0

0
0

文字

分享

0
0
0

半導體晶片的微小奇蹟:原子層沉積技術(ALD)

PanSci_96
・2024/09/02 ・1837字 ・閱讀時間約 3 分鐘

在半導體技術的快速進步中,晶片的製造已經達到了前所未有的微小尺度。當今的晶片不僅需要高度集成,還要求每層薄膜的厚度縮小至僅有幾層原子厚。這樣的挑戰驅使半導體產業不斷探索新技術,如環繞式閘極、3D 封裝以及極紫外光(EUV)曝光技術等。

然而,這些技術的成功依賴於一個至關重要的基礎步驟:製作極其薄的材料層,而這正是原子層沉積(ALD)技術的核心所在。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

為什麼需要如此精細的薄膜製程?

半導體製造是一個高度複雜的過程。晶片的每一層都需要精確的材料沉積,以確保其功能和性能。在半導體產業中,即便是台積電這樣的領先企業,也無法單獨完成所有製程。從晶圓到光阻劑、曝光機等材料和設備,都需要來自全球各地的供應商。這樣的龐大產業鏈反映了製造晶片的難度,正如著名科學家石神千空所言,半導體製造猶如「地獄級」的挑戰。

在半導體製程中,微影製程是核心技術之一。微影製程的基本概念是將一層層材料「蓋」在晶圓上,通過沉積、曝光和蝕刻三個步驟,逐步構建出完整的晶片。首先,工程師會在晶圓上製造一層絕緣層,然後進行沉積,添加所需材料(如絕緣體、半導體或金屬層)。接著,塗上一層光阻劑,並通過曝光技術(例如 EUV 極紫外光曝光機)刻出所需圖案。最後,進行蝕刻,去除未被保護的材料,留下圖案。這個過程會重複進行,以構建出複雜的結構。

-----廣告,請繼續往下閱讀-----

薄膜技術的挑戰

在製造薄膜時,選擇合適的技術是至關重要的。薄膜製程大致分為物理和化學兩大類。物理方法包括蒸鍍、濺鍍和分子束磊晶等,而化學方法則有化學氣相沉積(CVD)和化學液相沉積等。在半導體行業中,化學氣相沉積(CVD)是一種常見的薄膜製程技術。CVD 過程中,氫氣、氬氣等載氣將原料氣體帶入反應室,經過化學反應後,材料會在基板上沉積成膜。

然而,隨著半導體技術的進步,晶片結構變得更加複雜,例如從平面電晶體到現今的 FinFET 鰭式場效電晶體,再到 GAA 環繞式閘極電晶體。這些複雜的結構對薄膜技術提出了更高要求。CVD 在處理這些結構時可能會遇到困難,尤其是在高精度和均勻度方面。這時,原子層沉積(ALD)技術便成為了解決這些問題的關鍵。

隨著晶片技術進步,晶片複雜的結構對薄膜技術有了更高要求。圖/envato

ALD 技術的原理與優勢

原子層沉積(ALD)是一種改進的化學氣相沉積技術,它將沉積過程分為兩個步驟。首先,注入第一前驅物,與基板表面反應。此階段需確保前驅物只與基板產生反應,形成一層原子厚的薄膜。當表面飽和後,注入第二前驅物,與已附著的前驅物反應,形成目標材料,完成薄膜的製程。

例如,製作氧化鋅薄膜時,第一前驅物是二乙基鋅。二乙基鋅在基板上反應後,會形成一層單分子厚的二乙基鋅。隨後,用氬氣沖洗掉多餘的前驅物,再通入水,水與二乙基鋅反應,生成氧化鋅。這樣的過程能確保薄膜的厚度均勻且精確。

-----廣告,請繼續往下閱讀-----

ALD 技術的主要優勢在於其能夠精確控制薄膜的厚度,即使在非常複雜的結構中,也能確保每一層薄膜達到預期的厚度。這使得 ALD 在製造先進的半導體元件中具有不可替代的地位。

ALD 的未來與 ASM 的角色

ALD 技術自 1977 年由芬蘭材料學家圖奧莫.松托拉開發以來,已經歷經了近 50 年的發展。1999 年,松托拉將 ALD 技術出售給荷蘭半導體設備公司 ASM,這使得 ALD 技術得以在 ASM 的支持下持續進步。ASM 目前在 ALD 市場中擁有超過 55% 的市場份額,這反映了 ALD 技術的重要性和廣泛應用。

