0

1
0

文字

分享

0
1
0

超高速光學顯微技術,連使出電光一閃的病毒粒子都拍得到!

研之有物│中央研究院_96
・2017/05/08 ・2396字 ・閱讀時間約 4 分鐘 ・SR值 572 ・九年級

超高速光學顯微鏡,有影片有真相

動體視力對於運動員很重要,而研究移動快速的細胞、病毒、細菌時,為了讓顯微鏡底下的世界看得更快更清楚,中研院原子與分子科學研究所的謝佳龍助研究員,與團隊一起研發每秒可拍五十萬張影像的光學顯微技術,有助科學家在對生物系統造成最小干擾的情況下,直接觀察奈米尺度的活體現象。

謝佳龍團隊集結光電、生物、材料專家,研發過程不斷思考「超高速光學顯微影像技術」應用於跨領域的可能性。圖/張語辰

超高速光學顯微鏡,追求速度與激清

2014 年諾貝爾化學獎,頒發給「超解析螢光顯微鏡」的發明團隊,當科學家得以在奈米尺度看見生命中最小「元件」運作時,例如細胞、病毒、細菌,就能發現傳統顯微技術無法察覺到的生物現象。看見各領域都想辦法為生物科學、醫學盡一份力,改善人類的健康,電機和光電工程背景的謝佳龍受到啟發。

我一直在尋找有什麼光學技術既簡單又可靠,而且影響力還能超越光學領域。

謝佳龍運用光學專業,改良廣泛使用的傳統明場(brightfield)顯微鏡,和團隊一起研發 COBRI 顯微鏡,可觀察奈米尺度單粒子在三度空間的高速運動。

COBRI 顯微鏡的核心概念是採用雷射作為光源,取代傳統的白熾燈,再透過干涉的方法,偵測線性散射(linear scattering)光訊號。當一個粒子的折射率和周圍環境不同時,在光的照射下便會將部分的光散射,運用這個特性就可以量測被觀察的粒子位於何處、又移到動哪裡。

當雷射光通過層層關卡穿透樣品後,會產生 COBRI 訊號和激發螢光訊號,並各自投影到高速 CMOS 相機和 EMCCD 相機。資料來源/Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells ;圖說改編/林婷嫻、張語辰
超高速光學顯微鏡全貌:這是謝佳龍團隊大幅優化的第二代版本,並同時紀錄傳統的螢光標籤影像以利比較。圖/張語辰
超高速光學顯微鏡局部:雷射光會先穿過 SM 、AOD 、層層透鏡後,再前往樣本放置台。圖/張語辰

追蹤拍攝單粒子時,「快狠準」是最重要的。謝佳龍團隊不斷改進顯微鏡的時間和空間解析度,一開始只想做到每秒拍幾千張影像,但慢慢地團隊越來越貪心,不斷試著超越極限。

-----廣告,請繼續往下閱讀-----

目前實作中以一個 20 奈米直徑的金粒子為例,每秒可超高速拍攝五十萬張影像,並將金粒子的中心位置做到準確度 2 奈米的定位。

「要是我們可以做到……就好了」每次我向團隊說出更難的提議時,大家會崩潰吶喊「怎麼可能!」,但現在回頭看,過去不可能的事都是有可能的。

什麼東西跑得快?就決定觀察你了,病毒!

超高速光學顯微鏡,開啟許多過去無法進行的單分子生物研究。在中研院分子生物研究所的張雯博士的協助與建議下,謝佳龍團隊著手觀測牛痘病毒顆粒著陸在細胞表面上的高速運動。

生物學家們可以透過實驗了解病毒降落在細胞後會「發生什麼」,但無法直接看到「怎麼發生」,不知道病毒在過程中做了哪些奇怪的行為。

一開始,謝佳龍團隊在實驗室等了一整個下午,病毒都沒有掉到要觀測的細胞樣本上,比向月老求姻緣更難預測病毒降落細胞表面的時機。後來團隊成員黃逸帆想到一個方式突破困境,各位觀眾,請見下圖。

