Loading [MathJax]/extensions/tex2jax.js

0

9
0

文字

分享

0
9
0

不只能「透視海底」還可判釋水稻田!淺談福衛五號的影像多元應用

科技大觀園_96
・2021/08/23 ・2533字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

福衛五號幫助研究人員算出海底地形、找出稻田分布。圖/fatcat11 繪

「透視」海底,用福五影像逆推東沙環礁水底地形

中央大學太空及遙測中心的副教授黃智遠、副教授任玄及副教授曾國欣選定東沙環礁,測試福衛五號影像反演水底地形的能力。成果顯示,在訓練資料品質佳的情況下,以福五影像建置水底地形的精度與超高解析度衛星影像的成果相當,可協助內政部產製電子航行圖、環境監測、生物棲地研究等。 

傳統常以船隻搭載聲納,或飛機搭載光達的方式量測水深,這兩種方式皆須現地量測,精度高,但成本也高,且淺海與爭議水區的量測會受限。多光譜光學衛星影像能穿透約 20 公尺深的潔淨水體,成為廣泛調查淺水域的潛力方式。

要以衛星光譜影像反演水深,仍需收集訓練資料(例如地形的現地量測資訊)當作「教材」,讓電腦建立正確的模式參數。「沒有太多人為擾動影響、卻又要有高品質的訓練資料 ,同時符合這兩個條件的就選東沙環礁了!」東沙環礁有精密的光達測深資料,還有海水潔淨、淺水域面積廣大等優點。

此項技術的訓練方式是,輸入衛星影像各波段數值(主要為透水較佳的綠光波段)及其對應的實際水深訓練網路,網路模式訓練完成之後,輸入目標區域的衛星影像數值,就能推算出每個像素對應的水深資訊。

-----廣告,請繼續往下閱讀-----
福衛五號衛星於 2018 年 3 月 2 日所攝得東沙環礁影像。圖/國家太空中心提供

為了衡量福五影像的表現,團隊也拿超高解析度商用衛星 WorldView2 的影像反演水深,比較兩者成果。福五反演的水深成果精度達 1.62 公尺,雖略遜於 WorldView2 的 1.26 公尺,但相差不遠。

黃智遠解釋,相較於房屋、橋梁等地物地貌,水下自然地形的局部變化通常較小,所以對於衛星影像空間解析度的要求也較低。在反演水深的應用上,使用福五或超高解析度衛星的差異不大,福五反演僅局部區域比實際地形略深。

光譜反演的挑戰在於訓練資料蒐集困難,不過,透過衛星影像產製水深還有另一種稱為「立體對測量」的方法。福衛五號可以對地「立體取像」——人的視覺因左右眼視角差異而能感知立體,資料也能整合不同角度的衛星影像產生視差,萃取出目標物的數值地形模型,再以此當作訓練資料,進行模式訓練、反演水底地形。

過去團隊與內政部合作,在東海南海的許多島礁進行水深反演,已累積起一套決策樹,考量目標區域具備的資料庫、資料品質、成本等,可為不同地區挑選、整合不同的水深產製方式。

-----廣告,請繼續往下閱讀-----
東沙環礁水底地形。圖/研究團隊提供

雙衛星搭檔,提高水稻田判釋精度!

水稻田分佈判釋是行政院農委會農糧署年度重要工作項目,農糧署與臺灣大學理學院空間資訊研究中心教授朱子豪、遙測及資料加值組組長張家豪合作,以福衛五號影像結合合成孔徑雷達衛星影像判釋水稻田,正確性達 92%,大幅提高偵測精度。 

由於雲林有充足的基礎資料可供驗證與訓練模型,研究團隊選定雲林做為研究區域,試驗福五的影像用在水稻田判釋可達多少能力。 

團隊使用福衛五號影像,搭配 22 組歐洲太空總署合成孔徑雷達衛星「Sentinel-1」的開放資料,並試驗了三種方法:僅使用福五(光學)影像、僅用雷達影像、兩者相互搭配。結果顯示,整合兩者的效果最好,判釋正確性最高可達到 92%,高於單用光學或雷達影像的 90%、80%。

「光學衛星最大的限制就是雲!」雲會遮擋目標、影響判釋,而農作物判釋的取像時機又相當關鍵,取像時有雲就沒輒了;合成孔徑雷達衛星會主動發射微波到地面再接收反射波,可穿透雲層,不受雲覆與日照影響,可補強不同時期影像,取得水稻田從插秧、成長、結穗的時序變化資訊。

