0

0
0

文字

分享

0
0
0

《轉蛋機背後的秘辛──怎樣抽卡才有利》——2019數感盃/高中組專題報導類佳作

數感實驗室_96
・2019/05/16 ・2436字 ・閱讀時間約 5 分鐘 ・SR值 552 ・八年級

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。
本文為 2019數感盃青少年寫作競賽 / 高中職組專題報導類佳作之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

  • 作者:李瑞祥、陳泓恩/建國中學。

 

日本首個因掉率不明被集體訴訟的手遊。圖/Flicker

前言

「抽卡」是時下手機遊戲裡最常見的要素之一,透過消耗遊戲內的虛擬幣來從轉蛋機抽取不同稀有度的卡片。在許多玩家眼裡,「運氣」成為能否抽到好卡的唯一依據,甚至有「歐洲人」這樣的流行語出現來借代運氣極好的玩家。抽卡的結果雖然是機率下的產物,但是其實各個遊戲的抽卡機制不盡相同,我們想探討究竟哪些機制是對玩家有利,又有哪些是對遊戲公司有利。

假設

然而實際上,「抽卡」的複雜性遠超乎單純的「機率」,因此為了簡化討論,我們做出幾個前提假設:

(1)遊戲的平衡性非常完整,也就是同一稀有度的不同卡片,強度是一致的,玩家對於取得同一稀有度卡片的慾望也是一樣的。

(2)遊戲公司必須兼顧玩家的遊戲體驗以及收入,好卡的機率不會無限上綱,但也不能刻薄到讓玩家失去信心。

-----廣告,請繼續往下閱讀-----

(3)卡片無法透過進化提升稀有度,所以玩家抽卡的目的僅在於取得最高稀有度的卡片。

(4)我們參考各個遊戲,並假設出四種稀有度,以及相應的機率。

(5)我們參考各個遊戲,並假設出轉蛋機的虛擬幣消耗量:每一抽需要 5 虛擬幣,十連抽則消耗 50 虛擬幣。而玩家平均為一次抽卡活動所準備的虛擬幣為 150 單位,我們將利用此數據進行討論。

基於以上假設,我們將針對「 4 星張數期望值」和「最差組合機率」兩項指標來比較幾個常見的抽卡機制。

-----廣告,請繼續往下閱讀-----

在開始引入抽卡機制之前,我們必須先介紹兩種指標個別代表的意義。

(1)4 星張數期望值:抽到最高稀有度卡片的期望張數。是玩家對於抽卡機制中最關心的一點,因為抽中 4 星卡是玩家抽卡的最主要目標。

(2)最差組合機率:抽卡結果為當前機制下最差之組合的機率。作為玩家抽卡體驗的負向指標,玩家對遊戲的耐心常常因為最差組合而磨損。

機制

機制一:隨機制度(按照機率直接分配)

-----廣告,請繼續往下閱讀-----

總抽數:150 ÷ 5=30 張

4 ★張數期望值:3% × 30 = 0.9 張

最差組合機率:( 70 %)30≒ 0.022 ‰

機制二:保底制度(十連抽必中一張 3★ 以上,即第 10 張的機率變為 3★97% 、 4★3% )

-----廣告,請繼續往下閱讀-----

總抽數:150 ÷ 5 = 30 張

4★ 張數期望值: 3% × 30 = 0.9 張

最差組合機率:[( 70% )9( 97% )]3 ≒ 0.059 ‰

機制三:水位制度(若是十連抽沒有抽中 4★ ,下次十連抽的 4★ 機率提升 2% , 1★ 機率降低 2 %;如果抽中 4★ ,則重置機率)

-----廣告,請繼續往下閱讀-----

總抽數:150 ÷ 5 = 30 張

4★ 張數期望值(參見附錄一)≒ 1.26 張

最差組合機率(參見附錄二)≒ 0.013 ‰

機制四:特殊轉蛋機制度(十連抽消耗 75 虛擬幣,但不會抽到 1★ ,其他星數依等比例放大,即 2★60 %、 3★30 %、 4★10 %)

-----廣告,請繼續往下閱讀-----

總抽數 150 ÷ 75 × 10 = 20 張

4★ 張數期望值: 10% × 20 = 2 張

最差組合機率:( 60% )20≒ 0.036 ‰

結論

觀察以上四種常見的機制在各項指標下的數據,我們得出了以下幾個結論:

