Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

民調結果一致,該懷疑抑或是才可信?計算此一「抽樣分佈」發生的機率

林澤民_96
・2019/07/04 ・3098字 ・閱讀時間約 6 分鐘 ・SR值 548 ・八年級

民進黨初選民調,其五個執行單位的結果一致且相近,是否值得懷疑?

今年度民進黨黨內總統初選民調結果。(點圖放大)

關於這個問題,民進黨的官方答覆是:「此次總統初選民調方式,各執行單位的成功樣本高達 3200 份以上(95%信心水準下,抽樣誤差為正負1.7%),且為本黨民調中心抽樣提供給五家民調單位同時訪問,在相同的抽樣架構、相同的問卷題目、相同的訪問原則、相同的訪員訓練,相同的加權方式之下執行。有相近的民調結果才顯見此次總統初選民調的品質值得信賴,如果五家單位的民調結果差異過大,那才是值得擔憂的事。」

這個答覆令人滿意嗎?

民調得出接近的結果,究竟是否有「異常」?先從假設談起

同一個結果的解讀完全不同。圖/pixabay

五個單位關於蔡英文支持度的結果分別為:36.5721%、36.1190%、36.6532%、34.5323%、35.5072%,其平均數為 35.6768%。五單位的結果偏離平均數最大值為 1.1445%,這個值比 95% 信心水準下的抽樣誤差正負 1.7% 要小很多。

-----廣告,請繼續往下閱讀-----

按照民進黨的說法,似乎各單位民調結果越相近,民調的品質越值得信賴,真的是這樣嗎?五個單位的結果距離其平均數不超過 1.1445% 的機率是多少?如果這個機率甚小,難道我們不應該擔憂?

要探討這個問題,必須要做一些假設,以下的假設其實不盡成立,但本文的目的並不在於檢定這些假設的真假,而是在於利用統計學「抽樣分佈」(sampling distribution)的概念來看在「正常」狀態下,五個重複樣本結果相近的程度是否有「異常」的跡象。做這些假設只是為了要提供一個「正常狀態」的框架而已。

假設一:各民調單位的樣本是同一母體的的隨機樣本,其樣本數同為 N=3200。

這個假設除了樣本數外,會有很多爭議。

第一、所謂母體是指甚麼?全體合格選民?當然不是。

民進黨所從以抽樣的母體其實有兩個:市話號碼和手機號碼。這是兩個不一樣的母體,而且不論分別開來或合併起來,都不能反映全體合格選民。

-----廣告,請繼續往下閱讀-----

第二、各單位的樣本是市話加手機混合母體的隨機樣本嗎?當然不是。

根據民進黨的計算,市話被抽中的機率是 0.19%,手機被抽中的機率是 0.05%。既然市話跟手機被抽中的機率不一樣,各單位的混合樣本就不是混合母體的隨機樣本,更不是全體選民的隨機樣本。

如果民進黨能把市話樣本和手機樣本分別開來,則市話樣本可以說是市話母體的隨機樣本,手機樣本可以說是手機母體的隨機樣本。但因為民進黨只公布每單位市話和手機混合樣本的資料,這裡的假設只是純粹正常狀態的假設。

假設二:支持度的母體參數值(π)可以用各單位樣本支持度(P)的平均數來估計。

本來在同一母體重複抽取足夠多的隨機樣本時,樣本的平均支持度會是母體真正支持度的不偏估計。但如果這些重複樣本不是隨機樣本,則這個假設不必然成立。另外,五個重複樣本並不能算「足夠多」,所以這個假設也只是純粹假設。

假設三、各樣本對人口變數的加權對結果的影響可以忽略。

這個假設通常是可以接受的,但因為民進黨未公布未加權的結果,加權究竟影響有多大也無從得知。

-----廣告,請繼續往下閱讀-----

根據這些假設,得到此結果的機率是……?

根據假設一,應用中央極限定理(CLT)可以導出樣本支持度 P 的「抽樣分佈」是常態分佈:

P~N(π,π(1-π)/N)

其期望值π 是母體支持度,變異量是 π(1-π)/N。值得注意的是:變異量是 π(1-π) 的函數,因為 π 增加時 1-π 減少,π 減小時 1-π 增加,這個分佈的「胖」、「瘦」對 π 並不敏感。因為這樣,以下機率的計算與母體支持度大小的關係不大,關係較大的是五樣本支持度相近的程度。

我們先分析蔡英文支持度的相近程度,再用同樣的方法分析賴清德、韓國瑜、柯文哲的支持度。根據上面的假設,蔡英文母體支持度參數值估計為π=0.356768,由此求出的變異量是 0.0000717139,標準差是 0.008468。所以:

-----廣告,請繼續往下閱讀-----

P~N(0.356768,0.008468^2)

也就是平均數為 0.356768,標準差為 0.008468 的常態分佈。這個常態分佈就是上面所說的「正常狀態」,當足夠多的機構「在相同的抽樣架構、相同的問卷題目、相同的訪問原則、相同的訪員訓練,相同的加權方式之下執行」執行民調時,其所得到的樣本支持度理論上應該遵行這個常態分佈。我們要算五個單位結果那麼相近的機率必須要在這個常態分佈之下來算。

在這樣的常態分佈之下,每一樣本支持度距離 35.6768% 不超過 1.1445%,也就是落在 (34.5323%,36.8213%) 區間內的機率是 0.823463,這就是下圖曲線下藍色區域的面積。


如果要算五個民調的支持度同時落在此區間內,則其機率是 0.823463^5≈0.38

-----廣告,請繼續往下閱讀-----

這個機率是大是小呢?

一般所說的「信心區間」可以有兩個意義。 以支持度比例來說,教科書所說的信心區間是指樣本比例加減由樣本比例算出來的抽樣誤差估計值所得到的區間。但如果我們知道母體比例,則也可以把母體比例加減由母體比例算出來的抽樣誤差來建構信心區間。

這裡因為假設二,我們可以從第二種意義來看待「95%信心區間」:樣本支持度落在以母體支持度為中心的這個區間的機率為 0.95。如果我們有五個重複樣本,則這五個樣本的支持度全部落在「95%信心區間」之內的機率是 0.95^5≈0.77。

上面算出的 0.38 是在正常狀態之下,五個重複樣本支持度距離母體支持度不超過 1.1445% 的機率。

如果有天你因為摸彩而中獎,想必不會覺得有啥好奇怪的。圖/immigrationhadley

現在民進黨五個執行單位得到的蔡英文支持度均在此區間之內,因此有 0.38 機率發生的事件發生了,這樣奇怪嗎?如果摸彩中獎的機率約 0.40,而你中獎了,你會覺得有人作弊讓你中獎嗎?我想多數人不會覺得這樣中獎有什麼好奇怪的。

-----廣告,請繼續往下閱讀-----

這機率可以看做是統計檢定的 p值,也就是數據與假設相諧的程度。0.38 比 0.77小,但它並未小到讓我們得出數據與假設不相諧的結論。

當然,就如統計檢定 p>0.05 並不代表虛無假設為真一樣,它也不足以讓我們做出假設一至三為真的結論。(請參考拙作〈看電影學統計:p值的陷阱〉)

究竟是差異大的民調能讓人放心,還是差異小的呢。圖/pexels

用同樣的方法分析各單位測得的賴清德、韓國瑜、柯文哲對比支持度,都可以得到類似的結果。五個重複樣本的支持度落在實際發生區間內的機率為:0.30(賴清德)、0.60(韓國瑜對比蔡柯)、0.58(韓國瑜對比賴柯)、0.49(柯文哲對比蔡韓)、0.40(柯文哲對比賴韓)。這些機率均未小到令人起疑的地步。

統計上,差異過大或差異過小都可能有問題

民進黨說「有相近的民調結果才顯見此次總統初選民調的品質值得信賴,如果五家單位的民調結果差異過大,那才是值得擔憂的事。」其實是不對的。差異過大固然值得擔憂,太過相近也是問題。

-----廣告,請繼續往下閱讀-----

比如我們把五單位的蔡英文支持度偏離其平均數的最大值減半至 0.5723%,則母體支持度加減 0.5723%的區間便縮小為下圖藍色區域。單一樣本的支持度落在此區間內的機率大約是 0.5,五個樣本支持度全部落在此區間內的機率只有 0.5^5≈0.03。這樣小的機率只能讓我們得到數據與假設不相諧的結論。


民進黨應該解釋的是五單位民調的結果並沒有相近到不可思議的地步,而不是說相異過大才值得擔憂。民調太相近或太相異都是品質可能有問題的跡象。

後記

本文完成後,看到ptt上有高手(raiderho)更早就用模擬的方法得到五單位民調相近程度並非小機率事件的結論。該文雖然用的是模擬的方法,卻能以對比民調中四個比例(蔡/賴、韓、柯、未表態)的聯合常態分佈為基礎來計算機率,可以補本文只用邊際分佈計算機率之不足。

請參考:

本文轉載自作者部落格,原文標題:民進黨初選民調的「抽樣分佈」

-----廣告,請繼續往下閱讀-----
文章難易度
林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
2

