0

0
0

文字

分享

0
0
0

天文學家發現巨大的超級螺旋星系

臺北天文館_96
・2016/04/04 ・1318字 ・閱讀時間約 2 分鐘 ・SR值 561 ・九年級

文/張桂蘭

美國加州理工學院(California Institute of Technology)天文物理學家 Patrick Ogle 等人在宇宙荒野發現一種新型的星系野獸,其規模與亮度睨視宇宙所有的星系,因此 Ogle 等人暱稱其為「超級螺旋星系(super spirals)」。

超級螺旋星系因為外觀與一般典型螺旋星系類似,因此一直沒有被單獨提出討論研究過。天文學家利用 NASA 的 NASA/IPAC 河外星系資料庫(NASA/IPAC Extragalactic Database, NED)進行研究,結果發現這些原本以為是鄰近銀河系的螺旋星系們,其實都是離我們非常遠、非常龐大的螺旋星系。由於已知的超級螺旋星系數量非常稀少,雖然揭發了它們的存在,但它們由何而來仍是個謎。

NED 為線上資料庫,其中包含 1 億多個星系的訊息,乃彙整了星系演化探索者號(Galaxy Evolution Explorer)的紫外觀測、史龍數位巡天計畫(Sloan Digital Sky Survey,SDSS)的可見光觀測,和2微米全天巡天觀測計畫(Two Micron All-Sky Survey,2MASS)、史匹哲太空望遠鏡(Spitzer)與廣角紅外巡天觀測衛星(Wide-field Infrared Survey Explorer,WISE)的紅外觀測資料。

-----廣告,請繼續往下閱讀-----

圖中是其中3個超級螺旋星系,由左至右分別為:2MASX J08542169+0449308、2MASX J16014061+2718161 和 SDSS J094700.08+254045.7。其中 2MASX J08542169+0449308 和 2MASX J16014061+2718161 擁有雙核心,SDSS J094700.08+254045.7 則是最大、最亮的已知超級螺旋星系之一,其螺旋狀的旋臂長達320,000 光年,是銀河系旋臂的 3 倍以上。

Ogle 等人在 NED 資料庫搜尋最亮星系的過程中,原本以為龐大而成熟的橢圓星系(ellipticals)會佔據他們搜尋結果的最大宗,但結果卻讓他們相當意外。在離地球約 35 億光年的範圍內約有 80 萬個星系,其中有 53 個最亮星系有著螺旋外觀,而非原本他們設想的橢圓外觀。Ogle 等人再度檢測這些螺旋星系的距離,結果發現沒有一個是在鄰近宇宙中,最近的一個甚至在 12 億光年外。他們確信這些星系的距離訊息應該無誤,那麼這些螺旋特性就顯得怪異而突出。

超級螺旋星系的亮度比我們的銀河系還亮 8~14 倍,質量則為銀河系的 10 倍左右,滿佈恆星的銀盤直徑是銀河系的 2~4 倍,其中最大的超級螺旋星系的銀盤直徑可達 440,000光年,比我們銀河系的 100,000 光年大了 4.4 倍。超級螺旋星系也會發出大量紫外和紅外輻射,這通常代表著星系內的新恆星誕生率極高,估計是銀河系的 30 倍左右。

根據現行天文物理理論,螺旋星系受限於它們的大小和造星能力,應該無法達到上述這些「功績」。螺旋星系是經由重力捕捉來自星系際空間中的新鮮低溫氣體以成長茁壯,它們的質量會因氣體衝入星系得太快而達到上限,這是因為這些一頭衝入星系的氣體會被加熱,導致無法收縮聚集而形成新恆星,即天文學家所謂的「抑制過程(quenching process)」。然而,超級螺旋星系顯然沒發生這樣的抑制過程,所以才會長成龐然大物。