-----廣告,請繼續往下閱讀-----

(1)隨機制度和保底制度的 4★ 張數期望值皆偏低,玩家甚至在 30 抽之下,都無法預見抽中一張 4★ 。此兩機制對遊戲公司較有利,為了提升 4★ 張數期望值到 1 張,部分玩家選擇儲值。以 1 虛擬幣約為 30 元台幣來計算,花費 450 元(增加 3 抽)後便有非常高的機會在此次轉蛋機抽中 4★ 。

(2)隨機制度的最差組合機率為 0.022 ‰,有多小呢?根據調查,被雷打到的機率約為五十萬分之一,也就是 0.002 ‰, 30 連抽為最差組合的機率也不過是遭到雷擊的 11 倍,基本上每 5 萬次 30 連抽才會發生一次。然而,如果玩家只打算以 10 連抽試試手氣,最差組合機率卻高達 2.8 %,平均每 100 人就會有 3 人遇到呢!

(3)水位制度對運氣不好的玩家來說,無疑是縮短與歐洲人之間「貧富差距」的好制度。不只 4★ 張數期望值大幅提升,最差組合機率也是四個機制中最低的。更重要的是,這個制度所顯現出的「公平正義」。有五成四的人在前 20 連抽是沒有 4★ 的,但他們因此得到了機率提升的機會,在第 30 連抽, 4★ 機率已提高至 7% 。就算真的十分不走運,第 40 連抽也能以 9% 的 4★ 機率來抽卡,已經等於原先的 3★ 機率了!

(4)特殊轉蛋機制度帶給玩家更高的 4★ 機率,最差組合機率也不太高,對於吸引玩家抽卡有很大幫助。然而因為設立了 75 虛擬幣的門檻,使得部分休閒玩家可能難以享受到這項福利。另外,對遊戲公司來說,這樣的高機率勢必會讓玩家的 4★ 張數大幅增加,遑論玩家把握機會儲值,一次獲取多張好卡。雖然會刺激消費,但也有可能造成 4★ 氾濫,價值下降。故通常特殊轉蛋機須搭配每人限制次數來管制。若是認為特殊轉蛋機制度在同樣 150 虛擬幣的花費下,卻只能取得原先三分之二的卡片張數十分得不償失,那就大錯特錯了呢!

結語

綜合上述,四種機制各有優缺點,也分別適合不同類型的玩家。關鍵在於,遊戲公司希望吸引哪些類型的玩家,進而決定採用何種抽卡制度,而玩家在遊玩時,也該在謹慎評估過後,再決定是否儲值。

「抽卡」畢竟只是遊戲的一部份,無論運氣好壞,遊戲內肯定還有很多亮眼的地方值得玩家去一一體驗。

附錄

附錄一

討論[1]第一次十連抽中 4★ 且第二次十連抽中 4★

3 %× 30 = 0.9 張

討論[2]第一次十連抽中 4★ 且第二次十連抽沒中 4★

3% × 10 + 3% × 10 + 5% × 10 = 1.1 張

討論[3]第一次十連抽沒中 4★ 且第二次十連抽中 4★

3% × 10 + 5% × 10 + 3% × 10 = 1.1 張

討論[4]第一次十連抽沒中 4★ 且第二次十連抽沒中 4★

3% × 10 + 5% × 10 + 7% × 10 = 1.5 張

4★張數期望值= (1-(97%)10)2  × 0.9 + (1-(97%)10)  (97%)10 × 1.1 + (97%)10  (1-(95%)10) × 1.1 + (97%)10  (95%)10 × 1.5 ≒ 1.26 張

附錄二

討論[1]第一次十連抽中 4★ 且第二次十連抽中 4★

(70%)30 ≒ 0.022 ‰

討論[2]第一次十連抽中 4★ 且第二次十連抽沒中 4★

(70%)10 × (70%)10 × (68%)10 ≒ 0.016 ‰

討論[3]第一次十連抽沒中 4★ 且第二次十連抽中 4★

(70%)10 × (68%)10 × (70%)10 ≒ 0.016 ‰

討論[4]第一次十連抽沒中 4★ 且第二次十連抽沒中 4★

(70%)10 × (68%)10 × (66%)10 ≒ 0.009 ‰

最差組合機率= (1-(97%)10)2  × (0.022‰) + (1-(97%)10)  (97%)10 × (0.016‰) + (97%)10  (1-(95%)10) × (0.016‰) + (97%)10  (95%)10 × (0.009‰) ≒ 0.013 ‰