文字

分享

0
4
2
看電影學統計:「多重宇宙」與統計學「隨機變異」的概念
林澤民_96
・2023/03/15 ・2854字 ・閱讀時間約 5 分鐘

「多重宇宙」是我教統計時常用到的名詞,我用它來解釋隨機變異(stochastic variation)的概念:

例如民調抽得一個樣本,此樣本的受訪者固然是一群特定人士,但理論上我們可以抽出許多許多樣本,這些樣本之間雖然會有隨機變異,但樣本彼此的宏觀性質仍會相近。這些不同的隨機樣本,可以以「多重宇宙」一詞來形容。即使事實上只有一個樣本(一個宇宙),我們可以想像在多重宇宙的每個宇宙裡,都有一個微觀上隨機變異的樣本存在。

一個樣本(一個宇宙),在多重宇宙裡,每個宇宙都有一個微觀上隨機變異的樣本存在。 圖/IMDb

什麼是隨機樣本?

其實,數理統計學中「隨機樣本」(random sample)的概念指的是「一組獨立且同一分布的隨機變數」(a set of independently and identically distributed random variables)

在這個定義之下,樣本的每一個單位(資料點)都不是固定不變的數值,而是一個依循某機率分布的隨機變數。「隨機樣本」的要求是樣本所有的 N 個單位不但要互相獨立,而且要依循同一的機率分布。

我們可以想像我們平常所謂「一個樣本」的 N 個觀察值,每一個觀察值背後都有一個產生這個數值的隨機變數,也可以說所謂「一個樣本」其實只是這「一組獨立且同一分布的隨機變數」的一個「實現」(realization)。那麼,不同的樣本就是這「一組獨立且同一分布的隨機變數」的不同「實現」。這樣了解之下的不同樣本、不同「實現」,我喜歡把它們稱為「多重宇宙」。

-----廣告,請繼續往下閱讀-----

多重宇宙中的隨機變異,是我們在分析一個樣本的資料時必須作統計推論的原因。

比如我們分析本屆所有 113 位立委的議事行為,既然立委一共只有 113 人,我們分析的對象不就是立委的母體嗎?那是不是就不必做統計推論?

不是!原因是我們仍然可以想像有多重宇宙存在,每個宇宙都有 113 位立委,而同一位立委在不同的宇宙裡其議事行為會有隨機變異。正是因為這隨機變異的緣故,我們即使分析的是所謂「母體」,我們仍然要做統計推論。

圖/IMDb

「多重宇宙」的概念可以說就是「假如我們可以重來」的反事實思想實驗。被分析的單位不是在時間中重來一次,而是在多重宇宙的空間中展現「假如我們可以重來」的隨機變異的可能性。

名為 Monday 的這集 X 檔案電視劇中,主角的夢境不斷重複,每次夢境的結構大致類似,但細節卻有所不同,這正是「多重宇宙—隨機變異」概念的戲劇化。

-----廣告,請繼續往下閱讀-----

【媽的多重宇宙】(Everything Everywhere All at Once)也是。

「看,這是你的宇宙,一個漂浮在存在宇宙泡沫中的泡泡。周圍的每個氣泡都有細微的變化。但你離你的宇宙越遠,差異就越大。」——【媽的多重宇宙】對白

這是說:變異程度越小的是離你越近的宇宙,程度越大的是離你越遠的宇宙。這裡所謂變異的程度,在統計學裡可以用誤差機率分布的標準差來衡量。

什麼是隨機變異?

關於「隨機變異」這個概念,我最喜歡的例子是研究所入學申請的評審。

例如有 120 人申請入學,我詳細閱讀每人投遞的申請資料(包括性別、年齡等個人特質還有 SOP、大學成績單、GRE 分數、推薦信等),然後打一個 Y=0~100 的分數。全部評閱完畢,我便得到一份 N=120 的資料。這個資料包括了所有的申請者,那麼它是樣本呢?還是母體?

-----廣告,請繼續往下閱讀-----

如果我要分析我自己評分的決定因素,我會把分數 Y 回歸到性別、年齡等個人特質以及資料中可以量化的變數,例如大學成績平均分數(GPA)和 GRE 分數。跑這個迴歸時,需不需要做統計推論,看迴歸係數是不是有統計的顯著性?

我的看法是這份 N=120 的資料是樣本而不是母體,做迴歸分析當然要做統計推論。

那麼我資料的母體是什麼?

