Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

超高速光學顯微技術,連使出電光一閃的病毒粒子都拍得到!

研之有物│中央研究院_96
・2017/05/08 ・2396字 ・閱讀時間約 4 分鐘 ・SR值 572 ・九年級

-----廣告,請繼續往下閱讀-----

超高速光學顯微鏡,有影片有真相

動體視力對於運動員很重要,而研究移動快速的細胞、病毒、細菌時,為了讓顯微鏡底下的世界看得更快更清楚,中研院原子與分子科學研究所的謝佳龍助研究員,與團隊一起研發每秒可拍五十萬張影像的光學顯微技術,有助科學家在對生物系統造成最小干擾的情況下,直接觀察奈米尺度的活體現象。

謝佳龍團隊集結光電、生物、材料專家,研發過程不斷思考「超高速光學顯微影像技術」應用於跨領域的可能性。圖/張語辰

超高速光學顯微鏡,追求速度與激清

2014 年諾貝爾化學獎,頒發給「超解析螢光顯微鏡」的發明團隊,當科學家得以在奈米尺度看見生命中最小「元件」運作時,例如細胞、病毒、細菌,就能發現傳統顯微技術無法察覺到的生物現象。看見各領域都想辦法為生物科學、醫學盡一份力,改善人類的健康,電機和光電工程背景的謝佳龍受到啟發。

我一直在尋找有什麼光學技術既簡單又可靠,而且影響力還能超越光學領域。

謝佳龍運用光學專業,改良廣泛使用的傳統明場(brightfield)顯微鏡,和團隊一起研發 COBRI 顯微鏡,可觀察奈米尺度單粒子在三度空間的高速運動。

COBRI 顯微鏡的核心概念是採用雷射作為光源,取代傳統的白熾燈,再透過干涉的方法,偵測線性散射(linear scattering)光訊號。當一個粒子的折射率和周圍環境不同時,在光的照射下便會將部分的光散射,運用這個特性就可以量測被觀察的粒子位於何處、又移到動哪裡。

當雷射光通過層層關卡穿透樣品後,會產生 COBRI 訊號和激發螢光訊號,並各自投影到高速 CMOS 相機和 EMCCD 相機。資料來源/Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells ;圖說改編/林婷嫻、張語辰
超高速光學顯微鏡全貌:這是謝佳龍團隊大幅優化的第二代版本,並同時紀錄傳統的螢光標籤影像以利比較。圖/張語辰
超高速光學顯微鏡局部:雷射光會先穿過 SM 、AOD 、層層透鏡後,再前往樣本放置台。圖/張語辰

追蹤拍攝單粒子時,「快狠準」是最重要的。謝佳龍團隊不斷改進顯微鏡的時間和空間解析度,一開始只想做到每秒拍幾千張影像,但慢慢地團隊越來越貪心,不斷試著超越極限。

-----廣告,請繼續往下閱讀-----

目前實作中以一個 20 奈米直徑的金粒子為例,每秒可超高速拍攝五十萬張影像,並將金粒子的中心位置做到準確度 2 奈米的定位。

「要是我們可以做到……就好了」每次我向團隊說出更難的提議時,大家會崩潰吶喊「怎麼可能!」,但現在回頭看,過去不可能的事都是有可能的。

什麼東西跑得快?就決定觀察你了,病毒!

超高速光學顯微鏡,開啟許多過去無法進行的單分子生物研究。在中研院分子生物研究所的張雯博士的協助與建議下,謝佳龍團隊著手觀測牛痘病毒顆粒著陸在細胞表面上的高速運動。

生物學家們可以透過實驗了解病毒降落在細胞後會「發生什麼」,但無法直接看到「怎麼發生」,不知道病毒在過程中做了哪些奇怪的行為。

一開始,謝佳龍團隊在實驗室等了一整個下午,病毒都沒有掉到要觀測的細胞樣本上,比向月老求姻緣更難預測病毒降落細胞表面的時機。後來團隊成員黃逸帆想到一個方式突破困境,各位觀眾,請見下圖。

黃逸帆將牛痘病毒粒子裝在極細的玻璃管中,並將玻璃管移至細胞樣本上方,就能在局部釋放出病毒粒子,提高病毒接觸到細胞表面的機率。圖/張語辰

謝佳龍團隊透過超高速光學顯微鏡看見:當牛痘病毒粒子附著到細胞膜之後,一秒內便被侷限在幾百奈米的範圍中,並在微秒時間尺度下,做非常高速的橫向擴散運動(擴散係數〜1μm2/s)。影像紀錄的 3D 空間精準度 <3 nm,時間解析度高達每秒 100,000 幀。