參考資料

1.機率分配及抽卡制度參考自以下遊戲:BanG Dream少女樂團派對、魔法使與黑貓維茲、死亡愛麗絲、Crash Fever、Sdorica萬象物語⋯⋯等。

2.抽卡制度參考自:銀狐Silver Fox 的碎碎唸

更多2019數感盃青少年寫作競賽內容,歡迎參考 2019數感盃特輯、數感實驗室官網粉絲頁喔。

 

文章難易度
數感實驗室_96
61 篇文章 ・ 41 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 304 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
賭博與愛情公式:用數學擬定你的擇偶策略——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/06 ・2486字 ・閱讀時間約 5 分鐘

理解期望值,有助於分析賭場裡的大部分賭局,以及美國中西部和英國的嘉年華會中,常有人玩、但一般人比較不熟悉的賭法:骰子擲好運(chuck-a-luck)。

招攬人來玩「骰子擲好運」的說詞極具說服力:你從 1 到 6 挑一個號碼,莊家一次擲三顆骰子,如果三個骰子都擲出你挑的號碼,莊家付你 3 美元。要是三個骰子裡出現兩個你挑的號碼,莊家付你 2 美元。

假如三個骰子裡只出現一個你挑的號碼,莊家付你 1 美元。如果你挑的號碼一個也沒有出現,那你要付莊家 1 美元。賽局用三個不同的骰子,你有三次機會贏,而且,有時候你還不只贏 1 美元,最多也不過輸 1 美元。

我們可以套用名主持人瓊安.李維絲(Joan Rivers)的名言(按:她的名言是:「我們能聊一聊嗎?」),問一句:「我們能算一算嗎?」(如果你寧願不算,可以跳過這一節。)不管你選哪個號碼,贏的機率顯然都一樣。不過,為了讓計算更明確易懂,假設你永遠都選 4。骰子是獨立的,三個骰子都出現 4 點的機率是 1/6×1/6×1/6=1/216,你約有 1/216 的機率會贏得 3 美元。

-----廣告,請繼續往下閱讀-----

僅有兩個骰子出現 4 點的機率,會難算一點。但你可以使用第 1 章提到的二項機率分布,我會在這裡再導一遍。三個骰子中出現兩個 4,有三種彼此互斥的情況:X44、4X4 或 44X,其中 X 代表任何非 4 的點數。而第一種的機率是 5/6×1/6×1/6=5/216,第二種和第三種的結果也是這樣。三者相加,可得出三個骰子裡出現兩個 4 點的機率為 15/216,你有這樣的機率會贏得 2 美元。

圖/envato

同樣的,要算出三個骰子裡只出現一個 4 點的機率,也是要將事件分解成三種互斥的情況。得出 4XX 的機率為 1/6×5/6×5/6=25/216,得到 X4X 和 XX4 的機率亦同,三者相加,得出 75/216。這是三個骰子裡僅出現一個 4 點的機率,因此也是你贏得 1 美元的機率。

要計算擲三個骰子都沒有出現 4 點的機率,我們只要算出剩下的機率是多少即可。算法是用 1(或是100%)減去(1/216 +15/216 + 75/216),得出的答案是 125/216。所以,平均而言,你每玩 216 次骰子擲好運,就有 125 次要輸 1 美元。

這樣一來,就可以算出你贏的期望值($3×1/216)+($2×15/216)+($1×75/216)+(–$1×125/216)=$(–17/216)=–$0.08。平均來說,你每玩一次這個看起來很有吸引力的賭局,大概就要輸掉 8 美分。

-----廣告,請繼續往下閱讀-----

尋找愛情,有公式?