-----廣告,請繼續往下閱讀-----

本研究的突破在於,只用了單一分類器全自動判別的條件下,偵測精度大幅提升,更是首度只用一個時間點、單張光學影像就達到了。團隊對此也相當興奮,「可能因為福五當時在 11 月取像,剛好是水稻結穗時,影像特徵與其他作物差異較大。」張家豪解釋。 

推測了面積,可以進一步推估產量嗎?「一公頃稻作能收成 1,000 公斤或 4,000 公斤,有太多因素影響了。」朱子豪說。溫度、溼度、施肥、天災、病蟲害等都會影響收成,此類研究在平遂的情況下可大致估產,尚難達成精確估產。

福衛五號的自然彩色影像,綠色標記為水稻;黃色標記為非水稻。圖/研究團隊提供

掌握物候特徵是判釋關鍵

未來若要擴大範圍,判釋全國水稻田面積,由於各地農民栽種時序、田間管理多變,如何選擇適合的取像時間會是一大挑戰;若要擴展到判釋其他作物,則得視其生長特徵進行更多的分析比對。

張家豪舉例,判別柑橘類的常年果樹、葉菜類極困難,果樹在光學影像上看起永遠是綠色一片,也無足夠的栽種方式差異、生長週期特徵和其他特性可區辨;檳榔、椰子、香蕉從空中看都是放射狀葉片,雖可參考栽種密度與高度,但影像的空間解析度也得提高至 60 公分才能精確判別;蔥、蒜皆屬旱作,需要空間解析度優於 60 公分的影像,搭配如地區性栽種時序、田埂排列鮮明的地表特徵,有機會判釋成功,「但要是田裡混作個青江菜,就分不出來了。」

-----廣告,請繼續往下閱讀-----

梅樹是另個成功案例,它在 12 月下旬會落葉,隔年 2 月開花長葉結果。團隊曾執行判釋南投水里梅樹的研究,標定幾個時間取像,「若有某個區域在十月是綠葉、入冬出現裸露地特徵、然後變得白白的(開花)、四月又出現綠葉,那就很可能是梅樹!」但李子與梅樹的影像呈現類似,生長期也相近,要是沒在生長期重疊前順利取像,就會混淆兩者。

以衛星影像判釋作物不光是直白的「看照片」或分析光譜,掌握作物的「物候特徵」才是關鍵。

-----廣告,請繼續往下閱讀-----
文章難易度
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
這些太空垃圾會不會阻礙我們太空旅行?太空垃圾怎麼清? 
PanSci_96
・2024/05/29 ・5682字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

人類上太空的夢想會被我們親自摧毀嗎?

隨著火箭成本降低,人人都能把衛星丟上太空,現在,當你晚上抬頭看天空,你看到的星星可能不是星星,而是人造衛星。你看到一閃而過的的流星,可能只是墜入大氣的太空垃圾。

這些多到不行的太空垃圾已經成為隱憂,更可怕的是,這些以超音速飛行的太空垃圾可能摧毀其他衛星,在衛星軌道上製造更多不可預期的致命飛彈。有人擔心,人類終有一天會無法穿過這片垃圾雲,天空永遠被自己封閉。 終於,有人提出清理太空垃圾的方法了,但這些方法真的可行嗎?

現在的太空垃圾有多少?

最大的太空垃圾可能是整節火箭!

所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭,例如 1960 年代太空競賽時大量發射的火箭,有許多至今還在宇宙遊蕩,每一個都像公車一樣大。而小東西,則包含太空人在太空漫步時遺忘的東西,或是太空垃圾互相碰撞後產生的碎片,最小可能只有數毫米,小的像隻蚊子。但不論太空垃圾來自哪裡,只要缺乏妥善的管理和追蹤,就可能成為其他運作中設施和儀器的致命血滴子。

-----廣告,請繼續往下閱讀-----
所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭。
圖|PanSci YouTube

為什麼說太空垃圾真的很危險?

為了不被地心引力拉入大氣,墜向地球,在軌道上繞行地球的物體大多都以非常快的速度在移動,包括現在還在運作的衛星與各種設施。舉例來說國際太空站位於距離地球表面四百公里高的近地軌道(Low Earth Orbit),以大約每秒 7 ~ 8 公里的速度高速移動,是地表音速的 20 倍。也就是說,太空上的車禍可嚴重多了,來自不同方向或不同傾角的物體,可能會以超過每秒 10 公里的相對速度發生碰撞。別說公車大小的太空垃圾了,只要直徑超過 1 公分的碎片就足以對太陽能板或玻璃造成損害。更麻煩的是,大小在 10 公分以下的物體,大多還因為尺寸過小難以追蹤。

那麼,我們的頭上有多少太空垃圾呢?

