每天都要風險評估
我們的現代生活是由一連串決定所組成,要根據各種可能的結果進行評估。我們的每一天都必須經過風險分析才能順利度過。
今天的降雨機率是 28%,我要不要帶雨傘?
報紙上說,吃培根會讓罹患腸癌的機率增加 20%,那我該戒掉培根三明治嗎?
考慮到發生事故的風險,我的汽車保險費會不會太高?
我買樂透彩券有什麼用呢?
玩桌遊的時候,我接下來擲出的點數讓我排名下降的機會有多少?
許多職業都要算出機會才能做關鍵決定。某支股票上漲或下跌的機會有多大?
如果有DNA證據,被告就有罪嗎?
病人要不要擔心偽陽性的篩檢結果?
足球選手在罰球時應該踢向哪裡?
越過不確定的世界是一項充滿挑戰的任務,但找出一條穿過迷霧的路並非不可能。數學已經發展出強大的捷徑,幫助我們處理從遊戲到健康、從賭博到理財投資的一切不確定性,那就是「機率的數學」。
擲骰子是通往機率的捷徑
若想探索這條捷徑的本領,擲骰子是最佳方法之一。
本章開頭的題目,曾讓十七世紀的著名日記作者皮普斯(Samuel Pepys)坐立不安。
皮普斯著迷於機率遊戲,但他不會隨便拿辛苦賺來的錢當作擲骰子的賭注,他總是很謹慎。皮普斯在 1668 年 1 月 1 日的日記寫道,正要從劇院回家時撞見「骯髒的學徒和無所事事之人在賭博」,回想起孩提時僕人帶他去看人試圖擲骰子贏錢的情景。
皮普斯記下自己看到「一個人向另一個人拿走所輸的錢,反應大不相同,有一人不停罵髒話,另一人只是喃喃自語和發牢騷,還有一人絲毫沒有明顯的不滿」。
他的朋友布里斯班德(Brisband)先生提議,給他十枚硬幣試試運氣,還說「大家都知道從來沒有人第一次玩會輸,因為魔鬼太狡猾了,不會勸阻賭徒」。但皮普斯拒絕了,躲回他的房間。
皮普斯小時候看到賭博時,還沒有什麼捷徑能讓他比別人有優勢。但在他從青少年到成年的歲月裡,一切已經有了改變,因為海峽對岸有兩位數學家,費馬和巴斯卡,提出一種新的思考方式,透過這條深具潛力的捷徑,應該能讓賭徒賺錢,不然至少是少輸些錢。
皮普斯可能還未聽說費馬和巴斯卡已取得重大進展,把魔鬼手中的骰子努力搶到數學家手上。如今,從拉斯維加斯到澳門,費馬和巴斯卡開創的機率數學讓世界各地的賭場得以經營下去──犧牲者是來賭錢的無所事事之人。
發生的機會有多大?
費馬和巴斯卡之所以會想出捷徑,是因為他們聽到某個跟皮普斯所想類似的難題,然後受到啟發。
與兩人都相識的梅雷騎士(Chevalier de Méré)想要知道把賭注下在以下哪一個比較好:
- (A) 擲一顆骰子 4 次後,擲出六點。
- (B) 連續擲兩顆骰子 24 次後,擲出雙六。
這位騎士實際上不具有騎士的貴族身分,他是一名學者,名叫龔博(Antoine Gombaud),他喜歡在對話作品中用這個頭銜代表自己的觀點。然而,這個頭銜沿用了下來,他的朋友們開始稱他為騎士。他選擇走遠路,做一大堆實驗,拿骰子擲了一遍又一遍,試圖解決這個骰子難題,但一直沒有確定的結果。
於是龔博決定把這問題帶到一個由耶穌會士舉辦的沙龍,修士名叫梅森(Marin Mersenne),地點則是他在修道院的小房間。梅森有點像是當時巴黎的知識活動中心,他把收到的有趣問題寄給他認為可能會有高明見解的其他通信者。
說到龔博的難題,他毫無疑問寄到了很好的人選手中,費馬和巴斯卡的答覆確立了本章要談的捷徑:機率論(theory of probability)。
機率論真的能幫龔博贏錢嗎?