面對愛情,有人從感性出發,有人以理性去愛。兩種單獨運作時顯然效果都不太好,但加起來⋯⋯也不是很妙。不過,如果善用兩者,成功的機率可能還是大一些。回想舊愛,憑感性去愛的人很可能悲嘆錯失的良緣,並認為自己以後再也不會這麼愛一個人了。而用比較冷靜的態度去愛的人,很可能會對以下的機率結果感興趣。

在我們的模型中,假設女主角——就叫她香桃吧(按:在希臘神話中,香桃木﹝Myrtle﹞是愛神阿芙蘿黛蒂﹝Aphrodite﹞的代表植物,象徵愛與美)有理由相信,在她的「約會生涯」中,會遇到 N 個可能成為配偶的人。對某些女性來說,N 可能等於 2;對另一些人來說,N 也許是 200。香桃思考的問題是:到了什麼時候我就應該接受X先生,不管在他之後可能有某些追求者比他「更好」?我們也假設她是一次遇見一個人,有能力判斷她遇到的人是否適合她,以及,一旦她拒絕了某個人之後,此人就永遠出局。

為了便於說明,假設香桃到目前為止已經見過 6 位男士,她對這些人的排序如下:3—5—1—6—2—4。這是指,在她約過會的這 6 人中,她對見到的第一人的喜歡程度排第 3 名,對第二人的喜歡程度排第 5 名,最喜歡第三個人,以此類推。如果她見了第七個人,她對此人的喜歡程度超過其他人,但第三人仍穩居寶座,那她的更新排序就會變成 4—6—1—7—3—5—2。每見過一個人,她就更新追求者的相對排序。她在想,到底要用什麼樣的規則擇偶,才能讓她最有機會從預估的 N 位追求者中,選出最好的。

圖/envato

要得出最好的策略,要善用條件機率(我們會在下一章介紹條件機率)和一點微積分,但策略本身講起來很簡單。如果有某個人比過去的對象都好,且讓我們把此人稱為真命天子。如果香桃打算和 N 個人碰面,她大概需要拒絕前面的 37%,之後真命天子出現時(如果有的話),就接受。

-----廣告,請繼續往下閱讀-----

舉例來說,假設香桃不是太有魅力,她很可能只會遇見 4 個合格的追求者。我們進一步假設,這 4 個人與她相見的順序,是 24 種可能性中的任何一種(24=4×3×2×1)。

由於 N=4,37% 策略在這個例子中不夠清楚(無法對應到整數),而 37% 介於 25% 與 50% 之間,因此有兩套對應的最佳策略如下:

(A)拒絕第一個對象(4×25%=1),接受後來最佳的對象。

(B)拒絕前兩名追求者(4×50%=2),接受後來最好的求愛者。

如果採取A策略,香桃會在 24 種可能性中的 11 種,選到最好的追求者。採取 B 策略的話,會在 24 種可能性中的 10 種裡擇偶成功。

以下列出所有序列,如同前述,1 代表香桃最偏好的追求者,2 代表她的次佳選擇,以此類推。因此,3—2—1—4 代表她先遇見第三選擇,再來遇見第二選擇,第三次遇到最佳選擇,最後則遇到下下之選。序列後面標示的 A 或 B,代表在這些情況下,採取 A 策略或 B 策略能讓她選到真命天子。

-----廣告,請繼續往下閱讀-----

1234;1243;1324;1342;1423;1432;2134(A);2143(A);2314(A, B);2341(A, B);2413(A, B);2431(A, B);3124(A);3142(A);3214(B);3241(B);3412(A, B);3421;4123(A);4132(A);4213(B);4231(B);4312(B);4321

如果香桃很有魅力,預期可以遇見 25 位追求者,那她的策略是要拒絕前 9 位追求者(25 的 37% 約為 9),接受之後出現的最好對象。我們也可以用類似的表來驗證,但是這個表會變得很龐雜,因此,最好的策略就是接受通用證明。(不用多說,如果要找伴的人是男士而非女士,同樣的分析也成立。)如果 N 的數值很大,那麼,香桃遵循這套 37% 法則擇偶的成功率也約略是 37%。接下來的部分就比較難了:要如何和真命天子相伴相守。話說回來,這個 37% 法則數學模型也衍生出許多版本,其中加上了更合理的戀愛限制條件。

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。

0

10
2

文字

分享

0
10
2
鑑識故事系列:Lucia de Berk 值班死幾人?荷蘭護理冤案
胡中行_96
・2023/02/27 ・2983字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

前言:本文為鑑識系列中,罕見提及統計學的故事。不過,繁複的計算過程全部省略,僅討論統計概念和辦案原理。請害怕數學的讀者放心。

護理人員 Lucia de Berk。圖/Carole Edrich on Wikimedia Commons(CC BY-SA 3.0)