-----廣告,請繼續往下閱讀-----
超高速光學顯微鏡下,牛痘病毒於細胞表面著陸移動軌跡(擴散係數〜1μm2/s),圖中所有數據皆以 5 kHz 記錄。資料來源/Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells ;圖說改編/林婷嫻、張語辰

我們看見病毒掉到細胞膜之後,在細胞膜上非常快速的擴散運動(diffusion),短暫地跟一些區域互動,最後找到一個區域停留,這是在我們觀察之前沒有人知道的。

觀測奈米尺度的活體現象,意義是?

以病毒為例,當病毒要入侵宿主細胞時,它如何遊走、它會不會進入細胞,跟病毒如何辨識細胞表面受體很有關連。雖然傳統分子生物實驗方法可以間接推測其關連性,但超高速光學顯微鏡能為整個過程提供第一手直接證據,有畫面有真相。

另外,超高速光學顯微鏡是在對生物系統造成最小干擾的情況下,直接觀察奈米尺度的活體現象,也能協助科學家檢驗傳統螢光標記的觀測方式,有沒有影響活體樣本原本的行為。

每個人都會有夢想,而對於打造出超高速光學顯微鏡的男人而言,謝佳龍希望能應用清楚看見奈米粒子高速運動的特性,協助找出健康問題的解決方案,例如細菌感染、腸病毒、登革熱病毒、或神經細胞的特定狀況。

儘管距離實現夢想還有一段路要走,但是謝佳龍想了想,很有自信地說:

-----廣告,請繼續往下閱讀-----

只要朝對的方向走,再慢也會到達目的地。


延伸閱讀

執行編輯|林婷嫻  美術編輯|張語辰

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3646 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
鎖定薄層 TIRF 顯微鏡成單分子研究關鍵
顯微觀點_96
・2024/05/20 ・2229字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

鎖定薄層 TIRF 顯微鏡成單分子研究關鍵

首圖

單分子技術(single-molecule techniques)主要是觀察「個別」分子特性和反應過程;其中,全內角反射螢光顯微鏡(Total Internal Reflection Fluorescence, TIRF)是單分子研究的基礎關鍵技術。

生物研究中,螢光顯微鏡是常見的儀器,利用螢光標記特定的分子。當螢光分子被特定波長的入射光激發,從低能階躍遷至高能階後,掉回原本低階能狀態的過程,便會而釋放出光子,發光成像。

但傳統寬視野螢光顯微鏡會激發整個深度的螢光分子,因此也會同時激發目標區以外的分子而造成雜訊;TIRF 則是利用介質的差異,將照明限制在較淺的深度、約 200 奈米以內,便可有效減少背景訊號。

還記得之前文章曾提過,當光從一種介質傳遞到另一種介質,部分反射,部分因為波速變化而發生折射,例如從水到空氣。

-----廣告,請繼續往下閱讀-----

折射角度遵守斯涅耳定律(Snell’s law):n1 × sinθ1 = n2 × sinθ2

其中,若 n1 折射率較高(光密介質)、n2 折射率較低(光疏介質),光線從 n1 射向 n2。

當入射角 θ1 小於臨界角 θc 時,光線部分往 n2 介質以 θ2 角度折射,部分往 n1 介質以 θ1 角度反射;當入射角 θ1 大於臨界角 θc 時,則沒有折射光線,產生全反射現象。

雖然全反射時,光不會進入第二介質發生折射,但在介面處仍會產生漸逝波(evanescent wave)。漸逝波的頻率與入射光相同,且強度隨與介面的距離增加呈指數衰減,並垂直介面、沿著 z 方向最多達到奈米級的深度。

