Loading [MathJax]/extensions/tex2jax.js

1

3
4

文字

分享

1
3
4

「量子狀態」聽起來好難?其實就是機率與疊加——《阿宅聯盟:量子危機》

未來親子學習平台
・2023/01/19 ・1256字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

想像我們往水池內丟兩顆石頭,以石頭的落點為中心,會個別產生漣漪,在水面上擴散開來。

而當兩個漣漪互相接觸時,交會之處的水面其實同時反應了兩個漣漪的影響;可以說,兩個漣漪疊加在一起了。漣漪是靠水傳遞的一種波,稱為水波;而「疊加」的現象,就是屬於波的一種特性

當兩個漣漪相互接觸時,會疊加在一起。圖/Envato Elements

物質的波,也就是物質波,同樣存在疊加的特性。只不過,物質波跟水波不同的地方在於,它不需要依賴「水」這種實際的東西來傳遞,而是一種「機率波」。機率波的數學形式長得像波,而它代表的,是量子系統處於不同狀態的機率分布

量子系統的狀態:機率波

當我們在描述量子系統的狀態時,就會用到「機率波」的概念。舉例來說,在電玩遊戲中要是打怪成功,死掉的怪物會留下寶物。怪物可能有 50% 的機率掉落寶物 A,也有 50% 的機率掉落寶物 B,但我們不會在事前就知道怪物會留下哪種寶物。

-----廣告,請繼續往下閱讀-----

所以,怪物可以說是同時擁有「掉落寶物 A」和「掉落寶物 B」這兩種狀況,直到我們成功打完怪,才能確定牠究竟帶哪一種寶物。類似地,機率波告訴我們的,就是量子系統「有多少機率處於狀態 A、又有多少機率處於狀態 B」的資訊;如同兩個水波在水面上疊加,A 和 B 這兩個狀態同時存在這個量子系統上。所以,我們把量子系統「同時處於不同狀態疊加」的狀況,稱為「疊加態」

直到我們打怪成功,才能確定究竟掉哪一種寶物。圖/GIPHY

另一方面,也跟打完怪物才知道掉什麼寶物類似,在我們實際觀測量子系統前,並無法知道會看到狀態 A 還是狀態 B,要觀測完才會知道。因為量子疊加的特殊性質,科學家想到,或許可以拿來做一些實際的運用。

例如,在現代的電腦運算中,「位元」是資訊的最小單位,可以用 0 或 1 這兩個數值來表示。那麼,我們也許能夠把「同時存在兩種不同狀態的量子系統」當作位元使用,讓它的兩種狀態分別代表 0 跟 1 來儲存資訊,而這就被稱為量子位元

由於物理性質的不同,量子位元在某些狀況下,可以運算得比傳統位元更有效率;利用量子位元建構的電腦,就稱為量子電腦。雖然目前已經有少數量子電腦問世,能以最多一百多個量子位元進行運算,但要能大規模運用在日常生活中,除了要再想辦法增加量子位元之外,還有許多難題要克服,所以,現在就先讓漫畫的想像來代替很可能成真的未來吧。

-----廣告,請繼續往下閱讀-----

——本文摘自《阿宅聯盟:量子危機》,2022 年 11 月,未來出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
未來親子學習平台
3 篇文章 ・ 3 位粉絲

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
從 MiniLED 到 QLED:量子點技術如何改寫螢幕的未來?
PanSci_96
・2024/11/17 ・2235字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子點:從顯示技術到量子計算的革命

顯示面板的技術一直在進步,從最早的液晶顯示(LCD),到日益火熱的 MiniLED,再到正在被熱烈研發中的 MicroLED。隨著像素越來越小,螢幕畫質的進步讓人驚嘆不已。然而,現在有一項技術,它並非透過縮小像素來提升畫質,而是以更純淨的顏色帶來視覺上的革命—那就是「量子點技術」(Quantum Dot)。

量子點技術不僅為我們的螢幕帶來更好的顏色,甚至還有可能在量子電腦的未來發展中扮演重要角色。究竟這些小到幾奈米的半導體晶體是如何改變我們的世界?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子點?

量子點是一種半導體奈米晶體,其直徑僅為幾奈米大小,也就是僅包含數百到數萬個原子。在這麼小的尺寸下,量子力學的奇妙特性開始影響顆粒的物理性質。這些量子點能夠吸收特定波長的光,並根據自身大小發射出頻寬極窄的單色光。這也意味著,透過控制量子點的大小,我們可以精確地調整它所發出的顏色。

這項技術在顯示領域中得到了應用,稱為量子點顯示技術(QLED)。QLED 螢幕通常使用藍光 LED 作為背光源,再經由塗有量子點的薄膜來產生鮮艷的紅光和綠光,以此混合出更飽和的色彩,並提供更廣的色域。此外,由於減少了傳統彩色濾光片的使用,QLED 螢幕也更為省電且光效更高。

