Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

高鐵票分段買比較便宜?重點是你有沒有用心觀察身邊的數學!

UniMath_96
・2017/08/07 ・5002字 ・閱讀時間約 10 分鐘 ・SR值 496 ・六年級

文/郭君逸|數學科普 Unimath 網站作者,國立台灣師範大學數學系助理教授、魔術方塊收藏家

這是一張從高鐵網站下載的票價表。眼前除了一堆數字之外,你還注意到哪些數學呢?

圖/載自台灣高鐵

「矩陣!」

對的,你的觀察很正確。矩陣是大學線性代數這門課裡的主角,線性代數和微積分兩者並列為一窺高等數學的計算基礎,因此除了自然科學領域的學生強迫必修,甚至一些社會科學領域的學生也需要修讀,例如經濟、商管······等。聽起來或許有點恐怖,不過別緊張,撇開複雜的計算,單純矩陣表示法其實是生活中蠻常見實用的技巧,可以做為一群事物中兩兩彼此之間的關聯表格。像是上圖高鐵票價關係就是「起」「訖」點間的票價關係,還有各種比賽中選手或球隊彼此間的勝負關係。

-----廣告,請繼續往下閱讀-----

這張圖右上半部是半價的優待票,以下討論我們只要看左下半部的全票即可。不知道讀者有沒有發現,「彰化→左營」的票價原本是 670 元,但「彰化→嘉義 250 元」加上「嘉義→左營 410 元」卻是 660 元,分開買居然可以省 10 元!?

是不是一直把票分段買,就可以越來越便宜呢?

其實並非如此!

例如「嘉義→左營」是 410 元,但改成「嘉義→台南 + 台南→左營」兩段票的話,會變成 420 元,反而變貴了。

-----廣告,請繼續往下閱讀-----

為什麼會有這種現象呢?

分段買就會便宜?錯!那不一定。圖/By Formosa Wandering @ flickr, CC BY-NC 2.0

首先我們先來研究一下高鐵的票價訂法。政府每年會先用「消費者物價總指數(GICP)」來訂定每人的基本消費率,交通部把基本消費率乘以 1.2 當作高鐵的基本費率(2016 年)的基本費率是 4.386 元/人公里。(註:詳細計算方式請參閱:交通部高速鐵路工程局常見問答集高鐵票價調整案說明專區

而台北到左營站的距離為 339.284 公里,所以 4.386 * 339.284 = 1488.099 元/人,四捨五入到十位,所以才變成了 1490 元。問題就出在四捨五入的部分,1488 若拆成兩段 744 的話,四捨五入都變成 740,總合就是 1480 省了 10 元。相反地,如果 534 拆成兩個 267 的話,四捨五入後就會多出 10 元。

拆票的時機

那到底要什麼時候要拆票,什麼時候不拆呢?這是個很麻煩的問題,只能夠用暴力法,把所有情況都試過,才會知道。這時手算實在太累,我們要藉助電腦的幫忙了。但「暴力法」只是個大方向,實際要如何使用「暴力」,巧妙各有不同。

-----廣告,請繼續往下閱讀-----

此類的問題,我們通常會用「動態規劃」(Dynamic Programming),這是一種「用空間換取時間」的概念來寫程式讓電腦幫我們解決問題的方法。當然這細節並非一時一刻可以講的清楚的。不過,教電腦如何解決問題就是數學!若我們可以把生活上遇到的難題(尤其是需要重複操作的動作),跟所學結合,很多都能夠迎刃而解。

筆者利用最短路徑演算法中的「無圈戴克斯特拉演算法」(Acyclic Dijkstra’s Algorithm),經過一些改進,並利用電腦計算出所有最便宜的票要如何購買,結果如下表:

圖/UniMath 提供

此表要怎麼查呢?是這樣的,不管南下或北上,都先視為南下,例如要買嘉義到新竹的票,先視為「新竹→嘉義」,查上表得「苗, 780」這串字,代表要先拆票買「新竹→苗栗」,剩下「苗栗→嘉義」這段,再查表,得「640」,沒有國字在數字前面,表示直接買是最便宜的。因此嘉義到新竹,就可以拆成「嘉義苗栗」與「苗栗新竹」兩張票買,只有 780 元,比原票價的 790 省了 10 元。

若是「台北→左營」的話,查上表可知,買「台北、桃園、新竹、苗栗、彰化、嘉義、左營」拆成六段票,會是 1480元,也是省 10 元。但這樣買的話,可能屁股還沒坐熱,就又要起來換位置了,還蠻麻煩的。

-----廣告,請繼續往下閱讀-----

比較實用的是自由座。我們先來看一下現在高鐵自由座票價:

圖/載自台灣高鐵

自由座全票價計算規則是把標準全票打 95 折後取比較靠近的 5 的倍數,也是類似四捨五入,其最佳的拆票表如下:

圖/UniMath 提供

上表可以看出自由座長途車票拆票的話,最多可以省到 20 元。而且坐上車後,不用換位置,可以坐到底,非常方便。自由座優惠票(半票)最佳拆票表如下,最多可以省到 25 元:

圖/UniMath 提供

至於商務艙屬於特殊服務,票價並不受交通部規範,所以它的計算方式並沒有用到「四捨五入」,而是每一段直接疊加的,所以怎麼拆票價錢都是一樣的。

至於團體票、早鳥票,實用性不高,這裡就不列出了。若讀者真的有需要,或是想檢驗自己跑出的結果,都歡迎來信跟我索取。

從上面的例子,有個很重要很重要的現象:「誤差是會疊加的!」標準全票因為用到四捨五入,所以會有誤差,最多差到 10 元,自由座把標準全票乘以 0.95 後再四捨五入,最多可以差到 20 元,自由座半票又再乘以 0.5 後再四捨五入,所以最多可以差到 25 元。若自由座半票,直接是把標準全票的原始票價乘以 0.95,再乘以 0.5,最後再做四捨五入的話,這樣誤差就小很多了。

事實上,筆者也把台鐵的票價表做了計算,下表是西部幹線山線的拆票表:
(台鐵各列車票價請參考:台鐵自強號票價查詢;台鐵票價計算方式請參考:台鐵票價試算。)

圖/UniMath 提供

因為台鐵票價是四捨五入到個位數,所以即使基隆到屏東最長的路線拆成了 13 段票,也只省了 2 元。我想應該沒有人會為了省 2 元,自找麻煩吧。

-----廣告,請繼續往下閱讀-----

考考讀者,若所有票價計算,皆改成無條件捨去的話,那會如何呢?改成無條件進入呢?

數學就在你身邊!

由以上幾個分享的例子(以及文末推薦的延伸閱讀),可以了解到數線、平面坐標、極坐標的制定概念,其實早就存在生活中,只是數學家將它更嚴謹地用數學語言描述出來。另外,同餘概念、最優化、微積分、演算法,這些求學過程各階段中學到的數學,也都可以運用到生活上。

大多的知識,其實都有其演進堆疊的過程,而且生活上的事物,常常也可以跟所學連結。因此,多學總是有益無害的,但通常我們的學習環境,都是只有學習,卻不常訓練學生如何去應用,「培養數感」其實就是「培養數學時常能跟生活結合的感覺」,有了「數感」就會有學習動機,有了學習動機,學生就會主動學習。

前陣子爆紅的手機遊戲 Pokémon Go,社群網站上,就可以看到各種神人分享所學與遊戲結合的結果:

-----廣告,請繼續往下閱讀-----
  • 演算法熟悉的人,就分享怎麼安排行走路線會最省時省力;
  • 熟悉統計與最優化的人,就會分享如何撒花比較划算,提升抓到怪的機率;
  • 學組合數學的人,可以計算所有怪獸搜集完全所需要時間的期望值、同樣的怪要轉換(transfer)誰、怪的體質與屬性的相剋分析、預估升級時間;
  • 學電子的人會設計一個雷達裝置放在身上,路上遇到怪就會發出通知、利用無人裝置孵蛋;
  • 駭客就會攔截遊戲訊號,取得怪的隱藏數值(IV)······等。

每個主題都不是一時一刻可以講的清楚,但看到不同背景的人,無不使用渾身解術,把所學運用到生活中,著實為我們帶來了不少正能量。

UniMath,You need Math,本期刊就是希望能培養大眾的數感而生,雖然每個人的學習背景不同,但只要能夠時時抱持著自己的知識都能用在生活上的信念,相信一定能蹦出不少的火花。

後記

編按:這篇文章近期在各大新聞也有許多相關的討論(例如:「數學老師幫你算好了 高鐵票分段買最便宜」 /以及後續的「高鐵票分段買最便宜?高鐵:恐造成行程延誤」),原作者郭君逸老師也在PTT上針對這個主題撰寫的初衷和一些網友的提問做了回答。而這些回應也讓文章的討論更臻完整,於是泛科學以後記的方式在此將原本的回文進行增補。

拆票有可能變便宜,我想很多人很早就知道了;如許多鄉民所講,只要利用加法還有比較大小,就可以知道了。其實會這樣想的話,表示已經可以把數學用到生活中了。

不過再更進一步去想你可能會想問:

-----廣告,請繼續往下閱讀-----
  1. 有時拆票又會變貴,到底為什麼?是不是高鐵的Bug?
  2. 又怎麼拆會最便宜?

不管答不答的出來,會這樣想的人就是有著數學思維,Unimath的目的其實就達到了。而這篇文章的重點其實就是為了幫大家回答這兩個問題:

  1. 因為「誤差是會累加的」,高鐵票的計算方式是四捨五入到十元,有誤差,所以分越多段的誤差就會越大。
  2. 但怎麼拆才會「最佳」,這就要靠電腦的幫忙了。(演算法用在哪?後面會講)

而記者把重點放錯了,都著重在省20元,或是去售票機買不會影響別人之類的。 而且下的標題還很聳動!(這當然不能怪記者,因為不聳動的標題,沒人要點進去看!但至少重點要放對啊……)其實還蠻高興大家對這個主題有興趣的, 若有什麼好的科普主題或文章,歡迎投稿Unimath,跟大家一起分享。

下面是一些比較 boring 的部份,也順便回答一些鄉民的問題:

1. 演算法用在哪?不是只要加法就可以了嗎?