黃逸帆將牛痘病毒粒子裝在極細的玻璃管中,並將玻璃管移至細胞樣本上方,就能在局部釋放出病毒粒子,提高病毒接觸到細胞表面的機率。圖/張語辰

謝佳龍團隊透過超高速光學顯微鏡看見:當牛痘病毒粒子附著到細胞膜之後,一秒內便被侷限在幾百奈米的範圍中,並在微秒時間尺度下,做非常高速的橫向擴散運動(擴散係數〜1μm2/s)。影像紀錄的 3D 空間精準度 <3 nm,時間解析度高達每秒 100,000 幀。

-----廣告,請繼續往下閱讀-----
超高速光學顯微鏡下,牛痘病毒於細胞表面著陸移動軌跡(擴散係數〜1μm2/s),圖中所有數據皆以 5 kHz 記錄。資料來源/Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells ;圖說改編/林婷嫻、張語辰

我們看見病毒掉到細胞膜之後,在細胞膜上非常快速的擴散運動(diffusion),短暫地跟一些區域互動,最後找到一個區域停留,這是在我們觀察之前沒有人知道的。

觀測奈米尺度的活體現象,意義是?

以病毒為例,當病毒要入侵宿主細胞時,它如何遊走、它會不會進入細胞,跟病毒如何辨識細胞表面受體很有關連。雖然傳統分子生物實驗方法可以間接推測其關連性,但超高速光學顯微鏡能為整個過程提供第一手直接證據,有畫面有真相。

另外,超高速光學顯微鏡是在對生物系統造成最小干擾的情況下,直接觀察奈米尺度的活體現象,也能協助科學家檢驗傳統螢光標記的觀測方式,有沒有影響活體樣本原本的行為。

每個人都會有夢想,而對於打造出超高速光學顯微鏡的男人而言,謝佳龍希望能應用清楚看見奈米粒子高速運動的特性,協助找出健康問題的解決方案,例如細菌感染、腸病毒、登革熱病毒、或神經細胞的特定狀況。

儘管距離實現夢想還有一段路要走,但是謝佳龍想了想,很有自信地說:

-----廣告,請繼續往下閱讀-----

只要朝對的方向走,再慢也會到達目的地。


延伸閱讀

執行編輯|林婷嫻  美術編輯|張語辰

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
鎖定薄層 TIRF 顯微鏡成單分子研究關鍵
顯微觀點_96
・2024/05/20 ・2229字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

鎖定薄層 TIRF 顯微鏡成單分子研究關鍵

首圖

單分子技術(single-molecule techniques)主要是觀察「個別」分子特性和反應過程;其中,全內角反射螢光顯微鏡(Total Internal Reflection Fluorescence, TIRF)是單分子研究的基礎關鍵技術。

生物研究中,螢光顯微鏡是常見的儀器,利用螢光標記特定的分子。當螢光分子被特定波長的入射光激發,從低能階躍遷至高能階後,掉回原本低階能狀態的過程,便會而釋放出光子,發光成像。

但傳統寬視野螢光顯微鏡會激發整個深度的螢光分子,因此也會同時激發目標區以外的分子而造成雜訊;TIRF 則是利用介質的差異,將照明限制在較淺的深度、約 200 奈米以內,便可有效減少背景訊號。

還記得之前文章曾提過,當光從一種介質傳遞到另一種介質,部分反射,部分因為波速變化而發生折射,例如從水到空氣。

-----廣告,請繼續往下閱讀-----

折射角度遵守斯涅耳定律(Snell’s law):n1 × sinθ1 = n2 × sinθ2

其中,若 n1 折射率較高(光密介質)、n2 折射率較低(光疏介質),光線從 n1 射向 n2。

當入射角 θ1 小於臨界角 θc 時,光線部分往 n2 介質以 θ2 角度折射,部分往 n1 介質以 θ1 角度反射;當入射角 θ1 大於臨界角 θc 時,則沒有折射光線,產生全反射現象。

雖然全反射時,光不會進入第二介質發生折射,但在介面處仍會產生漸逝波(evanescent wave)。漸逝波的頻率與入射光相同,且強度隨與介面的距離增加呈指數衰減,並垂直介面、沿著 z 方向最多達到奈米級的深度。

