柯文哲對比支持度,都可以得到類似的結果。五個重複樣本的支持度落在實際發生區間內的機率為:0.30(賴清德)、0.60(韓國瑜對比蔡柯)、0.58(韓國瑜對比賴柯)、0.49(柯文哲對比蔡韓)、0.40(柯文哲對比賴韓)。這些機率均未小到令人起疑的地步。

統計上,差異過大或差異過小都可能有問題

民進黨說「有相近的民調結果才顯見此次總統初選民調的品質值得信賴,如果五家單位的民調結果差異過大,那才是值得擔憂的事。」其實是不對的。差異過大固然值得擔憂,太過相近也是問題。

比如我們把五單位的蔡英文支持度偏離其平均數的最大值減半至 0.5723%,則母體支持度加減 0.5723%的區間便縮小為下圖藍色區域。單一樣本的支持度落在此區間內的機率大約是 0.5,五個樣本支持度全部落在此區間內的機率只有 0.5^5≈0.03。這樣小的機率只能讓我們得到數據與假設不相諧的結論。


民進黨應該解釋的是五單位民調的結果並沒有相近到不可思議的地步,而不是說相異過大才值得擔憂。民調太相近或太相異都是品質可能有問題的跡象。

後記

本文完成後,看到ptt上有高手(raiderho)更早就用模擬的方法得到五單位民調相近程度並非小機率事件的結論。該文雖然用的是模擬的方法,卻能以對比民調中四個比例(蔡/賴、韓、柯、未表態)的聯合常態分佈為基礎來計算機率,可以補本文只用邊際分佈計算機率之不足。

請參考:

本文轉載自作者部落格,原文標題:民進黨初選民調的「抽樣分佈」

-----廣告,請繼續往下閱讀-----
林澤民_96
37 篇文章 ・ 246 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。