分享本文至 E-mail 信箱
學術引用格式
MLA
APA
EndNote(.enw)

生物相容的石墨烯電晶體陣列可讀取細胞訊號

研究者首度證明,一種基於石墨烯(graphene)的電晶體陣列,與活生生的細胞相容,還能夠記錄細胞所產生的電子訊號。這個概念驗證平台為這種前途無量的新材料的進一步研究開路。石墨烯獨特的結合特性使得它成為未來生物應用(那需要一種介於微電子裝置與神經細胞或其他活組織之間的直接界面)的領導性競爭者。一個來自德國慕尼黑工業大學(TUM)與 Juelich 研究中心的科學家團隊,將這些結果發表在 Advanced Materials 期刊中。

今日,如果說某人與某種電子裝置有密切且相依的關係,那非常有可能是指智慧型手機;然而,更緊密的連結也許位於可預期的未來。例如,"生物電子的(bioelectronic)" 應用已被提出,會將感應器 — 在某些例子裡會將致動器(actuators,促動器)– 放置某人腦中、眼中或耳中,以協助抵銷(compensate)神經損傷。在這個方向上的先導研究,是透過成熟的矽微電子學技術辦到,但實際上,那種方法也許會是條死路:彈性基質與含水的生物環境會對矽裝置造成嚴重的問題;此外,對於與個別神經細胞的可靠通訊來說,它們也許太「吵」了。

屬於數種正被當成替代品來探索的材料系統之一,石墨烯 — 基本上是二維的碳原子薄片,以稠密的蜂巢狀樣式連在一起 — 在生物電子學的應用那方面,似乎已有非常完善的研究:它具有優異的電子表現、在化學上穩定,而且具生物惰性(biologically inert),能輕易地在彈性基質上被處理,且應有助於其大規模、低成本的製造。來自 TUM-Juelich 團隊的最新結果證實了關鍵表現特性,並為石墨烯生物電子裝置之可行性的更進一步確認,開闢了一條路。

在 Advanced Materials 中報告的實驗步驟是從一個在銅箔上以化學氣相沈積(CVD)以及標準光微影及蝕刻製程製造的、包含 16 個石墨烯溶液閘極式場效應電晶體(graphene solution-gated field-effect transistors,G-SGFETs)的陣列開始。"這些裝置的感測機制相當簡單," Dr. Jose Antonio Garrido 表示,TUM Walter Schottky 研究所的成員。"FET 閘區附近的電氣與化學環境變化,將會被轉換乘電晶體電流的變化。"

就在這個陣列之上,研究者培養一層類似心肌的生物細胞。不僅能在電晶體固有的電子雜訊之外偵測到個別細胞的「動作電位(action potentials)」,這些細胞訊號也能在高空間及時間解析度下被記錄下來。例如,一連串間隔數十分之一毫秒的波峰,正以動作電位被預期傳播通過細胞層的方向,移動通過電晶體陣列。此外,當細胞層暴露在濃度較高的壓力荷爾蒙正腎上腺素(norepinephrine)時,相應的波峰頻率增加也被記錄到。另一個要確定 G-SFETs 固有雜訊程度的實驗證明,那堪與超低雜訊的矽裝置相比。Garrido 指出那些矽裝置可是數十年技術開發的成果。

“我們正在進行的研究,有許多是聚焦在進一步改善石墨烯裝置的雜訊表現上,"  Garrido 表示,"以及聚焦在將此技術轉移到彈性基質(例如聚對二甲苯、聚醯亞胺,這兩種目前都用於活移植入)的優化上。我們也在研究改善我們記錄裝置的空間解析度。" 此外,他們也與位於巴黎 Vision 研究所的科學家合作,以調查石墨烯層在視網膜神經細胞培養中的生物相容性,另外還有一個稱為 NEUROCARE 的泛歐計畫,那旨在開發一種基於彈性奈米碳裝置的腦部移植。

資料來源:PHYSORG:Biocompatible graphene transistor array reads cellular signals[November 30, 2011]

轉載自only-percpetion

你的行動知識好友泛讀已全面上線

每天有成千上百則內容透過社群與通訊軟體朝你湧來,要從混雜著偽科學、假消息、純八卦的資訊中過濾出一瓢知識解渴,在這時代似乎變得越來越難?

為了滿足更多跟我們一樣熱愛知識與學習的夥伴,現在我們很害羞也很驕傲地宣布,手機閱讀平台——泛讀 PanRead iOS 版和「泛讀」Android 版都上架啦!使用後有任何心得或建議,都歡迎與我們分享喔

立即下載 優質知識不漏接

 

 

 

關於作者

妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D