隨著半導體技術的不斷進步,ALD 技術也在不斷演化。除了傳統的 ALD 技術,電漿增強型 ALD(PEALD)也逐漸成為新興技術。PEALD 通過電漿技術來提高反應效率,解決了 ALD 在某些情況下反應率不足的問題。這使得 PEALD 能夠更好地應對複雜的薄膜製程需求。

原子層沉積技術(ALD)在半導體製程中扮演了至關重要的角色。隨著技術的不斷進步,ALD 技術已經能夠應對更加複雜的製程要求。ASM 作為 ALD 技術的領導者,不斷推動技術創新,以維持在半導體產業中的領先地位。面對未來,ALD 技術必將繼續發揮重要作用,推動半導體技術向更高的精度和性能邁進。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

PanSci_96
1238 篇文章 ・ 2373 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
半導體以前的半導體:從礦石收音機到電晶體——《圖解半導體》
台灣東販
・2022/11/21 ・3430字 ・閱讀時間約 7 分鐘

從礦石收音機到電晶體

直到 1947 年末,美國發明電晶體後,人類才正式開始使用半導體。不過在這之前,人類已經在使用類似半導體的東西,礦石檢波器就是其中的代表。

日本從 1925 年開始放送廣播,最早的收音機使用的是礦石檢波器。檢波器是一種可以接收電波,並從中提取出聲音與音樂等資訊訊號的元件。使用天然存在之礦石製作出來的檢波器,就叫做礦石檢波器。

礦石檢波器。圖/東販

圖 1-1 是礦石檢波器的原理。檢波器的構造是以金屬製的針碰觸著方鉛礦這種特殊礦石(圖 1-1(a))。

電流容易從金屬針流向礦石,卻很難從礦石流向金屬針(圖 1-1(b))。這種特殊的性質稱為整流性,也是半導體的特性。

對於擁有整流性的物質來說,容易讓電流通過的方向稱為順向,不容易讓電流通過的方向則稱為逆向

換言之,順向的電阻較低,逆向的電阻較高。之後會說明理由,總之有這種特性的元件,可用於製作檢波器。而順向與逆向的電阻比值愈大,可以製成愈靈敏的礦石檢波器。

礦石檢波器的原料是天然礦石,所以品質並不固定。針的接觸位置不同時,靈敏度也不一樣。所以製作礦石檢波器時,必須試著尋找能夠使針的敏感度達到最佳的特定位置。雖然品質不穩定,但製作簡便又便宜,也不用消耗電力,所以早期的收音機常會使用礦石檢波器。

當時的收音機少年也熱中於用礦石檢波器,自己動手製作礦石收音機。以前筆者(井上)年紀還小的時候,就曾自己製作礦石收音機。調整好礦石檢波器後,就可以清楚聽到廣播電台的聲音,讓人相當興奮。為了盡可能提高接收電波時的靈敏度,我當時也下了不少工夫。

這裡就來簡單說明用檢波器,從電波中提取出資訊訊號的原理吧。

訊號的接收與提取

接收無線電波訊號。圖/東販

如圖 1-2 所示,欲以無線電波傳送聲音、音樂等頻率較低的波時,需先將其轉變成頻率較高的波才行。

這個操作稱為調變。圖中,以調變器混合資訊訊號波(同圖①)與頻率較高的載波(同圖②)後,可以得到同圖③般的波,然後再發送這種無線電波(同圖④)。

檢波器接收到這種無線電波(同圖⑤)後,由於只會讓正向的調變波通過,故可得到同圖⑥般的波。這種波含有頻率較低的訊號波與頻率較高的載波,所以需再通過低通濾波器(只讓低頻率的波通過的濾波器),抽取出訊號波(同圖⑦)。

在真空管收音機盛行起來之後,人們便不再使用礦石檢波器。不過,在第二次世界大戰時,礦石檢波器又起死回生。使用礦石檢波器的雷達,在第二次世界大戰相當活躍。

雷達的原理。圖/東販

雷達如圖 1-3 所示,可透過指向性高的天線,朝特定對象發射高頻率電波脈衝,再接收由該對象反射回來的電波,並計算時間差,以測量出與該對象的距離與方向。之所以要使用高頻率電波,是因為頻率愈高,愈能正確識別出細小的物體。

這種雷達使用的無線電波叫做微波,頻率在 3GHz~10GHz 左右。若要用真空管檢波器,從頻率那麼高的無線電波中檢出訊號,必須使用體積很大、電容量很大的真空管才行,所以真空管不適用於高頻率的檢波器。