迴歸分析資料的母體其實是所謂「母體迴歸函數」(population regression function),也就是通常所說的「資料產生過程」(data generating process, DGP)。

這個 DGP 就是我在評閱每份資料時腦海中的思考機制,它考量了許多量化和質化的變數,賦予不同的權重,然後加總起來產生 Y。

分析資料的母體,也就是常說的「資料產生過程」。 圖/envato.elements

量化變數的權重就是母體迴歸函數的係數,質化變數則是母體迴歸函數的係數的誤差項。如果有很多質化變數攏總納入誤差項,我們通常可以根據中央極限定理,假設誤差項是呈現常態分布的隨機變數。這個誤差項就是「隨機變異」的來源。

評審入學申請,我通常只把所有資料評閱一次。這一次評審結果,會有幾家歡樂幾家愁,這便構成了一個「宇宙」。如果我第二天又把所有 120 份資料重新評分一遍,得到第二個樣本。因為我腦中的「資料產生過程」包括隨機變數,這個新樣本保證跟第一個樣本會有差異。用白話說:我的評分機制不精確,我自己甚至不知道我給每個量化變數多少權重,而且第二次評閱所用的權重也會跟第一次不盡相同,更不用說質化變數如何影響我的評分了。

-----廣告,請繼續往下閱讀-----

這第二個樣本,申請者的排比不會跟第一個樣本一樣,雖然也是幾家歡樂幾家愁,歡樂與愁悶的人也可能不一樣。這是第二個宇宙。依此類推,我們可以想像同樣的120位申請者,因為我「資料產生過程」的隨機變異,活在多重宇宙裡。

這些宇宙有的差異不大,根據【媽的多重宇宙】的說法,它們的泡泡互相之間的距離就較近,差異較大的宇宙,距離就較遠。如果申請者可以像電影所述那樣做宇宙跳躍,他們會看到自己在不同宇宙裡的命運。

我擔任德州大學政府系的研究部主任時,常耽心有申請者拿我們入學評審委員的評分資料去做迴歸分析。如果分析結果顯示種族、性別等變數有統計顯著性,說不定會被拿去控告我違反所謂「平權行動」(affirmative action)的相關法律。如果沒有顯著性,我就不耽心了。

多重宇宙之間會不會有「蝴蝶效應」?也就是宇宙跳躍時,隨機變異產生的微小差異,會不會造成新舊宇宙生命路徑的決然不同?

-----廣告,請繼續往下閱讀-----

在【媽的多重宇宙】中,伊芙琳只要當初做了一個不同的決定,以後的生命便可能跟現世(home universe)有很不一樣的命運。這在統計學也不是不可能。時間序列分析中,有些非線性模式只要初始值稍微改變,其後在時間中的路徑便會與原來的路徑發散開來。

你做時間序列分析時,會不會想想:時間序列資料究竟是樣本還是母體?如果你的研究興趣就只限於資料期間,那要不要做統計推論?當然要的,因為隨機變異的緣故。

如果你今年申請外國研究所不順利,也許在另一個宇宙裡,你不但獲名校錄取,得到鉅額獎學金,而且你的人生旅途將自此一路順遂,事業婚姻兩得意呢。

-----廣告,請繼續往下閱讀-----
林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

7
1

文字

分享

0
7
1
想知道鯨魚健不健康?首先,你需要牠們的「鼻涕」!
Lea Tang
・2022/03/07 ・2203字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

為了瞭解鯨豚的健康狀況,科學家們正試圖用更好的方法,來蒐集牠們的鼻涕。

來觀察鯨豚囉!

鯨豚的背鰭,是牠們最容易被人們觀察到的部位,類似於人類的指紋,背鰭是鯨豚的辨識區,可以作為研究人員個體種類辨識上的依據【註1】。然而,若想進一步了解鯨豚的演化史,就不得不仰賴含有 DNA 的活體組織。

不同種類的鯨豚,背鰭都不同。圖/成功海洋環境教室 X ㄈㄈ尺

早期,科學家採集鯨豚活體組織的方式稱作「活體組織切片飛鏢」。如同字面上的意思,他們會向動物投擲飛鏢,獲得牠們的小部分組織作為樣本。但是,這種光用聽的就很痛的方式,不僅會讓鯨豚對研究船隻感到畏懼,更會使得牠們在水中生活時,成為傷口感染的高風險群。

值得高興的是,隨著科技進步,現在科學家已有了新的採集方式。這回,他們自製非侵入性的工具,而且決定改成採集「鼻涕」。

此鼻涕非彼鼻涕

說到鼻涕,我們容易聯想到感冒生病時,從鼻孔裡流出來的東西,不過這裡所提到的「鼻涕」,和那個可不一樣。鯨魚呼氣時所吐出的黏液並非來自呼吸孔,而是來自肺部【註2】。

-----廣告,請繼續往下閱讀-----
當鯨豚換氣時,會以相當大的力道呼氣,進而向空中發射鼻涕。有趣的是,不同種類的鯨魚也有不同的吐氣型態。圖/north-atlantic-society.com

藉由蒐集鯨豚呼吸孔吐出的氣,可以得到許多關於牠們的資訊——包含肺表面活性物質(一種蛋白質和脂質的混和物)、呼吸液與肺細胞。同時,這些樣本也可以用來檢測疾病以及皮質醇【註3】、孕酮【註4】等荷爾蒙,幫助研究者知道一頭鯨魚是否染病,甚至可以知道雌鯨是否有孕。

不過,鯨豚的鼻涕藥怎麼蒐集呢?接下來讓我們一起來看看方法。

鼻涕機器人登場

隨著 DNA 提取技術的進步,研究員們從 2010 年起便開始使用新的工具採集。一但在海面上觀察到鯨魚蹤跡,他們便驅船前往,伸出長長的的竿子,利用末端的培養皿來收集鼻涕。

最初,蒐集樣本的工具是一種培養皿與竿子的組合。圖/bbc.com

另一種進階版的工具稱作「鼻涕機器人」(The Parley Snotbot),由無人機和培養皿所組成。鯨魚換氣時,機器人會從後方靠近鯨身,讓鯨魚的鼻涕因慣性往後落在無人機上的培養皿中。

-----廣告,請繼續往下閱讀-----

不過以上兩種方法通常用來蒐集座頭鯨等大型鯨魚的 DNA,對於體積、肺部容積較小的海豚則不易達成【註5】。

鯨魚躍升時,鼻涕機器人會迅速在牠後上方 standby,在不驚擾與傷害對方的狀況下蒐集鼻涕。圖/howstuffworks.com

鯨魚鼻涕在遺傳學上的貢獻

至於我們能不能利用鼻涕檢體來進行遺傳學相關的研究呢?答案是可行的。儘管小型鯨豚的鼻涕提取比預期中困難,科學家仍然能從樣本中回收一些粒線體 DNA。

正在分析的鼻涕樣本。圖/bbc.com

他們嘗試以聚丙烯製成的管子倒置在水族館豢養的海豚氣孔上,以得到每隻海豚體內的粒腺體 DNA 和微衛星 DNA ,收集到比野外樣本更加豐富的數據。此外,科學家也發現,從海豚鼻涕中獲得的 DNA 圖譜與從血液中取得的 DNA 圖譜相符,證明了在研究海豚遺傳學上,使用鼻涕的結果可能和抽血一樣好。

現在,科學家們要克服野外採集樣本量不足的挑戰,以期在未來能結合傳統的照片識別,建立有關海豚種群的遺傳學目錄

-----廣告,請繼續往下閱讀-----

【註】

  1. 不同種類的鯨豚會有不同形狀的背鰭。就算是同種,不同個體背鰭上的花紋也都不一樣。
  2. 由於鯨豚僅靠呼吸孔呼吸,呼吸孔的堵塞會使牠們窒息死亡。2016 年,研究員曾發現一條呼吸孔先天畸形的海豚在換氣時用嘴呼吸,但這是目前所知的唯一例外。
  3. 腎上腺皮質激素中的糖皮質激素,可以提高血壓、血糖水平和產生免疫抑制作用,有助身體調節壓力事件。
  4. 屬於孕激素荷爾蒙的一種,與懷孕、胚胎與月經週期有關。
  5. 座頭鯨的體型大,吐息也大,容易被船上的研究員發現。海豚因為個體嬌小,肺部僅有約兩個橄欖球大,因此採樣相對困難:牠們呼出的液氣混和物距離海表過近,常在竿子到達前就被海浪打散。另外,面對來勢洶洶的龐大漁船,牠們往往跑得飛快、「走敢若飛」(tsáu kánn-ná pue),不利採樣進行。

資料來源:

  1. 【鯨豚大小事】鯨豚背鰭說
  2. whales-do-not-catch-colds-but-they-do-get-snotty-blowholes
  3. ‘Dolphin snot’ used to look at health of pod off Gower
  4. Those snot-collecting drones are back, and this time they’re seeking dolphins
  5. The Usefulness of Dolphin Snot
  6. The ‘SnotBot’ Drone Is Making Scientific Research Easier on Whales
-----廣告,請繼續往下閱讀-----

討論功能關閉中。