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1 公分到 10 公分的則高達一百萬個。

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2 千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1公分到 10 公分的則高達一百萬個。
圖|PanSci YouTube

在這些太空垃圾中,大多數大型太空垃圾就是來自發射衛星後,一起留在太空的第二節推進火箭,小型太空垃圾則來自火箭爆炸或各種大大小小碰撞所產生的碎片。

太空上曾發生過嚴重的太空垃圾碰撞事件?

歷史上比較嚴重的一次撞擊事件發生在 2009 年,銥衛星公司運作中的通訊衛星,重量 700 公斤的 iridium 33,和失效、重 900 公斤的蘇聯軍用衛星 kosmos 2251,在 789 公里的高空,兩台衛星以每秒 11.7 公里的相對速度直接撞上,化成了兩團在軌道上繞行的碎片團。

-----廣告,請繼續往下閱讀-----

NASA 估計,這單一次的碰撞產生了超過 2000 片可追蹤的碎片,雖然許多碎片受地球引力慢慢墜入大氣燒毀,但直到到 2023 年 2 月的統計,大約還有一半,也就是 1000 片碎片留在軌道上。過往也曾經觀察到碎片從距離國際太空站僅 100 多公尺的位置驚險掠過。

如何解決太空垃圾的問題?

太空垃圾又多又危險,真的有辦法清除嗎?

2023 年三月,NASA 發表一篇研究,整理了關於各種清理太空垃圾的方法與成本,包含從地面或太空發射雷射推動垃圾改變軌道,或是直接物理性撞擊改變軌道,還有透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用等方法。

透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用。
圖|PanSci YouTube

清理不同大小的物體,要用的方法跟產生的效益也不同,因此他們評估了針對兩種策略。第一種策略將會優先處理目前最大、最具威脅性的 50 個太空垃圾,例如完整的第二節火箭或是失去功能的完整衛星。第二種策略則是優先移除 1 到 10 公分的十萬個小型垃圾。NASA 分別評估處理這兩種目標帶來的效益,恩,所謂的效益,就是預估能減少多少因為太空垃圾碰撞而產生的損失。

要如何移除太空垃圾呢?

移除大型垃圾主要的方法主要是再入大氣層(re-entry),簡單來說就是讓垃圾落入大氣層燒毀。這個方法預計讓運送任務完成的火箭載具,透過剩餘的推進燃料,順手將其他大型垃圾帶下來。移除這 50 個大型垃圾預計總共會花費 10 億美金,但在移除 30 年後所帶來的效益,將會超過花費的成本,非常划算。

-----廣告,請繼續往下閱讀-----

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。發射雷射的裝置可以設置在地面或是太空中,單純以使用效率來說,設置在太空所需要的能量較低,但是設置在地面維護和管理比較方便。然而這也衍伸了許多爭議,主要圍繞在這個清除垃圾的雷射也可以作為武器使用,例如在戰爭爆發時用雷射攻擊敵國的衛星。不過如果順利設置的話,清除十萬個小型垃圾後大約只要十年就可以達到等同於成本的效益,比移除大型垃圾能更快回收成本。

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。
圖|PanSci YouTube

方法有了,但我們真的能讓太空再次乾淨嗎?

太空垃圾問題有解嗎?

現在的太空有多擁擠?

如果把歷史發射資料整理出來,會發現近五年人類的衛星發射數量幾乎是直線攀升,2012 年一整年全世界也只發射了 200 多顆衛星,到了 2022 年已經成長到一年 2000 多顆衛星。而且絕大部分都是來自於美國的衛星,想當然很大一部份都來自於 SpaceX 的星鏈計畫。而受益於獵鷹九號的高成功率和可回收造就的低廉成本,也能夠發射更多的中小型衛星,像是我們臺灣也發射了不少自主研發的立方衛星上太空,例如 2021 的「飛鼠」和「玉山」以及最近才剛發射的珍珠號立方衛星。

如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。

-----廣告,請繼續往下閱讀-----
如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。
圖|PanSci YouTube

治標也要治本,我們對於即將發射進太空的人造物能有套管理辦法嗎?