-----廣告,請繼續往下閱讀-----
反射
反射
Tirf 影像

全反射時在介面處仍會產生漸逝波(左圖),TIRF 顯微鏡利用此作為螢光激發光源,將照明限制在較淺的深度(右圖左)。圖片來源:Olympus 官網

而穿透深度(d) 取決於入射照明的波長(λ)、入射角(θ1)以及介質的折射率(n)。

d = λ/4π × (n12 sin2θ1 – n22)-1/2

TIRF 顯微鏡便是利用這樣的漸逝波作為激發光源,激發樣本介面的螢光分子,產生全反射螢光影像。

-----廣告,請繼續往下閱讀-----

TIRF 顯微鏡依據光入射路徑,可分為稜鏡型(prism-based) 與物鏡型(objective-based) 兩類。

稜鏡型和物鏡型
TIRF 顯微鏡可分為稜鏡型(prism-based) 與物鏡型(objective-based) 兩類。圖片來源:Chemical Review 網站

在稜鏡型 TIRF 中,在樣本另一側使用稜鏡產生全反射,以激發細胞培養基上的螢光生物樣本,不需要特殊物鏡。但稜鏡型 TIRF 為了要達到較高的解析度,接收螢光的物鏡工作距離較短,樣本和物鏡間的空間較小,限制了研究者進一步對樣本進行操作。

物鏡型 TIRF 則是將物鏡除了作為收集螢光信號的鏡頭外,同時也作為發生全反射的稜鏡。入射光從物鏡邊緣射向樣本,並使用高數值孔徑(NA 通常在 1.45 以上)的物鏡實現大於臨界角的入射角,以產生全反射。

樣本與蓋玻片介面處產生漸逝波,激發樣本表面區域的螢光物質,同時以高數值孔徑的同一物鏡收集螢光顯微鏡影像。

-----廣告,請繼續往下閱讀-----

理論上,一般光源也可作為全反射螢光顯微鏡的光源,但前面提到穿透深度與波長、入射角及折射率等都有關係,因此常以雷射作為光源。例如中研院單分子生物核心實驗室就以三個常用波長(485、532、640 nm)的雷射作為光源,並自動調節入射光源角度及漸逝波穿透深度。

由於 TIRF 顯微鏡的可觀察深度僅在 200 奈米以內,因此常結合螢光共振能量轉換法(fluorescence resonance energy transfer, FRET)、光鉗(optical tweezer)等技術,大量地應用在蛋白質、細胞膜等研究。而相較於也能鎖定 z 軸光學切面、不會受到太多背景干擾的共軛焦顯微鏡,TIRF 也能以更快速度獲取細胞膜運送物質,如胞吞、胞吐等作用的影像。

中研院單分子生物核心實驗室負責人黃婉媜便曾提到,由於 TIRF 顯微鏡的可觀察深度僅在 200 奈米以內,恰好細胞膜上非常多離子通道和受體以及訊息傳遞分子都位於此深度內,是研究藥物作用及藥物動力學很好的工具。

589307 0
中研院單分子生物核心實驗室使用 TIRF 顯微鏡結合 FRET 技術,偵測蛋白質與 DNA 分子間交互作用。攝影/楊雅棠

參考資料

  1. 胡書銘(2008)。全反射螢光顯微術於生物單分子研究的樣品簡易處理。科儀新知,(164),82-88。
  2. 楊德明、林夏玉、蔡定平(2003)。全反射原理及在生物螢光顯微鏡之應用。科儀新知,(133),67-73。
  3. Olympus: Total Internal Reflection Fluorescence Microscopy
  4. MICROSCOPY U:Total Internal Reflection Fluorescence (TIRF) Microscopy

查看原始文章

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
18 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
0

文字

分享

0
0
0
少了目鏡的數位顯微鏡
顯微觀點_96
・2024/04/16 ・1996字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

顯微鏡在觀察微小物體上發揮非常重要的作用,但傳統光學顯微鏡通常愈將倍率放大,景深就愈淺,在觀察立體的生物標本或是組織切片,觀察者無論怎樣調焦,依然無法獲得完全清晰的圖片。數位顯微鏡便能解決這樣的問題。

數位顯微鏡和光學顯微鏡最大的差異在於觀察方式。數位顯微鏡不像傳統顯微鏡透過目鏡來觀察,而是使用數位相機獲取畫面,再將即時畫面投影到連接的電腦螢幕。

三要件組成數位顯微鏡

數位顯微鏡結合了傳統光學顯微鏡、數位多媒體和數位處理技術,其成像系統通常包括三個模組:顯微鏡光學模組、資料擷取模組、數位影像處理和軟體控制模組。

-----廣告,請繼續往下閱讀-----

顯微鏡光學模組執行顯微成像的功能,將欲觀察的樣本影像聚焦。一旦聚焦,資料擷取模組就會將影像以數位格式儲存在感光元件,如 CCD(電荷耦合裝置‍)或 CMOS‍(互補式金氧半導體),再透過 USB 或其他介面傳輸到電腦儲存裝置。