-----廣告,請繼續往下閱讀-----
反射
反射
Tirf 影像

全反射時在介面處仍會產生漸逝波(左圖),TIRF 顯微鏡利用此作為螢光激發光源,將照明限制在較淺的深度(右圖左)。圖片來源:Olympus 官網

而穿透深度(d) 取決於入射照明的波長(λ)、入射角(θ1)以及介質的折射率(n)。

d = λ/4π × (n12 sin2θ1 – n22)-1/2

TIRF 顯微鏡便是利用這樣的漸逝波作為激發光源,激發樣本介面的螢光分子,產生全反射螢光影像。

-----廣告,請繼續往下閱讀-----

TIRF 顯微鏡依據光入射路徑,可分為稜鏡型(prism-based) 與物鏡型(objective-based) 兩類。

稜鏡型和物鏡型
TIRF 顯微鏡可分為稜鏡型(prism-based) 與物鏡型(objective-based) 兩類。圖片來源:Chemical Review 網站

在稜鏡型 TIRF 中,在樣本另一側使用稜鏡產生全反射,以激發細胞培養基上的螢光生物樣本,不需要特殊物鏡。但稜鏡型 TIRF 為了要達到較高的解析度,接收螢光的物鏡工作距離較短,樣本和物鏡間的空間較小,限制了研究者進一步對樣本進行操作。

物鏡型 TIRF 則是將物鏡除了作為收集螢光信號的鏡頭外,同時也作為發生全反射的稜鏡。入射光從物鏡邊緣射向樣本,並使用高數值孔徑(NA 通常在 1.45 以上)的物鏡實現大於臨界角的入射角,以產生全反射。

樣本與蓋玻片介面處產生漸逝波,激發樣本表面區域的螢光物質,同時以高數值孔徑的同一物鏡收集螢光顯微鏡影像。

-----廣告,請繼續往下閱讀-----

理論上,一般光源也可作為全反射螢光顯微鏡的光源,但前面提到穿透深度與波長、入射角及折射率等都有關係,因此常以雷射作為光源。例如中研院單分子生物核心實驗室就以三個常用波長(485、532、640 nm)的雷射作為光源,並自動調節入射光源角度及漸逝波穿透深度。

由於 TIRF 顯微鏡的可觀察深度僅在 200 奈米以內,因此常結合螢光共振能量轉換法(fluorescence resonance energy transfer, FRET)、光鉗(optical tweezer)等技術,大量地應用在蛋白質、細胞膜等研究。而相較於也能鎖定 z 軸光學切面、不會受到太多背景干擾的共軛焦顯微鏡,TIRF 也能以更快速度獲取細胞膜運送物質,如胞吞、胞吐等作用的影像。

中研院單分子生物核心實驗室負責人黃婉媜便曾提到,由於 TIRF 顯微鏡的可觀察深度僅在 200 奈米以內,恰好細胞膜上非常多離子通道和受體以及訊息傳遞分子都位於此深度內,是研究藥物作用及藥物動力學很好的工具。

589307 0
中研院單分子生物核心實驗室使用 TIRF 顯微鏡結合 FRET 技術,偵測蛋白質與 DNA 分子間交互作用。攝影/楊雅棠
  1. 胡書銘(2008)。全反射螢光顯微術於生物單分子研究的樣品簡易處理。科儀新知,(164),82-88。
  2. 楊德明、林夏玉、蔡定平(2003)。全反射原理及在生物螢光顯微鏡之應用。科儀新知,(133),67-73。
  3. Olympus: Total Internal Reflection Fluorescence Microscopy
  4. MICROSCOPY U:Total Internal Reflection Fluorescence (TIRF) Microscopy

查看原始文章

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
26 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
超高速光學顯微技術,連使出電光一閃的病毒粒子都拍得到!
研之有物│中央研究院_96
・2017/05/08 ・2396字 ・閱讀時間約 4 分鐘 ・SR值 572 ・九年級

-----廣告,請繼續往下閱讀-----

超高速光學顯微鏡,有影片有真相

動體視力對於運動員很重要,而研究移動快速的細胞、病毒、細菌時,為了讓顯微鏡底下的世界看得更快更清楚,中研院原子與分子科學研究所的謝佳龍助研究員,與團隊一起研發每秒可拍五十萬張影像的光學顯微技術,有助科學家在對生物系統造成最小干擾的情況下,直接觀察奈米尺度的活體現象。

謝佳龍團隊集結光電、生物、材料專家,研發過程不斷思考「超高速光學顯微影像技術」應用於跨領域的可能性。圖/張語辰

超高速光學顯微鏡,追求速度與激清

2014 年諾貝爾化學獎,頒發給「超解析螢光顯微鏡」的發明團隊,當科學家得以在奈米尺度看見生命中最小「元件」運作時,例如細胞、病毒、細菌,就能發現傳統顯微技術無法察覺到的生物現象。看見各領域都想辦法為生物科學、醫學盡一份力,改善人類的健康,電機和光電工程背景的謝佳龍受到啟發。