-----廣告,請繼續往下閱讀-----

Ogle等人找出的最亮星系中的 53 個螺旋星系,其中有 4 個或許能給出超級螺旋星系來源的重要線索。這 4 個超級螺旋星系含有 2 個星系核,與典型星系只有一個星系核的狀況不同。雙核心的存在,顯然是兩個星系合併在一起的結果。理論上來說,兩個螺旋星系合併後應該是會形成一個橢圓星系;可是,Ogle 等人推測若螺旋星系合併發生時,牽涉到的是兩個富含氣體的螺旋星系,最後當一切歸於平靜時,這滿當的氣體會安頓至一個新形成的、比原來螺旋星系還大的星系盤,然後很快的就形成了我們現今所見的超級螺旋星系。也因此,超級螺旋星系的發現,顯示了我們對那些質量最大的星系如何形成和演化的觀點,必須要徹底改變才行。

資料來源:http://www.jpl.nasa.gov/news/news.php?feature=6149, 2016.03.17, KLC

本文轉載自網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
4

文字

分享

0
5
4
解析韋伯太空望遠鏡第一批影像背後的科學意義
EASY天文地科小站_96
・2022/07/14 ・4350字 ・閱讀時間約 9 分鐘

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星

萬眾矚目的詹姆士韋伯太空望遠鏡,在經過半年的校準與測試後,終於公開了它拍攝到的第一批成果。這些五彩斑斕、美麗絕倫的照片究竟是什麼樣的天體,照片的背後又有哪些深藏的意義?就讓我們一起深入解密,韋伯的第一批照片吧!

韋伯望遠鏡是什麼?

詹姆士.韋伯太空望遠鏡是美國、歐洲與加拿大太空總署合作開發的新一代旗艦級紅外線太空望遠鏡,也是無數天文學家夢寐以求、能幫助人類破解許多未解天文迷團的利器。

韋伯的研發其實早從 1996 年就已經開始,但是由於開發時遇到諸多困難,導致嚴重的預算超支與進度延宕,這台耗資上百億美金的超級望遠鏡,直到去年年底才終於從法屬圭亞那發射中心,用一枚亞利安 5 號運載火箭發射升空,前往距離地球 150 萬公里的日地第二拉格朗日點。

拉格朗日點是什麼?

日地拉格朗日點一共有五個。當物體在這些點上,其受到來自太陽與地球的重力恰到好處,因此太空船只需要少量的燃料,就可以長期與地球和太陽保持穩定的相對位置,可謂是地球軌道附近的風水寶地。

而韋伯繞行的,是位於地球後方的第二拉格朗日點,簡稱 L2。之所以選擇這裡,是因為只有 L2 的位置剛好會讓地球、太陽、月亮都在同一側,而這三個星體正是天文望遠鏡的主要紅外線光害來源。位在 L2 的韋伯,就可以用它的遮陽帆一次把三顆星體全部擋住,認真凝望遠方而不受干擾,因此 L2 可以說是觀測宇宙的絕佳地點。升空的幾個月之間,韋伯已經完成一系列的儀器校準工作,一步步把望遠鏡調整到最佳狀態。

-----廣告,請繼續往下閱讀-----

相比知名前輩「哈伯太空望遠鏡」,韋伯的優勢不只是擁有比哈伯大六倍的鏡面,更重要的是它是以紅外線為主力觀測波段。宇宙膨脹造成嚴重紅移,但哈伯望遠鏡的守備範圍主要是可見光,波長範圍是 90 – 2500 奈米,可說是鞭長莫及啊。

這時換上以波長 600 – 28500 奈米的紅外線為守備範圍的韋伯,就可以讓我們看到更遙遠、更古老的宇宙。此外,同一個天體在可見光和紅外線看起來,往往長得相當不一樣。這個強大的紅外線觀測能力,正是韋伯最引以為傲的武器。

作為深具儀式感的第一批科學影像,韋伯這次公布的影像分別對應四個主要科學主題:早期宇宙星系演化恆星的生命循環系外行星

1. 早期宇宙—— 星系團 SMACS 0723 與重力透鏡效應

星系團 SMACS 0723。圖/Webb Space Telescope

畫面中心黃白色的天體,是由成百上千的星系共同組成的星系團 SMACS 0723。在韋伯之前,哈伯太空望遠鏡就曾經花費數個禮拜的時間拍攝這個星系團。然而擁有更大鏡面、更精良儀器的韋伯,僅用了 12.5 個小時就拍出了解析度更高、畫面品質更好的照片,讓我們看到許多以前難以辨識的黯淡星系。可見哈伯與韋伯在觀測能力上的差距。