-----廣告,請繼續往下閱讀-----

MiniLED 與 MicroLED 的比較

要了解量子點技術的優勢,我們首先需要認識當前的顯示技術:MiniLED 與 MicroLED。

MiniLED 雖然名字聽起來和 MicroLED 相似,但它們的工作原理和應用有所不同。MiniLED 屬於有背光結構的面板,主要用於電腦和電視螢幕市場。它的顯色能力優秀,且通過調整背光區域的亮度,可以產生高對比度的畫面,甚至能呈現比傳統 LCD 更黑的黑色。

相比之下,MicroLED 則是無背光的技術,利用紅、綠、藍三種顏色的小燈泡直接發光,這些燈泡小到可以嵌入每個像素中。因此,MicroLED 的螢幕結構更薄,並能減少顏色劣化問題。然而,由於技術難度高,MicroLED 目前仍處於開發階段。

量子點的顯色技術有多特別?

傳統的顯示技術中,無論是 LCD、MiniLED 還是 OLED,它們的色彩顯示都需要依賴彩色濾光片來混合光源。而量子點技術則不然。量子點可以根據顆粒的大小發射出精確且純淨的單色光,其顏色純度遠超傳統濾光片。

-----廣告,請繼續往下閱讀-----

量子點的神奇之處在於,同一種材料可以隨著顆粒尺寸的變化而發射出不同的顏色。這意味著我們只需要製造出不同大小的量子點,就可以得到紅、綠、藍三原色的高純度光源,進而混合出更加鮮豔的色彩。這種「大小決定顏色」的現象,正是量子力學中能階與顆粒大小之間微妙關係的體現。

量子點技術憑顆粒大小精準發光,色彩純度遠勝傳統濾光片。圖/envato

量子力學與量子點的關聯

量子點的顏色之所以能隨顆粒大小改變,是因為量子點內部的電子受到能階的限制。在半導體材料中,電子的能量可以分佈在幾個不同的能階上,當電子從高能階回到低能階時,會以光的形式釋放出多餘的能量。而量子點的尺寸越小,電子能佔據的能階也越少,因此當電子釋放能量時,會放出更高能量的光子,這也導致了更短波長的光,比如藍光。

諾貝爾化學獎與量子點的製備技術

早在幾千年前,工匠們就已經能透過加入不同的金屬粉末來製作出不同顏色的玻璃,但他們並不知道背後的原理。直到 1980 年代,科學家們才發現,這些顏色變化與量子效應有關。2023 年的諾貝爾化學獎,正是授予了對量子點研究做出重要貢獻的三位科學家(分別為巴汶帝 ( Moungi G. Bawendi )、布魯斯 ( Louis E. Brus ) 和艾吉莫夫 ( Alexei I. Ekimov )),他們開發的技術讓量子點的製造變得更加容易且精確。

其中,蒙吉·巴文迪(Moungi Bawendi)開發的製程可以在溶液中精確控制量子點的大小,這使得量子點的性質與應用變得更加穩定且可預測,從而加速了量子點在顯示技術和其他領域的商業化應用。

-----廣告,請繼續往下閱讀-----

量子點在量子電腦中的應用

量子點的應用並不僅限於顯示技術。由於它們能夠透過改變大小來調控各種物理特性,因此又被稱為「人工原子」。這使得量子點在量子電腦中也有巨大的潛力,特別是在儲存與處理量子位元資訊方面。

量子電腦與傳統電腦不同,其運算依賴量子位元,而量子位元可以同時處於多個狀態。要讓量子位元的狀態穩定且能長時間儲存,是量子電腦硬體設計的一大挑戰。量子點因其特殊的能階特性,有望成為量子電腦中儲存量子位元的理想材料。

量子點技術的未來

量子點技術的出現,不僅改變了我們對顯示面板的認知,也為量子計算領域帶來了新希望。隨著技術的進一步成熟,量子點在顯示技術之外,還有可能應用在更多的高科技領域,如光學感測、生物醫學標記等。

如果你對量子點的應用充滿好奇,不妨繼續關注相關的技術發展。也許有一天,這些微小的「人工原子」會成為推動科技變革的核心力量,為我們的生活帶來更多的驚喜和便利。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

3
0

文字

分享

0
3
0
量子革命來襲!一分鐘搞定傳統電腦要花數千萬年的難題!你的電腦是否即將被淘汰?
PanSci_96
・2024/10/17 ・2050字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦:解碼顛覆未來科技的關鍵

2023 年,Google 發表了一項引人注目的研究成果,顯示人類現有最強大的超級電腦 Frontier 需要花費 47 年才能完成的計算任務,Google 所研發的量子電腦 Sycamore 只需幾秒鐘便能完成。這項消息震驚了科技界,也再次引發了量子電腦的討論。

那麼,量子電腦為什麼如此強大?它能否徹底改變我們對計算技術的認知?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

量子電腦是什麼?