我一直在尋找有什麼光學技術既簡單又可靠,而且影響力還能超越光學領域。

謝佳龍運用光學專業,改良廣泛使用的傳統明場(brightfield)顯微鏡,和團隊一起研發 COBRI 顯微鏡,可觀察奈米尺度單粒子在三度空間的高速運動。

COBRI 顯微鏡的核心概念是採用雷射作為光源,取代傳統的白熾燈,再透過干涉的方法,偵測線性散射(linear scattering)光訊號。當一個粒子的折射率和周圍環境不同時,在光的照射下便會將部分的光散射,運用這個特性就可以量測被觀察的粒子位於何處、又移到動哪裡。

-----廣告,請繼續往下閱讀-----

當雷射光通過層層關卡穿透樣品後,會產生 COBRI 訊號和激發螢光訊號,並各自投影到高速 CMOS 相機和 EMCCD 相機。資料來源/Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells ;圖說改編/林婷嫻、張語辰

超高速光學顯微鏡全貌:這是謝佳龍團隊大幅優化的第二代版本,並同時紀錄傳統的螢光標籤影像以利比較。圖/張語辰

超高速光學顯微鏡局部:雷射光會先穿過 SM 、AOD 、層層透鏡後,再前往樣本放置台。圖/張語辰

追蹤拍攝單粒子時,「快狠準」是最重要的。謝佳龍團隊不斷改進顯微鏡的時間和空間解析度,一開始只想做到每秒拍幾千張影像,但慢慢地團隊越來越貪心,不斷試著超越極限。

-----廣告,請繼續往下閱讀-----

目前實作中以一個 20 奈米直徑的金粒子為例,每秒可超高速拍攝五十萬張影像,並將金粒子的中心位置做到準確度 2 奈米的定位。

「要是我們可以做到……就好了」每次我向團隊說出更難的提議時,大家會崩潰吶喊「怎麼可能!」,但現在回頭看,過去不可能的事都是有可能的。

什麼東西跑得快?就決定觀察你了,病毒!

超高速光學顯微鏡,開啟許多過去無法進行的單分子生物研究。在中研院分子生物研究所的張雯博士的協助與建議下,謝佳龍團隊著手觀測牛痘病毒顆粒著陸在細胞表面上的高速運動。

生物學家們可以透過實驗了解病毒降落在細胞後會「發生什麼」,但無法直接看到「怎麼發生」,不知道病毒在過程中做了哪些奇怪的行為。

一開始,謝佳龍團隊在實驗室等了一整個下午,病毒都沒有掉到要觀測的細胞樣本上,比向月老求姻緣更難預測病毒降落細胞表面的時機。後來團隊成員黃逸帆想到一個方式突破困境,各位觀眾,請見下圖。

黃逸帆將牛痘病毒粒子裝在極細的玻璃管中,並將玻璃管移至細胞樣本上方,就能在局部釋放出病毒粒子,提高病毒接觸到細胞表面的機率。圖/張語辰

-----廣告,請繼續往下閱讀-----

謝佳龍團隊透過超高速光學顯微鏡看見:當牛痘病毒粒子附著到細胞膜之後,一秒內便被侷限在幾百奈米的範圍中,並在微秒時間尺度下,做非常高速的橫向擴散運動(擴散係數〜1μm2/s)。影像紀錄的 3D 空間精準度 <3 nm,時間解析度高達每秒 100,000 幀。

超高速光學顯微鏡下,牛痘病毒於細胞表面著陸移動軌跡(擴散係數〜1μm2/s),圖中所有數據皆以 5 kHz 記錄。資料來源/Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells ;圖說改編/林婷嫻、張語辰

我們看見病毒掉到細胞膜之後,在細胞膜上非常快速的擴散運動(diffusion),短暫地跟一些區域互動,最後找到一個區域停留,這是在我們觀察之前沒有人知道的。

觀測奈米尺度的活體現象,意義是?