荷蘭護理人員 Lucia de Berk,長年於海牙茱莉安娜兒童醫院(Juliana Kinderziekenhuis)的 1 個病房,與紅十字醫院(Rode Kruis Ziekenhuis)的 2 個病房工作。2001 年 12 月,她因謀殺罪嫌被捕。[1]

超幾何分佈

警方起先偵辦 2 名住院病患的死因,發現是中毒身亡;後來連帶調查 1997 至 2001 年間,幾家醫院可能的謀殺案件,於是找上了她。[2]在法庭上,司法心理學家 Henk Elffers 用機率的概念,證明 Lucia de Berk 有罪。簡單來說,就是計算嫌犯現身出事班次的機率。他採取的統計方法,叫做超幾何分佈(又稱「超幾何分配」;hypergeometric distribution)。[1]

超幾何分佈適合用在從一個母數中,隨機抽取樣本,不再放回的情形。例如:袋子裝有 N 顆球,其中 L 顆為紅球。一把抓出 n 顆球,不特別挑選的話,紅球碰巧被抓到的機率為 X。[3, 4]以此類推,在此案被調查的時間範圍內,病房總共有 N 個班次,其中 Lucia de Berk 值了 L 班,而有醫療事故的班次共 n 個。如果不刻意安排,則她正好出現在事故班次的機率為 X。[1]公式介紹。[4]

此處實際帶入數據後得到的答案,說明 Lucia de Berk 理論上應該只有 3 億 4 千 2 百萬分之一(X = 1 / 3.42 x 108)的機率,會剛好在醫療事故發生的班次值班。因此,法庭認定她的頻繁出現(> 1 / 3.42 x 108),絕非巧合。[1, 2, 5, 6]2003 年,Lucia de Berk因 7 起謀殺和 3 次殺人未遂,[2]被判終身監禁。[5]

茱利安納兒童醫院(Juliana Kinderziekenhuis)外觀。圖/Joris on Wikimedia Commons(CC BY-SA 3.0)
紅十字醫院(Rode Kruis Ziekenhuis)已於 2021 年關閉。圖/1Veertje on Wikimedia Commons(CC BY-SA 4.0)。

統計謬誤

當時有位醫師任職於 Lucia de Berk 待過的一家醫院。他的女性姻親 Metta de Noo-Derksen 醫師,以及 Metta 的兄弟 Ton Derksen 教授,都覺得事有蹊蹺。[7]Metta 和 Ton 檢視死者的病歷紀錄,並指出部份醫療事故的類型和事發時間,與判決所用的數據對不起來因為後者大半仰賴記憶,他們甚至發現有些遭指控的班次,Lucia de Berk 其實不在現場。然而,光是這些校正,還不足以推翻判決。[1, 7]

-----廣告,請繼續往下閱讀-----

所幸出生於英國的荷蘭萊頓大學(Universiteit Leiden)統計學榮譽教授 Richard Gill,也伸出援手。[2]在協助此案的多年後,他的團隊發表了一篇論文,解釋不該使用超幾何分佈的理由,例如:[1]

  1. 護理人員不可互換:所有受訪醫師都說,護理人員可以相互替換;但是護理人員覺得,他們無法取代彼此。由於各別的個性與行事風格迥異,他們對病患的影響也不同。[1]
  2. 醫療事故通報機率:既然每個護理人員都有自己的個性,他們判定某事件為醫療事故,並且通報醫師的機率也不一樣。[1]畢竟醫院的通報規定是一回事;符合標準與否,都由護理人員判斷。比方說,有個病患每次緊張,血壓就破表。那就讓他坐著冷靜會兒,再登記第二次測量的正常結果即可。不過,難免會有菜鳥護士量一次就嚇到通報,分明給病房添亂。
  3. 班次與季節事故率:夜間與週末只剩護理人員和少數待命的醫師;季節性的特定病例增減;以及病患的生理時鐘等,都會影響出事的機率。[1]
  4. 護理排班並不平均:護理人員的班次安排,理想上會有帶狀的規律。可能連續幾天都是白班,接著是幾個小夜班之類的,[1]比較方便調整作息。此外,護理人員的資歷和個性,通常也會被納入考量。[1]以免某個班次全是資深人員;但另個班次緊急事故發生時,卻只剩不會臨機應變的新手。在這樣的排班原則下,如果單看某個時期的班表,每個人所輪到的各類班次總數,應該不會完全相同。
  5. 出院政策曾經改變:茱莉安娜兒童醫院在案發期間,曾經針對確定救不活的小病患,是否該在家中或病房離世,做過政策上的調整。帳面上來說,算在病房裡的事故量絕對會有變化。[1]