對天文學家來說,圖中最令人興奮的其實不是前景壯闊的星系團,而是後方這些經過重力透鏡扭曲和放大的小小星系們。星系團龐大的質量扭曲了周圍的時空,讓整個星系團好像一塊巨大的放大鏡一樣,可以偏折和聚焦通過的星光,稱為「重力透鏡效應」。

當星系團後方更遙遠、更古老的星系發出的光線通過星系團時,就會被星系團的重力透鏡效應偏折和聚焦,形成而圖中無數弧形的扭曲影像。

-----廣告,請繼續往下閱讀-----
紅圈為照片上受重力透鏡影響的區域之一,可以看到星系被拉長。

這些仍在襁褓中的小小星系,往往正在快速的孕育新的恆星,或是互相合併,因此有著混沌不規則的形狀。離我們越遠的星體發出的光,需要越長的時間才能到達我們的眼中。因此研究這些遙遠且古老的星系,能幫助天文學家理解宇宙早期的模樣。

2. 星系演化——史蒂芬五重奏(Stephan’s Quintet)

上一張照片讓我們認識星系的起源,這張「史蒂芬五重奏(Stephan’s Quintet)」則可以讓天文學家更仔細地研究星系內的複雜結構,以及星系與星系之間的交互作用。

史蒂芬五重奏(Stephan’s Quintet)。圖/Webb Scape Telescope

正如其名,「史蒂芬五重奏(Stephan’s Quintet)」是由五個視覺上相當靠近的星系所組成。但其實最左邊的這個星系(NGC7320)與另外四者並無關聯,只是從地球上看剛好位在天空中差不多的位置而已。

圖片中偏向黃白色,感覺如絲綢般順滑的部分是在近紅外線波段拍攝,主要顯示的是星系中恆星的分布;而醒目的橘紅色,則是來自中紅外波段的資料,展示的是星系中的高溫塵埃,以及星系中的氣體高速對撞時產生的震波(Shock wave)。

除了影像,韋伯還使用光譜儀仔細檢視了影像中右上方的星系(NGC 7319)中心,因為那裏有一顆比太陽重 2400 萬倍的超大質量黑洞,正在吸食周遭的氣體,並在過程中釋放巨大的能量。

-----廣告,請繼續往下閱讀-----

藉由觀察光譜的細節,韋伯可以分辨出像是氬離子、氖離子或是氫分子等等化學組成,甚至知道氣體的溫度、運動速度這些從一般照片難以辨識的資訊。

史蒂芬五重奏就像一個天然的實驗場,讓天文學家研究星系演化的詳細過程。

3. 系外行星——WASP-96 b 的大氣光譜

這一張照片可能是整批影像中,視覺上最不起眼的一張,它是系外行星 WASP-96 b 的大氣光譜。

WASP-96 b 的大氣光譜。圖/Webb Scape Telescope

最近 20 多年來,人類對太陽系以外行星的認識越來越多。截至今日,人類已經發現超過 5000 顆系外行星。然而,以現有的觀測技術,天文學家通常只能用一些間接的方法,測量它們的質量、半徑、軌道週期等粗略的特性。想知道這個行星是否適合生命生存,就不能少了行星大氣層的化學組成和溫度資訊。

那要怎麼取得行星的大氣資訊呢?當行星通過恆星跟地球中間時,恆星的一部分星光將會通過行星的大氣層,並被行星的大氣吸收。吸收的多寡和波段,取決於行星大氣層的溫度和化學組成等特性。此時,天文學家就可以藉由分析光譜中的各種特徵,去回推行星大氣層的性質。

圖片中的白點,即是韋伯實際觀測 WASP-96 b 時取得的光譜資訊。而藍色的線,則是天文學家認為最貼合觀測數據的理論模型。

-----廣告,請繼續往下閱讀-----

根據這個觀測結果,天文學家計算出 WASP-96 b 的大氣溫度約為 725°C,大氣中明顯有著水氣,並推測可能還有雲和霾存在。未來進一步的分析和觀測,將為世人揭開更多系外行星的神祕面紗。