1967 年在聯合國通過並簽署的《關於各國探索和利用包括月球和其他天體的外太空活動所應遵守原則的條約》,簡稱為《外太空條約》。這個條約制定了各國在外太空活動所應該遵守的原則,其中和人造衛星有關的原則主要有三個:

  1. 國家責任原則:各國應對其航太活動承擔國際責任,不管這種活動是由政府部門還是由非政府部門進行的
  2. 對空間物體的管轄權和控制權原則:射入外空的空間物體登記國對其在外空的物體仍保持管轄權和控制權
  3. 外空物體登記原則:凡進行航太活動的國家同意在最大可能和實際可行的範圍內將活動的狀況、地點及結果通知聯合國秘書長

也就是說,雖然各國需要將太空活動回報給聯合國統計,但實際上在制定規範和進行管制的還是各國本身。以美國來說,分別需要和 FAA 聯邦航空總署申報火箭發射和再入大氣層的計畫,以及向 FCC 聯邦通訊委員會申報衛星的通訊規格,至於要如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。

如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。
圖|PanSci YouTube

不過對於衛星任務結束後的處置,FCC 倒是有相關的規定和罰鍰。因為如果衛星有動力系統,可以在任務結束時就控制墜入大氣層或飛離常用軌道,進到所謂的死亡軌道(Graveyard Orbit),而通常在申請發射衛星時,也需一併提供任務結束後的處置方式。

去年,衛星電視業者 Dish Network 沒有按照它在 2012 年所制定的衛星處置計畫,將衛星從離地 36000 公里的地球同步軌道再往外推 300 公里。這顆衛星在移動的半途中就燃料耗盡失去了動力,只離開原本的軌道 120 公里,FCC 因此對衛星電視業者開罰了 15 萬美元。這起首次針對太空垃圾的開罰,對於太空垃圾的管制具有重大的意義,代表著對太空垃圾危害性的重視,也代表著清理太空垃圾的商機正在逐漸成長。

-----廣告,請繼續往下閱讀-----

清除太空垃圾能有商業價值?

隨著商業化的太空活動逐漸熱絡,如何讓清理太空垃圾不只是空談也成了一個重要的問題。如果軌道上的垃圾減少,受益的會是所有使用軌道的衛星。就與現存的回收與垃圾處理方式一樣,我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。

我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。
圖|PanSci YouTube

另外,雖然目前對於在軌道上進行捕捉再回收的直接經濟效益並不突出,但如果未來在太空可以建立起專門的處理設施,或許可以作為一個長期的太空垃圾處理機制,沒想到吧,人類要成為跨行星文明的第一步,竟然是得先成立太空垃圾清潔隊。

不過話說回來,要讓各國政府願意砸大錢在太空垃圾回收產業可能還需要一點時間。畢竟相較於直接影響到生活的全球暖化,太空垃圾的危害並不那麼可怕,大型垃圾的撞擊也可以預測並提前避開,因此短時間內也還不會有明顯的感受,但如果你是需要觀測的天文學家,可能就覺得垃圾好礙眼了。

最後想問問大家,你覺得處理太空垃圾最好的辦法會是什麼呢?

  1. 向所有太空公司徵收處理費,培育回收業者,資本的事情資本解決。
  2. 從技術研發著手,火箭能回收,想必衛星回收技術很快也能做出來。
  3. 都別處理了,就等人類把自己鎖死在地球,宇宙垃圾就不會再增加了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
鯨魚為什麼歌唱?它們的歌聲可以用來探測海底地形?——《五感之外的世界》
臉譜出版_96
・2023/09/20 ・2132字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

一九九○年代,冷戰終於結束,蘇維埃政府在海中布下的潛水艇威脅也隨之消散,於是海軍提供克拉克與其他專家機會,讓他們透過 SOSUS 的水下麥克風觀測、記錄大海裡的各種聲音。透過聲音頻譜——也就是 SOSUS 系統將接收到的聲音轉換為視覺圖像——克拉克無庸置疑地看到了藍鯨正在歌唱的跡象。

光是第一天克拉克就發現,單一個 SOSUS 感測器所記錄下的藍鯨叫聲比過去所有科學文獻所記載的加起來還要多。大海中充斥著鯨魚的歌聲,而這些聲音則來自無比遙遠的彼方。克拉克估算,記錄下他聽見的那股歌聲的感測器,距離聲音的主人有兩千四百公里之遠。藉由位於百慕達的水下麥克風,他竟能夠聽見遠在愛爾蘭的鯨魚歌聲。

鯨魚的歌聲可以傳得很遠,整個大海中都充斥著鯨魚的歌聲。圖/Giphy

於是他說:「當時我心想:『羅傑的想法沒錯。』我們實際上真的可以探測到橫跨整個海洋盆地的鯨魚歌聲。」對於海軍的分析專家來說,這些聲音就是他們每天工作都會遇到的正常現象,而這些聲音與工作內容無關,所以根本不會被標記在聲音頻譜上,也因此就被忽略了。然而對克拉克來說,這卻是令他茅塞頓開的驚人發現。

穩定規律的「歌聲」其實是一種探測手段?