毫不意外的,走遠路其實並沒有幫龔博判定選哪一個賭注最有可能贏錢。費馬和巴斯卡把他們的機率新捷徑應用到骰子上,就發現選項 A 的發生機率是 52%,而選項 B 的發生機率為 49%。
如果賭骰子 100 次,隨機過程中存在的誤差會輕易掩蓋這種差異,也許要等差不多賭 1,000 次之後,真正的模式才會浮現。這就是為什麼這個捷徑會如此強大──它避免你一定得做很多苦力,反覆實驗,畢竟實驗結果搞不好還會讓你對問題理解錯誤。
長期執行才有可能取得優勢
費馬和巴斯卡提出的捷徑有個特質很有趣,它長期下來才會真正幫你取得優勢。它不是幫忙賭徒在任何一次賭博中贏錢的捷徑,那仍然要碰碰運氣。但長期下來,情況就大不相同,這也解釋了為什麼它對賭場來說是好消息,然而對遊手好閒、巴望擲一次骰子就輕鬆賺到錢的賭徒來說,卻不是什麼好消息。
鏡頭回到倫敦。皮普斯寫下他在走路回家的途中,看賭徒設法擲出七點看得津津有味:
「聽到他們罵手氣怎麼這麼差,但沒什麼用,因為有個男子想要擲出七,但擲了很多次都擲不出,絕望透頂,嚷嚷說以後打死也不會再擲出七,而其他的人手氣很好,幾乎每次都擲出七。」
這個人的手氣是不是特別背,連一次七點也擲不出來?費馬和巴斯卡提出的策略,是用來算出以兩顆骰子擲出特定點數和的機會有多大,要先分析可能擲出的各種點數,然後看點數和為七的情形發生的比例。第一顆骰子可能擲出 6 種點數,加上第二顆骰子也有 6 種點數,總共就有 36 種不同的點數組合。在這些組合當中,有 6 種的點數和是七:
1 + 6、2 + 5、3 + 4、4 + 3、5 + 2、6 + 1
他們認為,假如每種組合發生的可能性一樣大,那麼 36 次當中就會有 6 次擲出七。這實際上是擲兩顆骰子時最有可能出現的點數和,但沒有擲出七的機會仍有六分之五。考慮到機率問題,皮普斯所看到的那位對擲了很多次骰子都沒出現七點感到如此絕望的紳士,手氣到底有多差?
骰不出 7 到底是不是因為手氣特別爛?
他擲了 4 次骰子都沒擲出七的機會有多大?把所有不同的情形都列出來,看起來相當嚇人,因為總共有 364 =1,679,616 種結果。但費馬和巴斯卡伸出援手了,因為有捷徑。要算出 4 次都沒擲出七點的機會,只須把每次擲骰子的機率相乘:5/6 × 5/6 × 5/6 × 5/6 = 0.48。這表示連續 4 次沒有擲出七點的機會仍大約有二分之一。
相反的,這表示兩顆骰子擲 4 次之後,有一半的機會出現七點。同樣的分析可證明,一顆骰子擲 4 次後出現六點的機會也是一半一半。因此,皮普斯看到那個紳士擲 4 次骰子都沒出現七,不是什麼出人意料的事,就像丟一次硬幣的結果不是正面一樣。
在玩很多像西洋雙陸棋或《地產大亨》這樣要擲骰子的遊戲時,你可以把「最有可能擲出七」轉化成對自己有利的條件。
舉例來說,坐牢是《地產大亨》棋盤上最常造訪的格子,再加上兩顆骰子可能點數和的分析結果,就意味許多玩家在走到坐牢這格之後,下一步會走到橘色房地產區的次數比其他格子還要多。所以你如果可以搶先在橘色區買地,在上面蓋旅館,就會讓自己在遊戲中更勝一籌。
——本文摘自《數學就是這樣用:找出生活問題的最佳解》,2022 年 11 月,天下文化出版,未經同意請勿轉載。