4. 恆星的生命循環——「南環狀星雲」與「船底座大星雲(Carina)」

最後兩張照片都與恆星的生命循環有關。正如人會有生老病死,恆星也是一樣。

恆星一般誕生在巨大分子雲中,氣體在重力吸引下逐漸塌縮、升溫並點燃核融合,成為一顆恆星。

當小質量的恆星步入晚年,其結構容易變得不穩定,最終將自己的外層氣體拋射出去,形成美麗的行星狀星雲,也將氣體吐回到星際空間中,成為下一代恆星的養分。氣體都拋射完之後留下的核心,就是白矮星。

-----廣告,請繼續往下閱讀-----

各位現在看到的,是暱稱「南環狀星雲」的行星狀星雲,左右兩張圖分別於近紅外線與中紅外線拍攝。

南環狀星雲。圖/Webb Scape Telescope

我們可以看到,左圖中的影像比右圖要更清晰一些,這是因為在相同的望遠鏡口徑下,波長越短所能達到的理論解析度就越高。

有趣的是,在左圖中看起來位於星雲中心的明亮恆星,其實並不是行星狀星雲的核心。真正的核心其實是在其左下方,一顆被塵埃包裹著的黯淡白矮星。在近紅外線波段的影像中,這顆白矮星幾乎淹沒在隔壁恆星的炙烈星芒之中。

但在中紅外波段,由於恆星的亮度相對降低,包裹著白矮星的塵埃發出的光就變得清晰可見。再次展示即使是同一個天體,使用不同的波段進行觀測,往往可以看到不同的東西。

最後這片壯麗的宇宙山崖,則是位於「船底座大星雲 Carina」西北角的 NGC3324 恆星形成區。在這裡,源自星雲中無數初生恆星所發出的炙烈輻射、恆星風與噴流,吹散、游離了星雲中原有的濃密氣體與塵埃。交織出這片壯闊而複雜的結構。

船底座大星雲(Carina)。圖/Webb Scape Telescope

這張照片一共結合了這六個不同的濾鏡的影像拍攝而成。每個濾鏡涵蓋的波段各不相同,代表的物理意義也不一樣。比如(F090W、F200W、F444W)這三個寬帶濾鏡,分別在影像中按照波長順序,以藍色、綠色和紅色這三原色呈現,為照片打下骨幹。而在此之上,照片的製作團隊又疊上青色代表氫原子的(F187N)濾鏡影像,以黃色代表氫分子的(F470N)濾鏡影像,以及用橘色代表甲烷和多環芳香烴的 (F335M) 濾鏡影像,為照片再添更多的細節。

-----廣告,請繼續往下閱讀-----

想要將這麼多個波段的影像全部結合起來,仔細調整讓細節更加突出,最終呈現出一張如此絢麗又震撼的照片,是非常不容易的。這展示了韋伯太空望遠鏡不僅在科學上相當重要,在藝術上也價值非凡。

最後別忘了,以上只挑選介紹了第一批資料中最具代表性的幾張,更多關於五個目標的照片和光譜,可以在韋伯的官網上找到。而這批照片,又只是韋伯未來二十年服役生涯中,前兩個月的小試牛刀而已。韋伯的時代,才剛剛要開始!

EASY天文地科小站_96
23 篇文章 ・ 1529 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

0
0

文字

分享

0
0
0
跟星空賽跑! 天文馬拉松第十年
劉珈均
・2015/04/02 ・4111字 ・閱讀時間約 8 分鐘 ・SR值 516 ・六年級

墾丁梅西爾(劉紀忠攝)
貓鼻頭公園的梅西爾馬拉松現場。圖/劉紀忠攝。

夜晚行駛於墾丁的縣道上,左轉拐進往貓鼻頭公園的小路,會瞬間撞進一團漆黑──以及滿天星空!今年春分晚上,天文圈的盛事「梅西爾馬拉松」(Messier Marathon )就在這低調展開,十幾位天文迷通宵達旦,自力查星圖尋找星體,挑戰用一晚的時間觀測「梅西爾星表」上全部110個深空天體。

