0

0
1

文字

分享

0
0
1

這個九九乘法表你小學沒背過!吠陀方形的千年奧秘

Sharkie Lin_96
・2016/12/06 ・3369字 ・閱讀時間約 7 分鐘 ・SR值 502 ・六年級

我們從小學二年級就開始學習九九乘法表,但是上大學以後大家就開始正大光明地使用計算機,九九乘法表和心算能力就只剩下買東西的時候算錢可以比較快,那小時候學心算到底要做什麼呢?沒法馬上回答只好先來轉移一下話題,九九乘法表其實沒有你想像的那麼簡單,裡面有著你不知道的數學奧秘,且讓我們繼續看下去。

8492235227_358128050c_z
小學二年級開始我們就學九九乘法表,好像背出來就對了,也覺得熟練後就輕鬆簡單,但是它真的就這麼淺這麼簡單嗎?圖 / By Global Partnership for Education – GPE @ flickr, CC BY-NC-ND 2.0

算過生命靈數就懂的數學:位數根

不知道大家還記不記得,以前在檢查一個正整數是不是 3 或 9 的倍數,我們會將正整數的每個位數數字相加,看加總的數字是不是 3 或 9 的倍數來判斷。或者大家可能也算過號稱可解析命格的「生命靈數」,將自己的出生年月日中每個數字加總,超過 9 就再重覆這個計算過程,直到加到不能在加之後得出一個屬於自己的「生命靈數」。這樣的作法其實你已經運用了一個正整數的性質——「位數根」。

到底什麼是位數根?它可以叫做數根、數字根,英文是 digital root 或 digit sum,就是把一個正整數各個位數的數字加總,若其和大於 9,則再將所得數的數字再加總一次,如此反覆這個步驟直到所得新數介於 1 至 9之間,稱此新數為原數的位數根。在此 D (n) 表示整數 n 的位數根,例如:9527 的位數根運算為 D (9527) = D (9+5+2+7) = D (23) = D (2+3) = D (5) = 5,5 即為 9527 的位數根。

如果用位數根來看九九乘法表…

講了這麼多,數學奧秘到底在哪?先來看一下下圖的九九乘法表吧!不過,這個表和我們小時候背的不太一樣,它是一個 9×9 的表格,裡頭的數字是上方第一列的數字與左方第一欄的數字相乘的結果。

九九乘法表
圖 1:九九乘法表

如果把這個九九乘法表的每一個數字都進行位數根運算,會出現什麼樣的結果?你可以自己試試看,也可以直接看圖 2 的結果。

將九九乘法表中每個數字進行位數根的運算,會得到新的一個表,而這個表稱為「吠陀方形」(Vedic square)。
圖 2:將九九乘法表中每個數字進行位數根的運算,會得到新的一個表,而這個表稱為「吠陀方形」(Vedic square)。

經過位數根運算後,九九乘法表就轉換成了著名的「吠陀方形」(Vedic square)。Vedic 這個英文字是從印度文 Vedas 來的,中文翻譯的「吠陀」常讓人聯想到精油或瑜珈,但在古印度文中它的意思是知識,所以可以把吠陀方形想像成是一個帶有知識的正方形。嗯?怎麼聽起來很像《平面國》這本書的故事情節呢 [1]。

《平面國》的主角是一位活在平面國的正方形男性,在一個偶然的機會下,一位「球體天使」帶他「向上」離開了平面國並遊歷了立體國,使得他成為最具知識的一號人物。回到平面國以後,主角迫不及待地想告訴大家「向上,而非向北」的體驗與真理,但先知總是孤獨的,平面國的人民會相信一個自稱掌握立體知識的正方形嗎?

吠陀方形可能早在佛陀之前就出現了

話說吠陀方形被發現的確切年代已經不可考,只知道數個世紀之前北印度的人們就已充分了解吠陀方形的性質,屬於古印度數學 [2]。古印度歷史有段時間叫做吠陀時期(Vedic period),大約是西元前 1500 年至西元前 500 年。如果說吠陀方形是在吠陀時期被發現的,那就是佛陀的年代甚至更早以前,真的很深很遠很古典哎。

906px-north_gateway_-_rear_side_-_stupa_1_-_sanchi_hill_2013-02-21_4480-4481
如果說吠陀方形是在吠陀時期被發現的,那就是佛陀的年代甚至更早以前,真的很深很遠很古典!圖 / By Biswarup Ganguly, CC BY 3.0, wikimedia commons

吠陀方形後來也影響了伊斯蘭文化,西元 770 年時穆斯林將吠陀方形併入他們的數學知識體系中。事實上早期伊斯蘭文化的數學知識是比西方還要先進的,而且當時無論在技術與哲學上都非常強盛。伊斯蘭世界的數學到底有多厲害呢,可以從傳統伊斯蘭幾何圖樣(Islamic pattern)的藝術性裝飾看見,例如西班牙的阿罕布拉宮。由於可蘭經禁止具象化的偶像崇拜,因此伊斯蘭藝術中並沒有描繪人或是動物的圖畫,而是運用大量對稱且看似繁複的幾何圖樣,這些圖樣有專文與專書探討 [3,4]。

