分享本文至 E-mail 信箱
學術引用格式
MLA
APA
EndNote(.enw)

原子力顯微鏡加速捕捉膜蛋白影像

法國科學家首次成功地對運動中的細胞膜蛋白(cell-membrane protein)進行即時的觀測攝影。此成像技術仰賴快速原子力顯微術(high-speed atomic force microscopy, HS-AFM),能夠用來觀測細胞如何與其他細胞及其所處環境相互作用。這是一相當重要的研究領域,因為許多病變被認為與不正常的膜蛋白有關。

圖片來源:nanotechweb.org

細胞膜是區隔細胞與其外在環境的屏障,具有選擇性的滲透功能,允許水份、糖份及其他營養物質與分子進入細胞。為了能正常運作,細胞膜表面佈有許多特殊蛋白質,這些蛋白質的功能取決於其位置以及它們如何與細胞環境內分子產生交互作用。

研究細胞膜結構以及它們如何發育與移動是一件困難的任務,原因是細胞膜非常薄(約 5 nm 厚),一般顯微技術難以用來觀察細胞膜,因為進行觀測所需使用的螢光標記物(fluorescent marker)可能就大於細胞膜本身。

法國國家衛生研究院(INSERM)的 Simon Scheuring 等人利用快速原子力顯微術研究膜蛋白如何自我組織及移動。此方法與一般原子力顯微術相似,差別在於 HS-AFM 採用的懸臂遠短小於一般設備,同時壓電掃描器亦較微小且快速。Scheuring 解釋,所有的設備都需縮小,電子元件也調整到能跟上顯微鏡的速度。利用此技術,他們成功地以前所未有的高解析度拍攝大腸桿菌外細胞膜上未標記的蛋白質。他們也發現蛋白質在移動時如何彼此或與其他分子反應,他們不僅能看見單一蛋白質分子,而是能對細胞膜上所有的分子進行觀測,相形之下,螢光顯微鏡只能觀察到已標記的蛋白質分子。

該團隊同時發現,如果蛋白質分子四周有移動空間時,會移動得非常快,但如果周圍充滿其他分子時,蛋白質便會與它們作用,而這些交互作用對於蛋白質的正常功能通常很重要。此研究結果可望應用於醫藥領域,因為膜蛋白是目前一些藥物非常重要的標靶對象,所以瞭解它們如何與分子產生交互作用有助於未來藥物的研發及改良。該團隊最近利用此技術研究更為複雜的生物細胞膜。詳見 Nature Nanotechnology|DOI:10.1038/nnano.2012.109。

譯者:劉家銘(逢甲大學光電學系)
責任編輯:蔡雅芝
原文網址:AFM speeds up to film proteins—nanotechweb.org [2012-07-26]

本文來自 NanoScience 奈米科學網 [2012-08-13]

你的行動知識好友泛讀已全面上線

每天有成千上百則內容透過社群與通訊軟體朝你湧來,要從混雜著偽科學、假消息、純八卦的資訊中過濾出一瓢知識解渴,在這時代似乎變得越來越難?

為了滿足更多跟我們一樣熱愛知識與學習的夥伴,現在我們很害羞也很驕傲地宣布,手機閱讀平台——泛讀 PanRead iOS 版和「泛讀」Android 版都上架啦!使用後有任何心得或建議,都歡迎與我們分享喔

立即下載 優質知識不漏接

 

 

 

關於作者

主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。