這任務並不簡單,多數梅西爾星體並非肉眼可見,必須透過大口徑望遠鏡觀測,參賽者從入夜時分到隔天清晨,一晚觀測110個天體,相當於一小時看十來個,平均5至6分鐘就要找到一個。不過,觀星節奏也是有區間的,星星隨時間遞移,有其觀測順序,參賽者黃冠夫說:「會稱做馬拉松就是因為你無法一口氣跑完全部,必須等它慢慢出來。」

台北市天文協會總幹事劉志安在雲南二度達成觀測全部星體的挑戰,屏東市唐榮國小校長施世治與嘉義高中地科老師黃冠夫在墾丁受天氣影響,分別觀測到102與101個。

-----廣告,請繼續往下閱讀-----

舉辦梅西爾馬拉松有重重條件,首先是緯度,其次為時間、月相與天氣。現任台北市天文協會常務理事、十年前發起台灣梅馬的陶蕃麟說,北緯20至30度之間的地區最適合舉辦梅馬,過了這區域就無法於一晚之內觀測到全部星體;3月下旬至4月初的時間點最適當,否則部分星體會淹沒於暮光或曙光,活動也得盡量選在朔月以避開月亮這大光害;氣象就得看運氣了,台灣屬海洋型氣候,參賽者常常得在時間與雲氣的縫隙中抓住天體。

18世紀彗星獵人的「詐騙集團目錄」

梅西爾(Charles Messier)是18世紀的法國天文學家,畢生致力搜尋新彗星,有些星體看起來是雲霧狀的模糊團塊,易與彗星混淆,梅西爾追蹤了幾個月才發現不是彗星,備感困擾。為了避免浪費時間在這些冒牌傢伙身上,他將之列成一份目錄以區分這些「詐騙集團」(星體編號的M即為梅西爾首字母)。

當年,梅西爾用的只是口徑5公分的小望遠鏡,解析力不佳,當時對天體的認識也不如今天,所以最初的星表包含了現今所知的星雲、星團和星系,還有一對雙星。梅西爾初衷是為了方便搜尋彗星,但此「梅西爾星表」反而變成梅西爾最廣為人知的成果,也成為今日天文迷觀測深空天體的入門表單(好啦,平衡一下,梅西爾一生觀測過44顆彗星,其中13顆是新發現的。而那年代總共僅有50顆彗星曾被觀測過)。

最初梅西爾馬拉松由美國一批業餘天文學家於70年代發起。1976年美國賓州的霍弗德(Tom Hoffelder)和瑞藍(Tom Reiland)兩人注意到,三月下旬到四月初這段期間,由天黑至黎明,梅西爾天體會全部依序出現,從M77開始至M30結束,可在一夜之間瀏覽完畢。

-----廣告,請繼續往下閱讀-----

1977年兩人首度嘗試,但均未成功,1993年亞利桑那州的「巨人柱天文俱樂部」(Saguaro Astronomy Club)舉辦全州的梅馬,開始推動這項觀測競賽,其他地區也有天文迷跟進,梅西爾馬拉松才漸漸推廣到其他地區與國家如西班牙、印度北部,而目前梅馬最活躍的地方仍是美國。

快!不能輸在起跑點!

剛入夜與晨曦時分很關鍵,觀星者必須與時間賽跑,M77、M74、M32、M110等很快就沉入地平線了;相反的,M30、M55、M75等星體則出現於東方泛白之時,不久便被晨光淹沒。最有挑戰性的是室女座區域由一連串星體組成的「馬卡萊恩長鍊(Markarian’s Chain)」以及后髮座附近,這些區域的天體又多又雜,十來個天體集中在一起,附近也沒亮星,一旦「迷路」,尋星路徑可能就得重來一次,考驗選手對夜空的熟悉度。