以病毒為例,當病毒要入侵宿主細胞時,它如何遊走、它會不會進入細胞,跟病毒如何辨識細胞表面受體很有關連。雖然傳統分子生物實驗方法可以間接推測其關連性,但超高速光學顯微鏡能為整個過程提供第一手直接證據,有畫面有真相。

另外,超高速光學顯微鏡是在對生物系統造成最小干擾的情況下,直接觀察奈米尺度的活體現象,也能協助科學家檢驗傳統螢光標記的觀測方式,有沒有影響活體樣本原本的行為。

-----廣告,請繼續往下閱讀-----

每個人都會有夢想,而對於打造出超高速光學顯微鏡的男人而言,謝佳龍希望能應用清楚看見奈米粒子高速運動的特性,協助找出健康問題的解決方案,例如細菌感染、腸病毒、登革熱病毒、或神經細胞的特定狀況。

儘管距離實現夢想還有一段路要走,但是謝佳龍想了想,很有自信地說:

只要朝對的方向走,再慢也會到達目的地。


延伸閱讀

執行編輯|林婷嫻  美術編輯|張語辰

-----廣告,請繼續往下閱讀-----

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3646 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
少了目鏡的數位顯微鏡
顯微觀點_96
・2024/04/16 ・1996字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

顯微鏡在觀察微小物體上發揮非常重要的作用,但傳統光學顯微鏡通常愈將倍率放大,景深就愈淺,在觀察立體的生物標本或是組織切片,觀察者無論怎樣調焦,依然無法獲得完全清晰的圖片。數位顯微鏡便能解決這樣的問題。

數位顯微鏡和光學顯微鏡最大的差異在於觀察方式。數位顯微鏡不像傳統顯微鏡透過目鏡來觀察,而是使用數位相機獲取畫面,再將即時畫面投影到連接的電腦螢幕。

三要件組成數位顯微鏡

數位顯微鏡結合了傳統光學顯微鏡、數位多媒體和數位處理技術,其成像系統通常包括三個模組:顯微鏡光學模組、資料擷取模組、數位影像處理和軟體控制模組。

-----廣告,請繼續往下閱讀-----

顯微鏡光學模組執行顯微成像的功能,將欲觀察的樣本影像聚焦。一旦聚焦,資料擷取模組就會將影像以數位格式儲存在感光元件,如 CCD(電荷耦合裝置‍)或 CMOS‍(互補式金氧半導體),再透過 USB 或其他介面傳輸到電腦儲存裝置。

軟體控制模組則是整個數位顯微鏡系統的核心,可即時控制、優化擷取的影像,並加以處理、分析測量。尤其隨著功能更強大的電腦出現,數位顯微影像可以得到更有效和高效的處理,例如可以取代手動計數功能,或是快速推疊或拼接影像。

公式

Dtot 表示景深,λ 是照明光的波長,n 是物鏡至觀察物體間介質的折射率,NA 是物鏡的數值孔徑

e 是放置在顯微鏡物鏡圖像中,可分辨的最小距離,M 是橫向總放大倍率

從公式可以看到,景深和總放大倍率幾乎成反比。而以過去難以同時兼備的高倍率和大景深來說,使用顯微鏡調整焦點,搜尋並到達分佈在不同深度的樣本後,再以數位成像設備捕捉分佈在這些深度的所有清晰影像,傳輸到電腦就能產生高品質、清晰的影像。

另外,也可結合雷射和共軛焦顯微鏡觀察不同深度的橫斷切面影像,再利用電腦影像處理和 3D 重建演算法,便能可以獲得高解析度的立體輪廓,進而觀察複雜的細胞骨架、染色體、細胞器和細胞膜。

-----廣告,請繼續往下閱讀-----

數位顯微鏡的電腦即時處理也常應用在動態或活體(in vivo)檢測的研究中,例如細胞膜潛在變化、藥物進入組織或細胞膜的過程等。

902x324p487x175.png

數位顯微鏡的倍率計算

傳統顯微鏡的總放大倍率為目鏡倍率 x 物鏡倍率,既然數位顯微鏡拿掉了目鏡改以數位相機、電腦取代,該如何計算總放大倍率呢?