雖然藍鯨與長須鯨的歌聲能夠跨洋越海,卻沒人知道鯨魚是否真的會在如此遙遠的距離下互相溝通;畢竟牠們很有可能只是在用極大的音量對附近的同類示意,只是音波剛好傳到了很遠的地方去而已。不過克拉克又指出,鯨魚會一次又一次地不斷重複同樣的音頻,甚至也會精準維持音與音之間的間隔長度。鯨魚會在浮出水面呼吸時停止歌唱,回到水中繼續歌唱卻也會落在剛剛好的拍子上。他說:「所以牠們唱歌並不是隨興而至的舉動。」這種現象令他想起了火星探測車為了傳送資料回地球所發出的那種重複的連續訊號。假如人類想設計出能夠跨越海洋進行溝通的訊號,大概也會想出類似藍鯨歌聲的形式吧。

-----廣告,請繼續往下閱讀-----

鯨魚歌聲或許也有其他用途。牠們發出的每個音都能持續好幾秒,而其波長更是好比足球場的寬度。克拉克曾問過他在海軍的朋友,假如他有發出這種聲音的能力,可以拿來幹嘛?

「那我就能摸透整個海洋。」他的朋友如此回答道。這話的意思是,他能夠藉此刻畫出深海的地景,透過傳至遠方的次音波回音,他就能辨識出海底山稜與海床的位置。地球物理學家也肯定能運用長須鯨的歌聲來了解各處的地殼密度。那麼,鯨魚到底用這種聲音來做什麼呢?

鯨魚似乎可以透過歌聲的回音辨識出海底山稜與海床的位置。圖/pixabay

克拉克從鯨魚的動作中看出了答案;透過 SOSUS,他發現藍鯨出現在冰島與格陵蘭之間的極地水域中,一路蜂擁直奔——還是該說是鯨擁?——熱帶地區的百慕達,旅途中一路歌唱。他也看過鯨魚在深海的群山間左彎右拐,在幾百英里間的深海地景之中蜿蜒前進。「看到這些動物的移動方式,就會感覺牠們大腦裡似乎有著以音波構成的海洋地圖。」他如此說道。

他也猜測,鯨魚在長長的一輩子裡,會不斷累積大腦中的聲音記憶,隨之擴增儲存在大腦裡的海洋地圖。克拉克也還記得,曾有位資深海軍聲納專家告訴他,大海裡每個地方都有它專屬的聲音。克拉克告訴我:「他們說:『讓我戴上耳機,我不用看就能直接告訴你現在位於拉布拉多還是比斯開灣的海域。』而我就想,假如人類累積了三十年的經驗就能做到這個地步,何況是演化了一千萬年的動物呢?」

-----廣告,請繼續往下閱讀-----

漫長的迴響~不同時間尺度下的認知

不過關於鯨魚聽力的尺度,還是有令人費解之處。鯨魚的叫聲確實可以傳遞到很遠的地方,但卻也很花時間;在海裡,音波一分鐘只能傳五十英里(約八十公里)遠,因此假設一隻鯨魚聽見另一隻鯨魚在一千五百英里(約二四一四公里)之外發出的叫聲,這隻鯨魚得在半小時以後才能聽見對方的歌聲,就像天文學家觀測到的星光其實是恆星在很久很久以前散發出的光芒一樣。假如某隻鯨魚想探測五百英里(約八百零四公里)之外那座山的位置,牠得等上十分鐘才能接收到自己叫聲的回音,這感覺起來似乎有點荒謬。

然而各位想想,藍鯨在水面上的心跳一分鐘約為三十下,潛入水下後卻會下降至一分鐘只跳三次。這麼一想,鯨魚生命中的時間尺度想來一定與人類相當不同吧。倘若斑胸草雀能夠在單一個音裡就聽見以毫秒為單位的美麗音頻,也許藍鯨分辨同樣潛藏在聲音中的祕密訊號的時間尺度則是分或秒。若要想像鯨魚的生活樣貌,「你得發揮想像力,以完全不同的次元思考。」克拉克對我說道。

他認為這兩種體驗的差異應該就像先用玩具望遠鏡注視夜空,再改用美國太空總署架設在太空的哈伯太空望遠鏡一覽星羅棋布的壯麗星辰。一想到鯨魚,他的世界彷彿就變大了,不管是空間還是時間的尺度,都更加遼闊。

——本文摘自《五感之外的世界》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。