重出江湖的礦石檢波器

此時就輪到礦石檢波器重出江湖了。使用礦石檢波器時,針與礦石只要有一個接觸點就行了,電容量很小,在高頻率時也能正常運作。

如前所述,礦石檢波器的運作並不穩定,無法直接用於戰爭。於是歐美國家便紛紛投入研發性能更好、能夠取代礦石檢波器的新型檢波器,最後得到的就是矽晶(半導體)與鎢針的組合。

矽晶是由人工製成的均質結晶,所以不需要像使用礦石時那樣,用金屬針尋找、調整最佳的接觸位置。

而且,隨著雷達矽檢波器的研究持續發展,科學家們也發現了矽晶是相當典型的半導體。

為了提高結晶的純度,矽晶的精製技術也跟著進步,這和戰後電晶體的發明也有一定關聯。而且,因為製造出高性能的檢波器,所以人們也開始使用像是微波這類過去幾乎不用的高頻率無線電波。相關技術在戰後開放給民間使用,於是電視與微波通訊也開始使用這些無線電波。

雖然我並沒有要肯定戰爭行為,但戰爭確實也有促進科學技術發展的一面。

戰爭確實也有促進科學技術發展的一面。圖/pexels

半導體就是這種東西—溫度與雜質可提高電導率

接著就讓我們進一步說明,半導體究竟是什麼東西吧。

所有物質大致上可依導電性質分為兩類,分別是可導電的「導體」,以及不能導電的「絕緣體」。

導體的電阻較低,電流容易通過,譬如金、銀、銅等金屬皆屬於導體。另一方面,絕緣體的電阻較高,電流難以通過,橡膠、玻璃、瓷器皆屬於絕緣體。

我們可以用電阻率 ρ(rho:希臘字母)來描述物質的電阻大小。電阻率的單位是〔Ω・m〕,電阻率愈大,電阻就愈大。

導體、半導體、絕緣體的分類。圖/東販

如圖 1-4 所示,雖然沒有明確的定義,不過導體指的通常是電阻率在 10-6Ω・m 以下的物質,絕緣體指的則是電阻率在 107Ω・m 以上的物質。

相對於電阻率,有時會用電導率 σ(sigma:希臘字母)來描述物質的電阻大小。電導率為電阻率的倒數(σ=1∕ρ),單位為〔Ω-1・m-1〕。與電阻率相反,電導率愈大,電阻就愈小。

相對於此,半導體如名所示,性質介於導體與絕緣體之間;電阻率也介於導體及絕緣體之間,即 10-6〜107Ω・m。代表性的半導體如矽(Si)與鍺(Ge)。

半導體的特徵不僅在於電阻率的大小,更有趣的是,隨著溫度與微量雜質濃度的不同,半導體的電阻率數值也會有很大的變化。圖 1-5 為溫度對半導體電阻率的影響示意圖。圖中縱軸寫的是電導率 σ,但要注意的是,縱軸的 σ 值其實是對數尺度。

溫度對半導體電阻率的影響。圖/東販

由這個圖可以看出,一般而言,隨著溫度的上升,金屬的電導率會下降(電阻率上升);但半導體則相反,在 200℃ 以下的範圍內,溫度上升時,半導體的電導率會跟著上升(電阻率下降)。

1839 年,法拉第在硫化銀 Ag2S 上首次發現了這種隨著溫度的上升,電導率會跟著上升的奇妙現象。雖然他不知道為何會如此,不過,這確實是人類首次發現半導體性質的例子。

電流是電子的流動,所以電導率提升,就代表半導體內的電子數變多了。電子原本被半導體原子的+電荷束縛著,無法自由移動。不過當溫度上升,獲得熱能後,電子就能脫離原子的束縛自由移動了。

這種能自由移動的電子(自由電子)數目增加後,會變得較容易導電,電導率跟著上升。這就是半導體的一大特徵。

高純度的半導體結晶在室溫下熱能不足,幾乎不存在自由電子,所以可視為絕緣體。

不過,如果在半導體結晶內添加極微量的特定元素雜質(Ge 與 Si 以外的某些元素),便可大幅降低電流通過半導體的難度。這也是半導體的一大特徵(詳情將在 1-5 節中說明)。

半導體的自由電子,也可以透過光能觸發。

英國的史密斯於 1873 年時發現了這種現象。他用光照射擁有半導體性質的硒(Se)時,發現硒的電阻變小了(內光電效應)。

1907 年,英國的朗德對碳化矽(SiC)結晶施加電壓賦予能量時,發現結晶會發光。這種能讓光與電能互相變換的特性,也是半導體的特徵。

——本文摘自《圖解半導體:從設計、製程、應用一窺產業現況與展望》,2022 年 11 月,台灣東販出版,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。