會這樣問的人,應該是沒有碰過程式。知道怎麼拆票的話,當然是直接把每一段票價加起來即可,所以只用到加法。但問題就是不知道怎麼拆,有時拆了還會變貴。

一個簡單的想法是:如果A到F中間有B,C,D,E站的話,每個站要分不分,總共2^4種切法都去試,這樣就是一種演算法。但這樣的爆力法,效率很差(指數時間),高鐵站可能還好,但如果像台鐵當中間的站點一多,連電腦也會算不完。

那要怎麼省時間呢?我觀察到了中間有很多重複計算的部份,例如: 計算A到F站的話,在試切C點時,也會把AC與CF的最佳解都算過了,後來就不用再重複算。 所以我就採取空間換取時間的方法(Dynamic Programming)把算過的存起來就不用再重算, 這樣的演算法就會快很多,即時算台鐵的所有站的分票,也是按個Enter馬上就算完了。

整個演算法雖然是我自己想的,後來還是查了一下書, 發現在演算法書中,最短路徑一章就有很多類似的東西,然後我的演算法跟Dijkstra無迴圈的版本很像。 (其實還是有點不同只是原理相同, 有興趣的同學可以自己寫程式列出所有站點之間的分票方式,比較能體會其奧妙,程式其實很短。)

2. 誤差疊加很重要,求學時老師每次講,台下的我聽了都沒感覺。

明明多項式計算就代進去就好,為什麼還要改成巢狀計算; 矩陣就直接乘就好,為什麼還要對角化、Jordan Form……然後就會在台下說,學這個到底要幹嘛、多此一舉, 後來等到自己遇到麻煩了,才知道自己當時的無知。

3. 時間成本很重要,誰會省這20元。

這當然是這樣,現在比較忙時間都不夠用,我自己每次坐高鐵都坐直達的,誰想每站在那裡換位置!省錢只是文章的手段,讓讀者願意點進來看,但重點不在此,不要再被記者拉著走了。

4. 數學教授整天算一些沒用的東西。

其實有沒有用每個人都不同, 否則籃球員為什麼要一直把球丟到籃框裡? 畫家為何要畫畫?攝影不就照起來,再用一些濾鏡就好了? 這都是他們的工作、成果、興趣。 自然會有欣賞的人,自然也都有它的價值在。

5. 只要會加減乘除就可以活的好好的,為什麼要學這麼多?

這老生常談了。這就讓大家幫忙回答吧! 連加減都不會,也是可以活的好好的。

 

延伸閱讀:

 

本文轉載自 UniMath,《高鐵票分段買比較便宜?

作者簡介:郭君逸 - 國立台灣師範大學數學系助理教授、魔術方塊收藏家。
主要研究興趣為組合、圖論、演算法。近年來致力於科普的推廣,喜愛玩各種數學遊戲、益智玩具以及各類型魔術方塊。
目前為世界魔方聯盟(WCA)台灣地區認證員。曾開設整個學期的魔術方塊通識課程,跑遍全台進行魔術方塊系列演講。

關於 UniMath:UniMath (You Need Math)是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。歡迎加入 Facebook 粉絲團知道第一手訊息!

-----廣告,請繼續往下閱讀-----
文章難易度
UniMath_96
9 篇文章 ・ 209 位粉絲
UniMath (You Need Math) 是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
強核力與弱核力理論核心:非阿貝爾理論——《撞出上帝的粒子》
貓頭鷹出版社_96
・2023/01/28 ・1733字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

非阿貝爾理論

量子色動力學與弱核力理論有個更為奇特的性質,兩者都是「非阿貝爾理論」 (non-Abeliantheories)。非阿貝爾的意思是強核力與弱核力理論核心(參見【科學解釋 6】)的對稱群代數是不可交換的。簡單來說就是「A 乘 B」不等於「B 乘 A」。

一般人的常識會告訴你,如果隨便拿兩個數字 A 和 B,用 A 乘 B 的結果永遠會和用 B 乘 A 一樣,你用計算機怎麼試答案都不變。一個袋子裝三塊錢、兩個袋子總共是六塊錢;一個袋子裝兩塊錢,三個袋子總共還是六塊錢。

如果隨便拿兩個數字 A 和 B,用 A 乘 B 的結果永遠會和用 B 乘 A 一樣。圖/pixabay

這件事對數字永遠都成立,是千真萬確的事實。然而,我們有個很好的方法能定義出一套數學架構,其中的 AB 不等於 BA。實際上,數學家已經鑽研這個領域很多年了。

條條大路通數學

或許更驚人的是,物理學家竟然也在許多地方應用這套數學,因為某些和物理學相關的事物也是 AB 不等於 BA。矩陣就是我們表示這些東西的一種方式。現在我在倫敦大學學院為新生上的數學方法課就有介紹矩陣力學。以前我的學校制定了一套「新數學」的課綱,所以我在年僅十五歲的時候就多少認識一點矩陣了。