IMG_3918
傍晚時墾丁雲層厚重,讓參賽者錯失了M31、M32、M110、M52。圖/邵意翔攝。

IMG_3914(2)
參賽者正在調整望遠鏡,使尋星鏡中心和主鏡畫面一致。圖/邵意翔攝。

-----廣告,請繼續往下閱讀-----

比賽採榮譽制,何謂「看見」是自由心證,參賽者找到天體後自行於大會發放的表格填入觀測時間,會後再交由大會統計成績。活動禁止使用追蹤或自動尋星設備(如進階赤道儀有「Goto」功能,只需要輸入目標天體編號,望遠鏡就會自動對準該星體),只能自力查圖表找天體。不過,天文迷之間流傳著一份「秘笈」,上有各星體亮度、找尋哪顆參考星、建議觀測順序等實用資訊。

黃冠夫自第二屆就開始參加,已是個梅馬老手,前兩年達成109與108個,逼近達標。他號稱十秒就能找到一個天體,還被其他人譽為「人體GOTO」。只見他拿著平板電腦,熟練的查看星圖軟體,鎖定方向,抓過口徑40公分的望遠鏡,目標天體已出現在目鏡視野裡了。一旁選手也忍不住表示:「他真的很扯!我們找了十幾分鐘的星體他一下子就找到了!」只可惜天氣不夠完美,有雲氣阻擋,「今年能破100就不錯了。」黃冠夫說。

他先找到一顆附近的亮星作為參考星,再參考星圖,對照視野裡與星圖中的星星排列形狀,將望遠鏡的圓形「視野」一步步朝目標方向靠近。有些位在偏遠暗處的星體附近完全沒亮星,要移十幾步才找的到。

他解釋,人的大腦有內建「自動疊圖功能」,會將兩眼視覺合成為一個畫面,就像一邊看著顯微鏡一邊繪圖,視覺上會覺得物體上方似乎鋪了描圖紙,自己只是照著描;同樣的,以慣用眼看著夜空中的星星,另一眼望進尋星鏡一邊調整望遠鏡角度,會發現有兩顆星星想要疊合在一起,善用這技巧就能快速將望遠鏡瞄準參考星。

-----廣告,請繼續往下閱讀-----

除了星體繁雜的區域需要一鼓作氣不間斷的觀測,黃冠夫口中的「發霉的星星」也是具挑戰性的對象,有些星系如M109,其型態沒有明亮的點狀核心,視覺上看起來是霧霧的團塊,「很多人不是看不到,而是看到了也不知道。必須靠星圖才會知道這霧霧的亮點不正常,是個星系(而不是一般星星)。」

「我老婆說我看到星星時,聲音就會高八度。」施世治身兼屏東天文協會會長,過去最好的戰果是觀測到105個天體,他笑著說:「那次前面沒抓到,後面睡著了。」有感於資源落差,他長期在屏東的小學推廣天文活動,帶小朋友看星星,去年還發起「天文聯盟學校」,逢天文奇景時會在網路直播。

DSC04444_副本
許多參賽者於黑暗中就著紅光查找星表資料。圖/邵意翔攝。

DSC04445
參賽者找到天體後自行在大會發的表格記錄下觀測時間,會後交由大會統計成績。圖/楊偉攝。

-----廣告,請繼續往下閱讀-----

梅西爾馬拉松場地沒有路燈,即便相距不到一公尺,仍看不清對方的臉,黑暗中只見一盞盞來自於腳架末端或觀星者頭燈的微小紅光,幾副桌椅上擺滿星表資料。雖然這不是氣喘吁吁跑步的馬拉松,但通宵整晚也相當考驗體力,夜越來越深,有時觀星告一段落,參賽者會邀請其他人一起用望遠鏡看木星、土星等別的星體,或趁機休息一下,到車上或帳篷打個盹。

除了正式的參賽者,19所高雄市高中天文社組成的「高雄天文幫」與一些天文迷也在現場徹夜觀星,累了就以天為被就地而眠,伴著幾種蟲鳴、海浪聲、快門線嗶嗶聲、望遠鏡尋星的聲音(天文攝影使用)。