總之,太多因素會影響護理排班,或是干擾醫療事故的通報率,因此不能過度簡化成抽取紅球那樣的隨機概念。更嚴重的是,Henk Elffers 在計算過程中,分開處理 3 個病房的機率,然後再相乘。Richard Gill 的團隊強調,這樣會造成在多處上班的護理人員,比只為一處服務者,看起來有較高的嫌疑。[1]

帕松分佈

因應這種情境,Richard Gill 教授建議採用帕松分佈(又譯「布阿松分配」;Poisson distribution),[1]一種描述特定時間內,事件發生率的統計模型。[8]有別於先前的計算方法,在這裡事故傾向(accident proneness),以及整體排班狀況等變因,都納入了考量。前者採計護理人員通報醫療事故的意願強度;後者則為輪班的總次數。這個模型通常是拿來推估非尖峰時段的來電、大城市的火災等,也適用於 Lucia de Berk 的案子。[1](深入瞭解公式計算(p. 4 – 6)。[1, 8]

雖然此模型的細節複雜,統計學家得大費周章解釋給法官聽,但是考慮的條件比較趨近真實。倘若套用原始判決的數據,這個計算最後的答案是 0.0206161,意即醫療事故本來就有 49 分之 1 的機率,會與 Lucia de Berk 的班次重疊。如果帶入 Mettade Noo-Derksen 和 Ton Derksen 校正過的數據,機率更高達 9 分之 1。[1, 9]換句話說,她單純是倒楣出現在那裡,就被當作連續殺人犯。[6]

其他證據與翻案

大相逕庭的計算結果,顯示出選擇正確統計模型的重要性。然而,最不合理的,是以機率作為判決的主要根據。就謀殺案件來說,怎能不忠於病歷或驗屍報告?Richard Gill 教授接受美國犯罪學講師 Jon Robins 的訪問時,表示後來由醫師和毒物學家組成的獨立團隊,被允許瀏覽當初沒送上法庭的關鍵資料。[2]他們發現原本被視為受害者的病患,根本都喪命於自然死因。[2, 6]

在各方人士的協助下,Lucia de Berk 還是歷經兩次上訴失敗。[6]她曾於 2008 年,被允許在家等候重審結果。[1]但直到 2010 年 4 月,司法才還她清白。[7]Ton Derksen 認為,在荷蘭像這樣誤判的案件,約佔總判決數的 4 至 11%,也就是每年 1,000 人左右。不過,2006 到 2016 年間被判刑的 2 萬 3 千人裡,只有 5 個上訴到最高法院,而且僅 Lucia de Berk 的案子得以平反。[10]

-----廣告,請繼續往下閱讀-----
Lucia de Berk 冤案改編電影的海報。圖/電影《Lucia de B.》(2014) on IMDB

  

參考資料

  1. Gill RD, Groeneboom P, de Jong P. (2018) ‘Elementary Statistics on Trial—The Case of Lucia de Berk’. Chance 31, 4, pp. 9-15.
  2. Robins J. (10 APR 2020) ‘Ben Geen: Statisticians back former nurse’s in last chance to clear name’. The Justice Gap.
  3. 超幾何分佈」國立高雄大學統計學研究所(Accessed on 03 FEB 2023)
  4. 李柏堅(06 FEB 2015)「超幾何分配CUSTCourses on YouTube.
  5. Sims J. (24 FEB 2022) ‘Are We in the Midst of a Data Illiteracy Epidemic?’. Inside Hook.
  6. Schneps L, Colmez C. (26 MAR 2013) ‘Justice Flunks Math’. The New York Times.
  7. Alexander R. (28 APR 2013) ‘Amanda Knox and bad maths in court’. BBC News.
  8. 李伯堅(04 FEB 2015)「布阿松分配」CUSTCourses on YouTube.
  9. Wilson D. (13 DEC 2022) ‘Red flag to be wary of when hunting a killer nurse’. The Herald, Scotland.
  10. One in nine criminals may have been wrongly convicted – research’. (21 NOV 2016) Dutch News.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。