-----廣告,請繼續往下閱讀-----

數學的一個矩陣是一群按照行列排列整齊的數字。把兩個矩陣 A 和 B 相乘,會得到另一個矩陣 C,方法是把對應的列和行上面的數字依序相乘。

這種矩陣聽起來可能不像某部電影裡面那掌控一切、創造虛擬實境的超級電腦一樣迷人,卻有用的多。這部電影的角色身穿黑色皮衣,還有出現著名的慢動作躲子彈鏡頭

慢動作躲子彈鏡頭。圖/giphy

我來舉個例子。

你可以用一個矩陣來描述你移動某個物體的結果。相乘的順序(AB 或 BA)在這個例子有明顯的區別。物體先在原地轉九十度再向前直直走十公尺,和先走十公尺再轉九十度,兩種移動方式最後的終點顯然不會相同。假設矩陣B代表旋轉,矩陣 A 代表直行,那麼合在一起的「旋轉後直行」就是矩陣(C = AB);這和「直行後旋轉」的矩陣(D = BA)必定不會相同。C 不等於 D,所以 AB 不等於 BA。要是 AB 和 BA 永遠相同,我們就沒辦法用矩陣來描述這類的移動過程了。正是因為矩陣的乘法不可交換―非阿貝爾,這個工具才會如此有用。

-----廣告,請繼續往下閱讀-----

數學和真實世界密不可分

在狄拉克試圖要找出能描述高速電子的量子力學方程式時,矩陣被證實是他所需要的工具。實際上,電子有某項特性讓狄拉克不得不使用矩陣來表示它,這項特性與他描述電子自旋的語言同出一轍;所有原子的行為和元素周期表的規律,都與自旋有深刻的關聯。除此之外,這個性質也啟發狄拉克去預測有反物質的存在。

數學和真實世界之間似乎有緊密的關係,這讓我讚嘆不已。優秀的研究要能解決問題、也要能提出好的問題。而問題永遠比解答還要多,為了研究我們要付出許多的時間和金錢,因此大家得做出抉擇。數學是威力極大的工具,能幫助科學家檢查實驗數據、並從結果當中尋找最有趣的新實驗方向。就算有些方法和結論,好比矩陣及反物質,看起來可是相當古怪的。

秉持著這份精神,我要在繼續討論希格斯粒子搜索實驗之前,先繞個路來講微中子,最後這回要介紹的是一個很重要的真實結果。2012 年 3 月 7 日,中國的大亞灣核反應爐微中子實驗(DayaBay Reactor Neutrino Experiment)發表了最新的研究成果。

One of the Daya Bay detectors.圖/wikipedia

他們的實驗結果不但對標準模型影響重大,也會決定粒子物理學未來的研究走向。如果你只想要繼續讀希格斯粒子的故事,大可跳過這一段沒關係,下一節再見。但是微中子的粉絲可千萬別錯過精彩好戲了!

-----廣告,請繼續往下閱讀-----

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

1
0

文字

分享

0
1
0
高鐵票分段買比較便宜?重點是你有沒有用心觀察身邊的數學!
UniMath_96
・2017/08/07 ・5002字 ・閱讀時間約 10 分鐘 ・SR值 496 ・六年級

文/郭君逸|數學科普 Unimath 網站作者,國立台灣師範大學數學系助理教授、魔術方塊收藏家

這是一張從高鐵網站下載的票價表。眼前除了一堆數字之外,你還注意到哪些數學呢?

圖/載自台灣高鐵

「矩陣!」

-----廣告,請繼續往下閱讀-----

對的,你的觀察很正確。矩陣是大學線性代數這門課裡的主角,線性代數和微積分兩者並列為一窺高等數學的計算基礎,因此除了自然科學領域的學生強迫必修,甚至一些社會科學領域的學生也需要修讀,例如經濟、商管······等。聽起來或許有點恐怖,不過別緊張,撇開複雜的計算,單純矩陣表示法其實是生活中蠻常見實用的技巧,可以做為一群事物中兩兩彼此之間的關聯表格。像是上圖高鐵票價關係就是「起」「訖」點間的票價關係,還有各種比賽中選手或球隊彼此間的勝負關係。

這張圖右上半部是半價的優待票,以下討論我們只要看左下半部的全票即可。不知道讀者有沒有發現,「彰化→左營」的票價原本是 670 元,但「彰化→嘉義 250 元」加上「嘉義→左營 410 元」卻是 660 元,分開買居然可以省 10 元!?

是不是一直把票分段買,就可以越來越便宜呢?

其實並非如此!

-----廣告,請繼續往下閱讀-----

例如「嘉義→左營」是 410 元,但改成「嘉義→台南 + 台南→左營」兩段票的話,會變成 420 元,反而變貴了。

為什麼會有這種現象呢?