量子電腦是一種基於量子力學運作的新型計算機,它與我們熟悉的傳統電腦截然不同。傳統電腦的運算是建立在「位元」(bits)的基礎上,每個位元可以是 0 或 1,這種二進位制運作方式使得計算過程變得線性且單向。然而,量子電腦使用的是「量子位元」(qubits),其運算邏輯則是基於量子力學中的「疊加」與「糾纏」等現象,這使得量子位元能同時處於 0 和 1 的疊加狀態。

這意味著,量子電腦能夠在同一時間進行多個計算,從而大幅提高運算效率。對於某些非常複雜的問題,例如氣候模型、金融分析,甚至質因數分解,傳統電腦可能需要數千年才能完成的運算任務,量子電腦只需數分鐘甚至更短時間便可完成。

-----廣告,請繼續往下閱讀-----

Google、IBM 和量子競賽

Google 和 IBM 是目前在量子計算領域中競爭最為激烈的兩大科技公司。Google 的 Sycamore 量子電腦已經展示出極高的計算速度,令傳統超級電腦相形見絀。IBM 則持續投入量子電腦的研究,並推出了超過 1000 個量子位元的系統,預計到 2025 年,IBM 的量子電腦將擁有超過 4000 個量子位元。

除此之外,世界各國和企業都爭相投入這場「量子霸權」的競賽,台灣的量子國家隊也不例外,積極尋求量子計算方面的突破。這場量子競賽,將決定未來的計算技術格局。

量子電腦的核心原理

量子電腦之所以能如此快速,是因為它利用了量子力學中的「疊加態」和「糾纏態」。簡單來說,傳統電腦的位元只能是 0 或 1 兩種狀態,而量子位元則可以同時處於 0 和 1 兩種狀態的疊加,這使得量子電腦可以在同一時間內同時進行多次計算。

舉例來說,如果一台電腦需要處理一個要花 330 年才能解決的問題,量子電腦只需 10 分鐘便可解決。如果問題變得更複雜,傳統電腦需要 3300 年才能解決,量子電腦只需再多花一分鐘便能完成。

-----廣告,請繼續往下閱讀-----

此外,量子電腦中使用的量子閘(quantum gates)類似於傳統電腦中的邏輯閘,但它能進行更複雜的運算。量子閘可以改變量子位元的量子態,進而完成計算過程。例如,Hadamard 閘能將量子位元轉變為疊加態,使其進行平行計算。

量子電腦能大幅縮短複雜問題的計算時間,利用量子閘進行平行運算。圖/envato

計算的效率

除了硬體技術的進步,量子電腦的強大運算能力也依賴於量子演算法。當前,最著名的兩種量子演算法分別是 Grover 演算法與 Shor 演算法。

Grover 演算法主要用於搜尋無序資料庫,它能將運算時間從傳統電腦的 N 遞減至 √N,這使得資料搜索的效率大幅提升。舉例來說,傳統電腦需要花費一小時才能完成的搜索,量子電腦只需幾分鐘甚至更短時間便能找到目標資料。

Shor 演算法則專注於質因數分解。這對於現代加密技術至關重要,因為目前網路上使用的 RSA 加密技術正是基於質因數分解的困難性。傳統電腦需要數千萬年才能破解的加密,量子電腦只需幾秒鐘便可破解。這也引發了全球對後量子密碼學(PQC)的研究,因為一旦量子電腦大規模應用,現有的加密系統將面臨極大的威脅。

-----廣告,請繼續往下閱讀-----

量子電腦的挑戰:退相干與材料限制

儘管量子電腦具有顛覆性的運算能力,但其技術發展仍面臨諸多挑戰。量子位元必須保持在「疊加態」才能進行運算,但量子態非常脆弱,容易因環境中的微小干擾而坍縮成 0 或 1,這種現象被稱為「量子退相干」。量子退相干導致量子計算無法穩定進行,因此,如何保持量子位元穩定是量子電腦發展的一大難題。

目前,科學家們正在探索多種材料和技術來解決這一問題,例如超導體和半導體技術,並嘗試研發更穩定且易於量產的量子電腦硬體。然而,要實現大規模的量子計算應用,仍需克服諸多技術瓶頸。

量子電腦對未來生活的影響

量子電腦的快速發展將為未來帶來深遠的影響。它不僅將推動科學研究的進步,例如藥物設計、材料科學和天文物理等領域,還可能徹底改變我們的日常生活。例如,交通運輸、物流優化、金融風險管理,甚至氣候變遷預測,都有望因量子計算的應用而變得更加精確和高效。

然而,量子計算的發展也帶來了一些潛在的風險。隨著量子電腦逐漸成熟,現有的加密技術可能會被徹底摧毀,全球的資訊安全體系將面臨巨大挑戰。因此,各國政府和企業已經開始研究新的加密方法,以應對量子時代的來臨。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。