「看久了就會跟星星很熟」 十年來僅劉志安達成挑戰

截至2014年,全球只有87個人次達成梅西爾馬拉松的挑戰,其中不乏重覆達標的人,如梅馬創始人之一麥克赫茲(Don Machholz)就完成了六次。而台灣舉辦梅馬十年以來只有劉志安一人於前年達成,只是他是賽後一個禮拜到昆陽觀星時自力挑戰,所以沒列入正式登記,今年他與陶蕃麟代表協會到雲南協辦活動,劉志安也再度成功觀測到110個星體。

DSC04403
劉志安觀測前調整望遠鏡。高美古天文台海拔3200公尺,為乾燥的大陸高原型氣候,適於觀星,但溫差相當大,白天20℃,入夜後降到0℃左右,不過這對常上山觀測的劉志安而言不是問題:「感覺跟在武嶺停車場差不多。」圖/楊偉攝。

-----廣告,請繼續往下閱讀-----

他自第一屆梅馬就開始參與,對當時情況仍記憶猶新,主辦單位因陣雨中止比賽,他與朋友將箱型車的後車箱蓋拉起,作為遮雨棚躲雨,雲飄動得很快,陣雨結束,他們繼續在雲氣縫隙尋找星體,克難之下也看到了52個,「感覺像在玩打地鼠一樣!」

問及觀星技巧,劉志安說:「看星星久了就會跟星星很熟!」他自第一屆梅馬舉行前就常常上山看星星、自己找目標觀測,累積了十幾二十年,他現在可以不靠星圖就找到六成以上的梅西爾星體。參賽者之間流傳的必備觀星「秘笈」作者也正是劉志安,他謙虛的解釋,那是為演講或授課而製的講義,不知怎地就傳開了。

劉志安向來被視為第一位完成梅馬的亞洲人,不過,他說近日結識了馬來西亞華僑林香耀,他在2001年參加亞利桑那州的梅馬就完成110個天體觀測,算起來他才是第一位完成梅馬的亞洲人。他與林香耀相約明年挑戰最高境界的「記憶梅西爾馬拉松賽」(Messier Memory Marathon, MMM),也就是完全不靠星圖,單憑記憶搜尋梅西爾天體!

台灣梅馬第十年 同步跨點到雲南

回顧台灣過去活動歷程充滿不少波折,第一年天氣不佳,還下起陣雨,主辦單位決定中止競賽,三位選手在風雨中繼續奮戰;有一年與春吶活動撞場地,只好臨時移換陣地,在夜遊遊客與聲光干擾下進行;前年天氣晴朗,整晚星光燦爛,唯獨日出前東方一片雲朵遮擋了最後一個目標M30,使得兩位好手劉志安與黃冠夫以109個天體飲恨。

-----廣告,請繼續往下閱讀-----

自2006年起,台北市立天文協會已主辦了十年的梅西爾馬拉松,天文協會今年還與雲南高美古天文台合作,協辦中國第一屆梅馬。陶蕃麟述說當時發起梅馬的契機:「看星座只是初階入門,要進階就要導入目標觀測。」台灣業餘天文活動多以星空觀賞或天文攝影為主,而梅馬可讓參賽者熟悉望遠鏡操作,提升業餘觀測程度,從較容易的明亮目標進入星雲、星團、星系等暗弱天體的領域,進而培力參與月掩星、小行星掩星等更高階且需要大量業餘人士參與的觀測活動。

IMG_6544
雲南高美古天文台梅馬現場的星軌。圖/楊偉攝。

Startrails.2
貓鼻頭公園梅馬現場的星軌,來自墾丁的光害襲上了北邊夜空,有四五年參賽經驗的莊宗憲說今年光害特別嚴重。圖/邵意翔、劉珈均攝。

DSC04432
在貓鼻頭公園時,身旁有人這麼說:「看到遠方天體在眼前閃動,幾億年前的光就這麼砸在你眼睛上,不覺得很感動嗎?」。照片為雲南高美古天文台的梅馬現場。圖/楊偉攝。

延伸閱讀:

劉珈均
35 篇文章 ・ 1 位粉絲
PanSci 特約記者。大學時期主修新聞,嚮往能上山下海跑採訪,因緣際會接觸科學新聞後就不想離開了。生活總是在熬夜,不是趕稿就是在屋頂看星星,一邊想像是否有外星人也朝著地球方向看過來。