數位顯微鏡除了光學放大倍率,還必須考慮數位放大倍率,因此總放大倍率=光學放大倍率 x 數位放大倍率

  • 光學放大倍率:物鏡放大倍率 x C 型轉接環放大倍率

由於連接顯微鏡和相機通常有一個 C 型轉接環(C-mount),且內建鏡頭。因此必須先將物鏡放大倍率乘以轉接環的放大倍率。

-----廣告,請繼續往下閱讀-----
  • 數位放大倍率=螢幕(顯示器)尺寸/感光元件尺寸

數位放大倍率必須考慮的元素有螢幕和感光元件。通常螢幕的對角線尺寸以英吋為單位,因此必須先將測量值轉換為毫米(mm);以 19 吋顯示器為例,其對角線測量值則為 19 吋 x 25.4=482.6 (mm)。

感光元件尺寸同樣以對角線的測量值來計算。以 1” 的晶片來說,其對角線測量值為 16(mm)。

感光元件規格(英吋)對角線
1″12.89.316
2/3″8.86.611
1/1.8″7.25.49
1/2″6.44.88
1/2.5″5.84.37
1/3″4.83.66
1/4″3.22.44

因此若以 10X 的物鏡搭配 0.67X 的 C 型轉接環,變焦 5X 後使用 2/3”CMOS 攝錄器拍攝並投影在 24 吋螢幕上。此時總放大倍率為:10 X 0.67 X 5 X 24 X 25.4 / 11 = 1856.5 (倍)

不過,隨著技術的不斷進步,數位顯微鏡和光學顯微鏡間的界限變得越來越模糊,有些數位顯微鏡採用更多光學元件,光學顯微鏡也採用了數位相機技術;相信打破藩籬的那一天指日可待。

-----廣告,請繼續往下閱讀-----

查看原始文章

  1. Digital vs. Optical Microscopes: An In-Depth Comparison
  2. How to Calculate Microscope On-Screen Magnification
  3. Chen, X., Zheng, B., & Liu, H. (2011). Optical and digital microscopic imaging techniques and applications in pathology. Analytical cellular pathology (Amsterdam)34(1-2), 5–18.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
26 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

1

0
1

文字

分享

1
0
1
如何有效預防食媒性疾病 A 型肝炎病毒?
衛生福利部食品藥物管理署_96
・2023/10/10 ・2338字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自食藥好文網

圖/envato
  • 文/黃育琳 食品技師

民以食為天,你吃的食物是安全的嗎?

中國大陸上海市在 1988 年曾因毛蚶貝類污染而爆發 A 型肝炎疫情,造成約 30 萬人感染,其中 47 人死亡 [1]

我國於 2014 年 10 月至 11 月期間,急性病毒性 A 型肝炎本土病例達 30 人(其中 25 人住院),經衛生福利部疾病管制署(以下簡稱疾管署)與衛生局調查發現,多數病例於潛伏期間有生食蠔類(牡蠣)、文蛤或蛤蜊等貝類水產品 [2]

-----廣告,請繼續往下閱讀-----

這起事件極有可能是所謂的「食媒性疾病」。

何謂食媒性疾病?

食媒性疾病或稱食源性疾病(foodborne illness or foodborne disease)是指經由吃進被污染的食物或飲水等所致的疾病,常見症狀包含噁心、嘔吐、腹痛及腹瀉等。

依世界衛生組織的資料顯示,全球每年約有 6 億人因食用受到污染的食物或飲水而生病,其中 42 萬人死亡,又以兒童占多數。學童在校園中常暴露於共同的飲食及水源,人與人之間接觸密切,傳染病原很容易透過飛沫、糞口與接觸途徑傳播,易造成校園群聚感染事件發生 ​​[3]

但追溯污染源並不容易,食物在種植(或養殖)、採收、儲存、運送、製造、加工、包裝及烹調等任一階段都有可能被污染。且旅行和國際貿易頻繁更是提高被污染食品跨國散播的可能性 ​​[3],使農場到餐桌的食安管理顯得十分重要。

-----廣告,請繼續往下閱讀-----

A 肝病毒之分布

一開始提到因吃下受 A 型肝炎病毒(Hepatitis A virus,以下簡稱 A 肝病毒)污染的食物而感染 A 型肝炎,就是很典型病毒型食媒性疾病的例子。

A 肝病毒的流行主要與當地的衛生環境有關,主要流行地區包括亞洲、非洲與中南美洲等地區,尤以東南亞、印度、中國大陸等地區較為嚴重。

在開發中國家,人民多半在嬰幼兒時期,常因攝入受 A 肝病毒污染的水或食物而感染(通常 6 歲以下兒童感染約有 70% 無臨床症狀或症狀輕微),成年後多半已具有免疫力。