軟體控制模組則是整個數位顯微鏡系統的核心,可即時控制、優化擷取的影像,並加以處理、分析測量。尤其隨著功能更強大的電腦出現,數位顯微影像可以得到更有效和高效的處理,例如可以取代手動計數功能,或是快速推疊或拼接影像。

公式

Dtot 表示景深,λ 是照明光的波長,n 是物鏡至觀察物體間介質的折射率,NA 是物鏡的數值孔徑

e 是放置在顯微鏡物鏡圖像中,可分辨的最小距離,M 是橫向總放大倍率

從公式可以看到,景深和總放大倍率幾乎成反比。而以過去難以同時兼備的高倍率和大景深來說,使用顯微鏡調整焦點,搜尋並到達分佈在不同深度的樣本後,再以數位成像設備捕捉分佈在這些深度的所有清晰影像,傳輸到電腦就能產生高品質、清晰的影像。

另外,也可結合雷射和共軛焦顯微鏡觀察不同深度的橫斷切面影像,再利用電腦影像處理和 3D 重建演算法,便能可以獲得高解析度的立體輪廓,進而觀察複雜的細胞骨架、染色體、細胞器和細胞膜。

-----廣告,請繼續往下閱讀-----

數位顯微鏡的電腦即時處理也常應用在動態或活體(in vivo)檢測的研究中,例如細胞膜潛在變化、藥物進入組織或細胞膜的過程等。

902x324p487x175.png

數位顯微鏡的倍率計算

傳統顯微鏡的總放大倍率為目鏡倍率 x 物鏡倍率,既然數位顯微鏡拿掉了目鏡改以數位相機、電腦取代,該如何計算總放大倍率呢?

數位顯微鏡除了光學放大倍率,還必須考慮數位放大倍率,因此總放大倍率=光學放大倍率 x 數位放大倍率

  • 光學放大倍率:物鏡放大倍率 x C 型轉接環放大倍率

由於連接顯微鏡和相機通常有一個 C 型轉接環(C-mount),且內建鏡頭。因此必須先將物鏡放大倍率乘以轉接環的放大倍率。

-----廣告,請繼續往下閱讀-----
  • 數位放大倍率=螢幕(顯示器)尺寸/感光元件尺寸

數位放大倍率必須考慮的元素有螢幕和感光元件。通常螢幕的對角線尺寸以英吋為單位,因此必須先將測量值轉換為毫米(mm);以 19 吋顯示器為例,其對角線測量值則為 19 吋 x 25.4=482.6 (mm)。

感光元件尺寸同樣以對角線的測量值來計算。以 1” 的晶片來說,其對角線測量值為 16(mm)。

感光元件規格(英吋)對角線
1″12.89.316
2/3″8.86.611
1/1.8″7.25.49
1/2″6.44.88
1/2.5″5.84.37
1/3″4.83.66
1/4″3.22.44

因此若以 10X 的物鏡搭配 0.67X 的 C 型轉接環,變焦 5X 後使用 2/3”CMOS 攝錄器拍攝並投影在 24 吋螢幕上。此時總放大倍率為:10 X 0.67 X 5 X 24 X 25.4 / 11 = 1856.5 (倍)

不過,隨著技術的不斷進步,數位顯微鏡和光學顯微鏡間的界限變得越來越模糊,有些數位顯微鏡採用更多光學元件,光學顯微鏡也採用了數位相機技術;相信打破藩籬的那一天指日可待。

-----廣告,請繼續往下閱讀-----

查看原始文章

參考資料

  1. Digital vs. Optical Microscopes: An In-Depth Comparison
  2. How to Calculate Microscope On-Screen Magnification
  3. Chen, X., Zheng, B., & Liu, H. (2011). Optical and digital microscopic imaging techniques and applications in pathology. Analytical cellular pathology (Amsterdam)34(1-2), 5–18.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
18 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。