分段買就會便宜?錯!那不一定。圖/By Formosa Wandering @ flickr, CC BY-NC 2.0

首先我們先來研究一下高鐵的票價訂法。政府每年會先用「消費者物價總指數(GICP)」來訂定每人的基本消費率,交通部把基本消費率乘以 1.2 當作高鐵的基本費率(2016 年)的基本費率是 4.386 元/人公里。(註:詳細計算方式請參閱:交通部高速鐵路工程局常見問答集高鐵票價調整案說明專區

-----廣告,請繼續往下閱讀-----

而台北到左營站的距離為 339.284 公里,所以 4.386 * 339.284 = 1488.099 元/人,四捨五入到十位,所以才變成了 1490 元。問題就出在四捨五入的部分,1488 若拆成兩段 744 的話,四捨五入都變成 740,總合就是 1480 省了 10 元。相反地,如果 534 拆成兩個 267 的話,四捨五入後就會多出 10 元。

拆票的時機

那到底要什麼時候要拆票,什麼時候不拆呢?這是個很麻煩的問題,只能夠用暴力法,把所有情況都試過,才會知道。這時手算實在太累,我們要藉助電腦的幫忙了。但「暴力法」只是個大方向,實際要如何使用「暴力」,巧妙各有不同。

此類的問題,我們通常會用「動態規劃」(Dynamic Programming),這是一種「用空間換取時間」的概念來寫程式讓電腦幫我們解決問題的方法。當然這細節並非一時一刻可以講的清楚的。不過,教電腦如何解決問題就是數學!若我們可以把生活上遇到的難題(尤其是需要重複操作的動作),跟所學結合,很多都能夠迎刃而解。

筆者利用最短路徑演算法中的「無圈戴克斯特拉演算法」(Acyclic Dijkstra’s Algorithm),經過一些改進,並利用電腦計算出所有最便宜的票要如何購買,結果如下表:

-----廣告,請繼續往下閱讀-----

圖/UniMath 提供

此表要怎麼查呢?是這樣的,不管南下或北上,都先視為南下,例如要買嘉義到新竹的票,先視為「新竹→嘉義」,查上表得「苗, 780」這串字,代表要先拆票買「新竹→苗栗」,剩下「苗栗→嘉義」這段,再查表,得「640」,沒有國字在數字前面,表示直接買是最便宜的。因此嘉義到新竹,就可以拆成「嘉義苗栗」與「苗栗新竹」兩張票買,只有 780 元,比原票價的 790 省了 10 元。

若是「台北→左營」的話,查上表可知,買「台北、桃園、新竹、苗栗、彰化、嘉義、左營」拆成六段票,會是 1480元,也是省 10 元。但這樣買的話,可能屁股還沒坐熱,就又要起來換位置了,還蠻麻煩的。

比較實用的是自由座。我們先來看一下現在高鐵自由座票價:

-----廣告,請繼續往下閱讀-----

圖/載自台灣高鐵

自由座全票價計算規則是把標準全票打 95 折後取比較靠近的 5 的倍數,也是類似四捨五入,其最佳的拆票表如下:

圖/UniMath 提供

上表可以看出自由座長途車票拆票的話,最多可以省到 20 元。而且坐上車後,不用換位置,可以坐到底,非常方便。自由座優惠票(半票)最佳拆票表如下,最多可以省到 25 元:

-----廣告,請繼續往下閱讀-----

圖/UniMath 提供

至於商務艙屬於特殊服務,票價並不受交通部規範,所以它的計算方式並沒有用到「四捨五入」,而是每一段直接疊加的,所以怎麼拆票價錢都是一樣的。

至於團體票、早鳥票,實用性不高,這裡就不列出了。若讀者真的有需要,或是想檢驗自己跑出的結果,都歡迎來信跟我索取。

從上面的例子,有個很重要很重要的現象:「誤差是會疊加的!」標準全票因為用到四捨五入,所以會有誤差,最多差到 10 元,自由座把標準全票乘以 0.95 後再四捨五入,最多可以差到 20 元,自由座半票又再乘以 0.5 後再四捨五入,所以最多可以差到 25 元。若自由座半票,直接是把標準全票的原始票價乘以 0.95,再乘以 0.5,最後再做四捨五入的話,這樣誤差就小很多了。

事實上,筆者也把台鐵的票價表做了計算,下表是西部幹線山線的拆票表:
(台鐵各列車票價請參考:台鐵自強號票價查詢;台鐵票價計算方式請參考:台鐵票價試算。)

圖/UniMath 提供

因為台鐵票價是四捨五入到個位數,所以即使基隆到屏東最長的路線拆成了 13 段票,也只省了 2 元。我想應該沒有人會為了省 2 元,自找麻煩吧。

考考讀者,若所有票價計算,皆改成無條件捨去的話,那會如何呢?改成無條件進入呢?

數學就在你身邊!

由以上幾個分享的例子(以及文末推薦的延伸閱讀),可以了解到數線、平面坐標、極坐標的制定概念,其實早就存在生活中,只是數學家將它更嚴謹地用數學語言描述出來。另外,同餘概念、最優化、微積分、演算法,這些求學過程各階段中學到的數學,也都可以運用到生活上。

大多的知識,其實都有其演進堆疊的過程,而且生活上的事物,常常也可以跟所學連結。因此,多學總是有益無害的,但通常我們的學習環境,都是只有學習,卻不常訓練學生如何去應用,「培養數感」其實就是「培養數學時常能跟生活結合的感覺」,有了「數感」就會有學習動機,有了學習動機,學生就會主動學習。

-----廣告,請繼續往下閱讀-----

前陣子爆紅的手機遊戲 Pokémon Go,社群網站上,就可以看到各種神人分享所學與遊戲結合的結果:

  • 演算法熟悉的人,就分享怎麼安排行走路線會最省時省力;
  • 熟悉統計與最優化的人,就會分享如何撒花比較划算,提升抓到怪的機率;
  • 學組合數學的人,可以計算所有怪獸搜集完全所需要時間的期望值、同樣的怪要轉換(transfer)誰、怪的體質與屬性的相剋分析、預估升級時間;
  • 學電子的人會設計一個雷達裝置放在身上,路上遇到怪就會發出通知、利用無人裝置孵蛋;
  • 駭客就會攔截遊戲訊號,取得怪的隱藏數值(IV)······等。

每個主題都不是一時一刻可以講的清楚,但看到不同背景的人,無不使用渾身解術,把所學運用到生活中,著實為我們帶來了不少正能量。

UniMath,You need Math,本期刊就是希望能培養大眾的數感而生,雖然每個人的學習背景不同,但只要能夠時時抱持著自己的知識都能用在生活上的信念,相信一定能蹦出不少的火花。

後記

編按:這篇文章近期在各大新聞也有許多相關的討論(例如:「數學老師幫你算好了 高鐵票分段買最便宜」 /以及後續的「高鐵票分段買最便宜?高鐵:恐造成行程延誤」),原作者郭君逸老師也在PTT上針對這個主題撰寫的初衷和一些網友的提問做了回答。而這些回應也讓文章的討論更臻完整,於是泛科學以後記的方式在此將原本的回文進行增補。

拆票有可能變便宜,我想很多人很早就知道了;如許多鄉民所講,只要利用加法還有比較大小,就可以知道了。其實會這樣想的話,表示已經可以把數學用到生活中了。

不過再更進一步去想你可能會想問:

  1. 有時拆票又會變貴,到底為什麼?是不是高鐵的Bug?
  2. 又怎麼拆會最便宜?

不管答不答的出來,會這樣想的人就是有著數學思維,Unimath的目的其實就達到了。而這篇文章的重點其實就是為了幫大家回答這兩個問題:

  1. 因為「誤差是會累加的」,高鐵票的計算方式是四捨五入到十元,有誤差,所以分越多段的誤差就會越大。
  2. 但怎麼拆才會「最佳」,這就要靠電腦的幫忙了。(演算法用在哪?後面會講)

而記者把重點放錯了,都著重在省20元,或是去售票機買不會影響別人之類的。 而且下的標題還很聳動!(這當然不能怪記者,因為不聳動的標題,沒人要點進去看!但至少重點要放對啊……)其實還蠻高興大家對這個主題有興趣的, 若有什麼好的科普主題或文章,歡迎投稿Unimath,跟大家一起分享。

下面是一些比較 boring 的部份,也順便回答一些鄉民的問題:

1. 演算法用在哪?不是只要加法就可以了嗎?

會這樣問的人,應該是沒有碰過程式。知道怎麼拆票的話,當然是直接把每一段票價加起來即可,所以只用到加法。但問題就是不知道怎麼拆,有時拆了還會變貴。

一個簡單的想法是:如果A到F中間有B,C,D,E站的話,每個站要分不分,總共2^4種切法都去試,這樣就是一種演算法。但這樣的爆力法,效率很差(指數時間),高鐵站可能還好,但如果像台鐵當中間的站點一多,連電腦也會算不完。

那要怎麼省時間呢?我觀察到了中間有很多重複計算的部份,例如: 計算A到F站的話,在試切C點時,也會把AC與CF的最佳解都算過了,後來就不用再重複算。 所以我就採取空間換取時間的方法(Dynamic Programming)把算過的存起來就不用再重算, 這樣的演算法就會快很多,即時算台鐵的所有站的分票,也是按個Enter馬上就算完了。

整個演算法雖然是我自己想的,後來還是查了一下書, 發現在演算法書中,最短路徑一章就有很多類似的東西,然後我的演算法跟Dijkstra無迴圈的版本很像。 (其實還是有點不同只是原理相同, 有興趣的同學可以自己寫程式列出所有站點之間的分票方式,比較能體會其奧妙,程式其實很短。)

2. 誤差疊加很重要,求學時老師每次講,台下的我聽了都沒感覺。

明明多項式計算就代進去就好,為什麼還要改成巢狀計算; 矩陣就直接乘就好,為什麼還要對角化、Jordan Form……然後就會在台下說,學這個到底要幹嘛、多此一舉, 後來等到自己遇到麻煩了,才知道自己當時的無知。

3. 時間成本很重要,誰會省這20元。

這當然是這樣,現在比較忙時間都不夠用,我自己每次坐高鐵都坐直達的,誰想每站在那裡換位置!省錢只是文章的手段,讓讀者願意點進來看,但重點不在此,不要再被記者拉著走了。

4. 數學教授整天算一些沒用的東西。

其實有沒有用每個人都不同, 否則籃球員為什麼要一直把球丟到籃框裡? 畫家為何要畫畫?攝影不就照起來,再用一些濾鏡就好了? 這都是他們的工作、成果、興趣。 自然會有欣賞的人,自然也都有它的價值在。

5. 只要會加減乘除就可以活的好好的,為什麼要學這麼多?

這老生常談了。這就讓大家幫忙回答吧! 連加減都不會,也是可以活的好好的。

 

延伸閱讀:

 

本文轉載自 UniMath,《高鐵票分段買比較便宜?

作者簡介:郭君逸 - 國立台灣師範大學數學系助理教授、魔術方塊收藏家。
主要研究興趣為組合、圖論、演算法。近年來致力於科普的推廣,喜愛玩各種數學遊戲、益智玩具以及各類型魔術方塊。
目前為世界魔方聯盟(WCA)台灣地區認證員。曾開設整個學期的魔術方塊通識課程,跑遍全台進行魔術方塊系列演講。

關於 UniMath:UniMath (You Need Math)是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。歡迎加入 Facebook 粉絲團知道第一手訊息!

-----廣告,請繼續往下閱讀-----
文章難易度
UniMath_96
9 篇文章 ・ 209 位粉絲
UniMath (You Need Math) 是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。

0

5
0

文字

分享

0
5
0
高鐵開發與保育攜手,讓水雉繼續歡喜談戀愛
鳥苷三磷酸 (PanSci Promo)_96
・2021/06/15 ・3037字 ・閱讀時間約 6 分鐘

本文由 交通部鐵道局 委託,泛科學企劃執行。

南臺灣豔陽之下,他一身黑白分明、尾羽修長,頸後一道耀眼金黃鑲黑邊羽飾,忐忑守在自己精心搭築好的巢位旁,等著佳人青睞。剛剛才瞪跑一只不知天高地厚的小傢伙,居然妄想來搶地盤,也不瞧瞧這可是菱角田裡遠離人跡的精華地段。

剛離巢的小傢伙絲毫不讓他放在眼裡,但眼前的佳人就不一樣了,他滿心滿眼都是她……看著凌波越水而來,稍稍比自己大上一個頭的她,終於大發慈悲允許自己靠近一解渴望。他早就知道,為了保衛家園,她不會在同一處逗留,也沒有太多時間可以溫存,她離開後將孩兒託付給他。這不是拋棄,他明白,這是信任的展現,正因為完全信任,才能將自己心愛的孩兒交由他來照顧。

夏風習習,他長長腳趾下,浮水的菱角葉伸展挺拔,綠意盎然,隨著水波微微晃蕩。

-----廣告,請繼續往下閱讀-----
圖/官田水雉生態教育園區

不遠的彼方,高架的鐵道上,時速超過百里的列車疾駛而過。他大概永遠都不會知曉,正是遠方這些南來北往的列車,守護了這段愛情。

拜高速鐵路之賜,今日往來臺灣西部的主要城市,可以經由大眾交通在不到半天的時間內妥妥抵達。這樣變遷,除了改變了你我的生活節奏,也改變了水雉 (Hydrophasianus chirurgus) 這種美麗鳥類的生活。高鐵於 1990 年開始規劃,規劃路徑需要橫越當時數量岌岌可危、不到五十隻的水雉僅存的重要棲地,但是經過高鐵開發單位、地方政府與相關保育人士的積極參與,反而造就了一段生態與開發共存共榮的美麗故事。

「凌波仙子」水雉鳥

水雉的成鳥形似菱角,也喜愛在菱角田中活動,覓食或者築巢育幼。每年在夏季換上鮮明的繁殖羽色,尾羽甚長,擁有長長腳趾,牠們行走在水塘沼澤浮葉植物上行動飄逸,也被暱稱為「菱角鳥」或是「凌波仙子」。幼鳥為早熟性,孵出數個小時後就能跟在負責育雛的公鳥後面覓食散步。

水雉長長的腳趾使牠們可以在浮葉上行走。圖/官田水雉生態教育園區

全世界的水雉共有八種,臺灣僅有一種,此種廣泛分布於生物地理學上的東方區 (the Oriental region) ,包括中國華南、南亞、東南亞、臺灣與菲律賓。雖然在其他地區會有季節遷徙,水雉在臺灣屬於留鳥。水雉分布在臺灣最早的文獻紀錄,就是大名鼎鼎的斯文豪 (Robert Swinhoe) 於 1865 年將之列入臺灣最早的鳥類名錄《The Ornithology of Formosa, or Taiwan》。

-----廣告,請繼續往下閱讀-----

原本廣布於全臺灣,在宜蘭、臺北、桃園、新竹、臺中、彰化、臺南、高雄、屏東、臺東等地均有紀錄的水雉,隨著發展的腳步,主要棲地平原濕地在逐漸開發中流失,棲地遭交通網切割加上農藥的使用、過度獵捕,水雉的族群數量逐漸岌岌可危。在1989年被宣告為「珍貴稀有」保育類動物,到 1990 年代,數量最少的時候全臺不超過五十隻,只能在臺南八掌溪到曾文溪這個範圍內的菱角田有繁殖族群。

「我們發現,水雉偏好在菱角田,那邊的生物多樣性也比較高。」位於官田的水雉生態教育園區主任李文珍受訪時表示,相較於其他的浮葉植物作物如香水蓮,菱角田內各種水生昆蟲種類較多,提供水雉多樣性的食物。而水雉作為受大家關注的指標物種,也有物種保護傘的效果,作為埤塘、沼澤棲地保護的重要標的。

行跡優雅,飄逸美麗的水雉,一直都頗受大家的喜愛與關注。西元 1997 年,水雉被選為臺南縣縣鳥,後來也在 2014 年縣市合併後成為臺南市市鳥。

水雉保育區:棲地行動的絕地大反攻

時間回到 1990 年代,高鐵正在規劃興建,其中路線 281K 至 282K 的橋墩經過臺南官田的葫蘆埤及德元埤,正好位於當時水雉僅存的重要棲地,引發了可能危及水雉生存的隱憂。最終高鐵的環境影響評估於 1994 年有條件通過,但書之一便是要求高鐵興建,必須針對水雉提供具體的保護措施。

-----廣告,請繼續往下閱讀-----

除了出資進行棲地復育,高鐵的興建也須配合水鳥的需求,因此在水鳥的主要活動期、繁殖期,不會在當地進行施工。雖然因此能夠施工的時間極度受限,卻能盡可能減少對於水鳥的干擾。經過多次的環境審查往返與眾人的努力,在 2000 年,「水雉復育區」正式誕生,由地方政府協助之下,高鐵開發單位出資租用臺糖於官田的 15 公頃土地。復育區經營管理則由臺灣濕地保護聯盟及中華民國野鳥學會等民間團體成立「水雉復育委員會」執行。

水雉分布廣泛,但在此之前並沒有國家曾經嘗試復育水雉棲地。要將臺糖原本的甘蔗田改造為充滿浮葉植物的濕地環境,無法一蹴可及。官田的復育區從埤塘開挖營造做起,由嘉南大圳引入水源,設法克服原有地形的高低差、人工土堤坍方、配合灌溉季節與枯水期的水源調度,種植菱角、浮葉植物,一路且戰且走。

從零開始自己摸索保育復育之路,經營團隊還時時遭遇外來的新挑戰,像是外來種福壽螺與泰國鱧的入侵,又或如颱風造成水位高漲、棲地破壞等。團隊以有限的經費與許多愛鳥團體、研究義工一步步摸索進步。而除了保育園區之外,當時的臺南縣政府也針對水雉提出獎勵辦法。菱角田等棲地內只要孵出雛鳥,農民就可以獲得獎勵金,使得當地居民開始對水雉累積好感值。

艱辛的挑戰終究獲得豐碩的戰果,根據園區歷年的紀錄,水雉在園區內完成繁殖的巢數,一開始在 2000 年只有寥寥 4 巢,經過 10 年經營生息,自 2011 年以後每年都有超過 90 巢的水雉在園區內繁殖成長,而臺南區的水雉數量,截至 2019 年更增長至超過 1700 隻。而不只是水雉,園區內更紀錄有超過 90 種以上的鳥類棲息於園區,棲地的復育受惠的絕非單一物種,而是整個生態系的共存共榮。而官田的成功,也引發後續復育的星星之火,如高雄左營的洲仔溼地,開啟了「水雉返鄉計劃」,更傳出水雉數量穩定上升的好消息。

-----廣告,請繼續往下閱讀-----
自 2009 年以來,台南水雉族群的數量逐年增加,直到 2019 年已超過 1700 隻。圖/官田水雉生態教育園區

更多參與,讓保育跟開發共存共榮

2007 年高鐵營運後,考量到水雉的族群已呈穩定,官田「水雉復育區」改名為「官田水雉生態教育園區」由臺南市政府委託社團法人臺南市野鳥學會經營管理,交通部鐵道局、高鐵公司及農委會林務局持續擔任園區工作小組成員積極協助。除了維繫棲地,亦逐步以豐富的水生植物與水鳥生態,朝向生態教育與觀光的方向邁進。

高鐵改變了臺灣西部交通的面貌,過程中也將官田鄉的甘蔗田變溼地,成就水雉新故鄉,展現了發展與保育並存的可能。保育跟開發需求絕非殘酷的二選一,而要維繫保育環境與發展的平衡,未來也需要有更多人積極參與、關心與和討論。為此,農委會林務局特別推出綠色保育標章,以生物作為保護的標的物種,讓人與生態和諧共存,透過全國最大超市通路商的協助,以「官田菱雉菱」菱角品牌,鼓勵大家一起來吃菱角,支持水雉的保育,也能一享菱香的季節風味。

你吃過用心栽種的官田菱雉菱嗎?有機會一起到官田的水雉生態教育園區走走,與我們一同守護水雉的愛情故事吧!

參考資料

本文由 交通部鐵道局 委託,泛科學企劃執行。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----