然而在已開發國家,衛生環境大致較佳,很多年輕人並未感染過 A 肝病毒而不具免疫力。臺灣便是如此,大部份的兒童及青少年(尤其是都會地區)都未具 A 型肝炎抗體,使爆發流行的風險增加 [1]

-----廣告,請繼續往下閱讀-----

A 肝病毒之特性與感染症狀

A 肝病毒是一種無套膜,直徑約為 27 nm 的 RNA 病毒,潛伏期約 15~50 天,其所引起的 A 型肝炎,屬第二類法定傳染病 ​​[1]

患者臨床症狀包含發燒、肌肉酸痛、疲倦、食慾不振、腹部不適、噁心、甚至嘔吐等,持續幾天後,病人會出現有茶色尿或併有眼白變黃(即黃疸)的徵兆,急性 A 型肝炎並無特殊療法,通常採一般的支持性療法即可痊癒 ​​[1]

而 A 肝病毒主要是透過糞口途徑傳播,最可能被污染的食品或飲料如水果、蔬菜、貝類、冰和水(包括冷凍或未經澈底加熱),感染者沒有確實洗手並接觸其他東西也會造成病毒傳播 [1]

不過 A 肝病毒的生命力頑強,對胃腸道極端的 pH 值和酶之耐受性高,能在不利條件下存活,被污染的食物需加熱超過攝氏 85 度且持續至少一分鐘才足以使 A 肝病毒失去活性。

-----廣告,請繼續往下閱讀-----

再加上只要有極少量病毒顆粒存在便足以使人致病,所以即使食品所含的病毒量很低,仍具有食品中毒之風險 [4]

透過電子顯微鏡所拍攝的 A 型肝炎病毒。圖 / 美國疾病管制與預防中心
透過電子顯微鏡所拍攝的 A 型肝炎病毒。圖 / 美國疾病管制與預防中心

食品從業人員基本要求《食品良好衛生規範》

為了避免食品受到病毒污染,食品從業人員的「衛生管理」就非常重要,我國行政院衛生福利部為了確保食品業者之衛生管理,已制定《食品良好衛生規範準則》(The Regulations on Good Hygiene Practice for Food, GHP)。

GHP 是食品業者確保其食品在製造、加工、調配、包裝、運送、儲存、販賣、輸入、輸出等過程中的安全衛生與品質,是最基本要求,所有食品業者皆應實施 GHP,在 GHP 附表二即說明:

食品從業人員經醫師診斷罹患或感染 A 型肝炎、手部皮膚病 、出疹、膿瘡、外傷、結核病、傷寒或其他可能造成食品污染之疾病,其罹患或感染期間,應主動告知現場負責人,不得從事與食品接觸之工作。

-----廣告,請繼續往下閱讀-----

雖然是安全衛生品質的基本要求,卻還是有不少業者會疏忽,導致感染事件重蹈覆徹。

最佳預防方式就是注重衛生管理

除了 A 肝病毒之外,諾羅病毒、E 型肝炎病毒及沙波病毒皆是常見的病毒型食媒性疾病,這些病毒感染均無特效藥物可治療,僅能採用良好的支持性療法幫助病人痊癒。

因此最佳的預防感染方式就是做好衛生管理,包含:

  1. 個人衛生:準備食品前及進食前,還有如廁後皆要確實洗手。
  2. 在飲食衛生:飲水要煮沸再飲用,所有食品都應清洗乾淨並澈底加熱,不生食。
  3. 環境衛生:維護廁所環境清潔,廚房及飲食用具要保持清潔。
圖/envato
  1. 衛生福利部疾病管制署,2018。急性病毒性 A 型肝炎  疾病介紹。
  2. 衛生福利部食品藥物管理署,2023。A 型肝炎病毒(Hepatitis A virus)。
  3. 衛生福利部疾病管制署、國立臺北教育大學,2016。食媒性疾病防治 教師指引手冊。臺北市:衛生福利部疾病管制署。
  4. Bozkurt, H., Phan-Thien, K. Y., van Ogtrop, F., Bell, T. and McConchie, R. 2021. Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review. Critical Reviews in Food Science and Nutrition 61:1 116-138.
-----廣告,請繼續往下閱讀-----
所有討論 1
衛生福利部食品藥物管理署_96
65 篇文章 ・ 24 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx