雖然 DHA 與 AA 對神經元的成長很重要,但是我們並不能用簡單的原料(如 2 碳的乙烯輔酶 A)去合成它們。我們只能用 ALA(alpha-linolenic acid)與 LA(linoleic acid,亞麻油酸)來合成 DHA 與 AA。也就是因為這樣,所以我們一定要從飲食中取得 ALA 以及亞麻油酸,或者直接攝取 DHA 與花生四烯酸也可以。
如果是攝取 ALA 與亞麻油酸,由於它們只有 18 個碳,但是 DHA 為 22 個碳,而花生四烯酸則有 20 個碳,所以由 18 碳到 20-22 碳會需要延長(elongation)碳鏈以及加入雙鍵(去飽和反應,desaturation)。這其中,將雙鍵加入五號碳和六號碳的酵素 FADS1 與 FADS2,是這一整條合成途徑的速率限制步驟。
FADS1 與 FADS2 這兩個基因以頭對頭的方式座落在人類的第十一條染色體上。最近的研究發現,這兩個基因在人類的演化史上曾出現過變異。兩種主要的變異型 A 與 D,其中 D 使得酵素 FADS1 的表現量上昇。研究團隊發現,具有 D 變異型的人,合成 DHA 與花生四烯酸的能力,明顯地比 A 變異型的人要好很多 [3] [4]。
研究團隊分析發現,兩種變異型出現的時間都小於 50 萬年;而 D 變異型與原來的基因差異較大,而且大部分的現代人都具有 D 變異型。
由於 D 變異型可以合成更多的 DHA 以及花生四烯酸,且這些 omega-3 與 omega-6 脂肪酸可刺激神經元的發育,研究團隊認為這個基因變異,使得現代人即使在飲食中未取得 DHA 與花生四烯酸(這兩種脂肪酸要從動物中取得,尤其是 DHA 要從海魚中獲取),還是可以經由亞麻油酸與 ALA(這兩種脂肪酸可由植物中取得)來合成足夠的 DHA 與花生四烯酸。
由於現代人與尼安德塔人(Neanderthals)在演化上分道揚鑣的時間大約就在 50 萬年前,研究團隊認為,D 變異型在現代人的基因中出現,是否提供了現代人在大腦發育上的優勢呢?由於具有 D 變異型基因的人可以在打不到獵物的狀況下,靠著採集到的果實、塊莖等食物所提供的亞麻油酸與 ALA,仍能合成足夠的 DHA 與花生四烯酸;這是否代表他們在歷史的智力競賽中取得較佳的優勢呢?
-----廣告,請繼續往下閱讀-----
由於大部分的現代人都具有 D 變異型,因此可以說具有這種變異的人的確在演化上有優勢;但是這個基因變異到了 20 世紀,似乎成了一個劣勢。
[1] 奇普.沃特著。2011.重返人類演化現場.漫遊者出版.
[2] Darios, F., and Davletov, B. 2006. Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature 440, 813-817.
[3] Genetic adaptation of fat metabolism key to development of human brain.
[4] Ameur, A., Enroth, S., Johansson, A., Zaboli, G., Igl, W., Johansson, A.C.V., Rivas, M.A., Daly, M.J., Schmitz, G., Hicks, A.A., Meitinger, T., Feuk, L., van Duijn, C., Oosta, B., Pramstaller, P.P., Rudan, I., Wright, A.F., Wilson, J.F., Campbell, H., and Gyllensten, U. 2012. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. The American Journal of Human Genetics. 90: 1-12.
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。