這瓶來自西班牙的紅酒,酒瓶上的貼紙包裝即為伊斯蘭幾何圖樣。西班牙留有許多伊斯蘭文化的遺產,我猜酒廠/酒商也認為這是個值得驕傲的文化象徵才當做是貼紙。圖/作者拍攝
這瓶來自西班牙的紅酒,酒瓶上的貼紙包裝即為伊斯蘭幾何圖樣。西班牙留有許多伊斯蘭文化的遺產,我猜酒廠/酒商也認為這是個值得驕傲的文化象徵才當做是貼紙。圖/作者拍攝

吠陀方形中藏著秘密圖形

吠陀方形與位數根胚騰(digital root patterns)密不可分,胚騰又是個什麼東西?胚騰就是 pattern,可以代表圖樣、規律、模式,甚至是一切有跡可循的事物 [5]。而數學是一種胚騰的科學(the science of pattern),尤其是在現今資料科學蓬勃發展的時代尋找胚騰與關聯更是重要無比,單單數字計算並不是數學。從未知中探究與發現規律與胚騰,是數學研究中最讓人目眩神迷的地方,位數根的研究與發現正屬於這類的驚奇。

講了這些少為人知的歷史和名詞以後讓我們再次回到圖 2,裡頭也有許多隱藏的圖樣,建議讀到這裡先暫停花幾分鐘觀察一下吠陀方形,避免破壞大家的樂趣。

2

好,剛剛提到的位數根胚騰呢?那是由位數根所在的位置組成的胚騰,意思是說,代數和幾何扯上關係了!

吠陀方形的行列數字組成與特定數字構成的胚騰,有著許多對稱性與互補性。位數根的分布也呈現有趣的幾何圖樣。下面的圖3中 D1 至 D9 分別為位數根 1 至 9 在吠陀方形中構成的圖樣 [6],裡面的圖樣看起來有六邊形、長方形,還有多邊形等。

吠陀方形中的位數根胚騰[6]
圖 3:吠陀方形中的位數根胚騰[6]

若是構成兩個圖樣的位數根總和為 9,這兩個圖樣將沿著鉛直線相互鏡射。像是數字 1 與數字 8 的位置構成的幾何圖案,是沿著鉛直線鏡射對稱的,或者是旋轉 90 度也可以得到。而數字 2 與數字 7、數字 3 與數字 6、數字 4 與數字 5 為另外三組以數字構成的對稱圖樣,由此可見數字 9 在位數根的世界中是個重要的數字,有發現一個整數加了 9 的倍數以後位數根不變嗎?數字 9 的胚騰比較特別,沒有和其他的數字構成互補圖樣自成一個世界,所以就暫時先不探討它。

D1~D9 吠陀方形中的對稱軸 X=Y。
D1~D9 吠陀方形中的對稱軸 X=Y。
D1~D8 吠陀方形中的另一條 對稱軸X+Y=9。
D1~D8 吠陀方形中的另一條 對稱軸 X+Y=9。

仔細觀察一下會發現 D1 至 D8 這 8 個胚騰有兩條對稱軸,其中一條是 X=Y,另一條是 X+Y=9,他們的交點是 (4.5, 4.5)。裡面的點都會照著這兩條對稱軸相互對稱與鏡射,可以從代數上解釋,也可以直接看圖找規律。X=Y 這條對稱軸代表的意思是一個座標點 (X,Y) 的 X、Y 值可以互換變成 (Y, X),其位數根不變,像是 (4,7) 和 (7,4) 的位數根都是 1。X+Y=9 這條對稱軸可以藉由 (X,Y) 這個點找到 (9-Y, 9-X) 這個點,也就是可以從 (4,7) 找到 (2,5) 這個點,如此一來就可以用少數的座標點找到其他點簡化問題。

沒想到小時候背的九九乘法表,居然藏著這麼多數學奧秘!數千年前的位數根胚騰和吠陀方形,讓世界為之瘋狂稱為 Magic。

 

  • 此文作者本系列文章獲得臺北市政府文化局藝文補助

參考資料

  1. 愛德溫.A.艾勃特,平面國:向上,而非向北!,新北市:魔酒出版,2014
  2. Jones, L. “Mathematics and Islamic art”, Mathematics in School, 18(4), 32–35, 1989.
  3. 塞伊德.蔣.阿巴斯和阿默.夏克爾.薩爾曼,伊斯蘭的幾何藝術,台北縣新店市:左岸文化,2004。
  4. Lu, P. J., Steinhardt, P. J. “Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture”, Science, 315(5815), 1106–1110, 2007.
  5. 曹亮吉,從生活學數學(第二版),臺北市:遠見出版,2009。
  6. Lin, C. Y. Digital Root Patterns of Three-Dimensional Space. Recreational Mathematics Magazine, 3(5), 931, 2016.

數感宇宙探索課程,現正募資中!

文章難易度
Sharkie Lin_96
24 篇文章 ・ 3 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com


2

8
3

文字

分享

2
8
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
56 篇文章 ・ 19 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook