0

0
0

文字

分享

0
0
0

好山好水好宇宙,臺灣展望宇宙之眼: 鹿林天文臺——《蔚為奇談!宇宙人的天文百科》

三民書局_96
・2019/12/21 ・3578字 ・閱讀時間約 7 分鐘 ・SR值 539 ・八年級

  • 文/國立中央大學天文研究所教授 陳文屏、國立中央大學鹿林天文臺臺長 林宏欽、國立中央大學天文研究所技士 張光祥

鹿林天文臺位於臺灣南投縣與嘉義縣交界之鹿林前山,緊鄰玉山國家公園,是臺灣最重要的光學天文基地,兼具研究與教育功能。

俯瞰鹿林天文臺的全貌(Credits:國立中央大學天文研究所)圖/三民提供

為什麼選在高山上建立鹿林天文臺?

鹿林天文臺的基本檔案

  • 地理位置:東經 120°52′25″,北緯 23°28′07″
  • 海拔:2,862 公尺
  • 夜天光背景1:每平方角秒的視星等為 21.28 星等
  • 大氣寧靜度2:星點平均視角為 1.39 角秒
  • 年平均觀測時間:1,450 小時(約 180 個夜晚,以每晚 8 小時計)

此地受冬季東北季風、夏季西南氣流和颱風的影響較小;受惠於國家公園的優越環境,加上位處高山,空氣汙染和塵埃少,大氣透明度高,光害也較小;由於海拔高、大氣稀薄,所以消光較小,大氣寧靜度較好,秋冬兩季尤其適合觀測。

鹿林天文臺的開發緣起於 1990 年,由當時任職於中央大學天文所的蔡文祥教授與張光祥先生,考量臺灣各地的晴天率、海拔、後勤支援等因素,並歷經 3 年的大氣寧靜度、氣候、夜天光背景等條件調查後才選定臺址。

天文臺所使用的電力由臺電提供,玉山國家公園和中華電信的基地臺則分別提供用水和網路通訊服務。此外,天文臺內也設有自動氣象站、全天域相機以及雲量監測儀等儀器設備,可作為觀測參考。

鹿林天文臺有哪些設備?

基地內設置了數座小型可見光望遠鏡。除了有:

-----廣告,請繼續往下閱讀-----
  • 鹿林一米望遠鏡(Lulin One­meter Telescope,簡稱LOT)
  • 中美掩星計畫(Taiwanese­American Occultation Survey,簡稱 TAOS)的 4 座 0.5 米自動望遠鏡
  • 0.4 米超輕型望遠鏡(Super Light Telescope,簡稱 SLT40)
  • 鹿林廣角望遠鏡(Lulin Wide­field Telescope,簡稱 LWT)

進行天文觀測外,另有成功大學的紅色精靈3地面觀測與極低頻無線電波偵測系統(ELF)、中央大學的氣暉全天相機、土石流偵測預警系統,以及環保署的鹿林山大氣背景測站(LABS)等設備,記錄大氣、環境、太空、地震等觀測數據,為我國珍貴的高山科學基地。

鹿林天文臺配置的小型可見光望遠鏡(依口徑大小排列)
望遠鏡 口徑 種類 焦比4 運作期間
LOT 100 cm 卡塞格林 (Cassegrain) 反射式望遠鏡 F/8 2003-
SLT76 76 cm 里奇—克萊琴 (Ritchey­Chrétien) 反射式望遠鏡 F/9 2000-2002
TAOS 50 cm×4 反射式望遠鏡 F/2 2005-2016
SLT40 40 cm 里奇—克萊琴反射式望遠鏡 F/8.4 2006-
LWT 40 cm 反射式望遠鏡 F/3.8 2018-
L35 35 cm 施密特—卡塞格林 (Schmidt­Cassegrain) F/8.25 2012-2017
LELIS 10 cm×3 攝影鏡頭 F/1.8 2002-2008

鹿林一米望遠鏡(LOT):

鹿林天文臺最大的望遠鏡—LOT,同時也是目前臺灣口徑最大的通用型光學望遠鏡。

LOT 具備良好的光學成像品質、指向和追蹤精度,並配備高靈敏儀器,包括專業天文相機,以取得天體影像,並測量在不同可見光波段的亮度。另外也配置低色散光譜儀及偏振儀等,藉以取得天體光譜或偏振訊息。

鹿林天文臺的一米望遠鏡(Credits:國立中央大學天文研究所)圖/三民提供

LOT 由德國 APM 公司製作,屬於卡塞格林反射式望遠鏡,由於採用鏡後端對焦座,因此卡焦儀器限重 50 公斤。LOT 觀測目標包括太陽系天體、銀河系中的恆星、變星、星團及鄰近星系等,除了提供中央大學師生研究與教學之用,也開放國內、外學者申請使用。

某些宇宙現象有時效性,例如星球爆發、掩星等,隨著地球自轉,只有面對該天體的觀測者才能夠看到。由於臺灣位處西太平洋,向東 6 個時區內缺乏其他天文臺,因此對於會隨時間變化,需連續監測的天象,或是國際間需要位在不同經度的天文臺(或太空望遠鏡)針對特定天體聯合觀測時,鹿林天文臺便扮演著舉足輕重的角色。

-----廣告,請繼續往下閱讀-----

多年來,鹿林天文臺的望遠鏡積極參與此類計畫,例如:全球望遠鏡聯合觀測(Whole Earth Telescope,簡稱 WET)聯合不同時區的望遠鏡,接力監測恆星的亮度變化,以星震5手段探討恆星內部結構;全球蝎虎 BL 類星體聯合觀測(Whole Earth Blazar Telescope,簡稱 WEBT)監測活躍星系核,藉此研究黑洞與噴流的性質;年輕系外行星掩星觀測計畫(Young Exoplanet Transit Initiative,簡稱 YETI)則監測星團成員、搜尋系外行星造成的凌星事件等,均與國際天文臺建立良好合作模式,並取得優良成果。

啟用至今,鹿林天文臺的望遠鏡共發現 15 顆超新星、800 餘顆小行星,以及一顆彗星。每年通常約有十幾個研究計畫利用 LOT 執行,使用 LOT 數據發表的研究論文已超過百篇。除了研究之外,LOT 也支援大學、高中及社教機構進行觀測教學實習,另有多座小型望遠鏡提供特定課題使用。

中美掩星計畫(TAOS):

TAOS 計畫原理示意圖。圖/嵌入自中央大學天文所 中美掩星計畫簡介

天文臺原來設有 4 座 TAOS 望遠鏡,由中央研究院天文所、中央大學天文所、美國哈佛史密松天文物理中心,以及韓國延世大學共同合作。每座望遠鏡的口徑 50 公分,具備 3 平方度6的超廣角視野,全年監測可能由柯伊伯帶天體造成的掩星事件,藉以估計分布在太陽系外圍的小型天體數量。

TAOS 計畫自 2005 年開始運行,累積 6 年的觀測結果一共收集超過 10 億筆恆星光度的測量數據,因為沒有偵測到任何掩星事件,提供了柯伊伯帶天體的數量上限。

-----廣告,請繼續往下閱讀-----

第一代 TAOS 的設備已於 2016 年拆除、撤離,第二代的海王星外自動掩星普查計畫(Transneptunian Automated Occultation Survey,簡稱 TAOS­II)選在墨西哥的聖彼德羅瑪蒂爾天文臺(San Pedro Mártir Observatorio)落腳,一共有 3 座口徑 1.3 米的望遠鏡。

超輕型望遠鏡(SLT):

中央大學天文研究所於 1997 年獲得太空計畫室(現在的國家太空中心)補助,興建鹿林第一座天文臺 “SLT”。1999 年 SLT 完工後,內部安裝自行設計、製造的 76 公分超輕型望遠鏡(SLT76),並從 2000 年開始進行觀測,是鹿林天文臺初期最重要的觀測設備。

SLT76 於 2005 年換裝口徑 40 公分的超輕型望遠鏡(SLT40),並自 2006 年開始進行鹿林巡天計畫(Lulin Sky Survey,簡稱 LUSS),搜尋太陽系小天體。計畫進行 3 年期間共發現 800 多顆小行星,其中有 400 多顆已獲得永久編號,小行星發現數量排名世界第 47。

鹿林天文臺的 40 公分超輕型望遠鏡(Credits:國立中央大學天文研究所)圖/三民提供

目前鹿林天文臺發現的小行星已有 100 多顆得到永久命名,名稱涵蓋臺灣的代表性人物、團體、地理、山水及原住民族等。2007 年 LUSS 首度發現彗星(C/2007 N3)與近地小行星(2007 NL1),該彗星後來被命名為鹿林彗星(Comet Lulin)。LUSS 計畫結束後,自 2010 年起 SLT40 投入變星、彗星的長期監測工作。

-----廣告,請繼續往下閱讀-----

除了硬體設備,還能善用地理優勢進行觀測

鹿林天文臺的主要策略是利用小型望遠鏡的機動性,以及臺灣本身的觀測條件優勢,與其他的天文臺合作、競爭。

臺灣的地理位置緯度較低,因此可以觀測範圍較大的南半球天空;而經度方面則可以跟國際間的其他天文臺互補。對於需要長期監測或瞬變的天文現象(如超新星及伽瑪射線爆等),鹿林天文臺參與跨國合作,在全球天文觀測網和太空與地面的聯合觀測中占據不可或缺的位置。

比如 2006 年中央大學天文所參加夏威夷大學主導的泛星計畫(Pan­STARRS),另外近年加入由加州理工學院主導的茲威基瞬變探測利器(Zwicky Transient Facility,簡稱 ZTF),並加入伊甸園觀測網(Exoearth Discovery and Exploration Network,簡稱 EDEN),以搜尋鄰近太陽之 M 型恆星周圍可能位於適居區內的系外行星等,都因為地理位置的優勢,能藉由鹿林天文臺的設備追蹤並確認新的科學發現。

在臺灣近百年的天文發展史上,鹿林天文臺締造了多項紀錄,包括首度發現小行星、首度發現超新星、首度發現彗星、首度發現近地小行星及首度進行小行星命名。天文臺的望遠鏡口徑雖然小,但做為天文教育與基本研究工具,多年來配合規劃的課題立基,亦取得良好的成果。

註解:

  1. 夜天光背景:夜空背景的亮度。星等數字越大,表示亮度愈低,意即光害愈小,能夠觀測愈暗的天體。
  2. 大氣寧靜度:大氣擾動對星光成像的影響程度。以星點的視角表示,視角愈小表示大氣寧靜度愈好,觀測到的星像愈清晰。
  3. 紅色精靈:積雨雲層上方發生的放電現象,由於主要發出紅光,而且發生的時間非常短暫不易捉摸,因此被稱為紅色精靈。
  4. 焦比:口徑與焦距的比值。
  5. 星震:利用亮度變化或光譜都卜勒效應研究天體的震動,藉此瞭解無法直接觀測的恆星內部結構,其原理類似利用地震波研究地球的內部結構。
  6. 平方度:一度乘以一度的天空範圍。例如滿月的張角約半度,3 平方度相當於 10 個滿月的天空面積。

——本文摘自泛科學 2019 年 12 月選書《蔚為奇談!宇宙人的天文百科》,2019 年 11 月,三民出版

-----廣告,請繼續往下閱讀-----
文章難易度
三民書局_96
18 篇文章 ・ 12 位粉絲
創立於1953年,為了「傳播學術思想,延續文化發展」,60年來默默耕耘著書的園地。從早期的法政大學用書、三民文庫、古籍今注新譯叢書、《大辭典》,到各式英漢字典及兒童、青少年讀物,成立至今已出版了一萬多種優良圖書。不僅讀者佳評如潮,更贏得金鼎獎、小太陽獎、好書大家讀等諸多獎項的肯定。在見證半個世紀的社會與時代變遷後,三民書局已轉型為多元、綜合、全方位的出版機構。

0

1
2

文字

分享

0
1
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
0

文字

分享

0
2
0
藝術與科學的詩性相遇:《匯聚:從自然到社會的藝術探索》國際交流展
PanSci_96
・2024/06/04 ・3873字 ・閱讀時間約 8 分鐘

本文由策展人紀柏豪提供

想享受一場同時兼具科技與藝術的饗宴嗎?來《匯聚:從自然到社會的藝術探索》國際交流展看看吧!

在當代社會中,藝術的角色正持續演進——它創造了一種新的美學,與社會、科學以及技術變革緊密相連。當社會面臨的挑戰因其複雜性而難以僅靠單一學科解決時,藝術研究因其跨越、融合不同知識領域的能力而具有新的意義。今日,許多創作者和機構採用跨學科方法,將藝術與自然、科學與感性、想像力與現實結合,創造嶄新的經驗、知識和美學。

在藝術與科學這兩個看似迥異的領域中,存在著一個共通的追求——深入理解我們所處的世界。這一追求不僅體現了人類對知識渴望的本能,也反映了我們對於更高層次的自我認知和宇宙認識的探索。藝術家透過創作,探索人類經驗的多樣性和情感的複雜性,用畫筆、雕塑、數位媒介來表達對世界的主觀理解。這種理解可能源於個人感受,也可能反映了廣泛的社會和文化現象。

藝術提供了一種通過感知和情感來接觸和理解世界的方式,使我們能夠透過個別經驗來抵達普遍的真理。科學則通過觀察、實驗和分析來探究自然界的法則和現象,尋求對世界的客觀理解。科學方法使我們能夠系統地收集資料、建立理論並驗證假設,從而深化對物理世界的認識。不僅解答了關於自然界的問題,也幫助我們理解了人類自身在這個宇宙中的位置和作用。

-----廣告,請繼續往下閱讀-----

儘管藝術和科學在方法和目的上有所不同,但它們都反映了人類對於更加全面和深刻理解世界的共同願望。藝術讓我們透過感受和想像來擴展對世界的認識,而科學則通過理性和證據來揭示秩序和結構。由國科會指導、國家實驗研究院主辦的《匯聚:從自然到社會的藝術探索》國際交流展,邀請觀眾一同探索藝術與科學的交會,體驗它們如何共同塑造我們對世界的認識和感知,並反思這一過程如何豐富我們的文化與知識視野。

展覽單元介紹

宇宙共生 —— 科技與宇宙的多維依存

當你仰望星空,有沒有想過我們與宇宙的關係?「宇宙共生」單元展示了科技如何將人類感性延伸至浩瀚的宇宙空間。麻省理工學院媒體實驗室的太空探索倡議小組(MIT Media Lab Space Exploration Initiative)帶來了在極端環境下的實地太空模擬,研究生存策略和科技應用。與之並置的《與細菌混了三千年》(3000 Years Among Microbes)則從微生物的角度重新審視太空探索中的殖民語言,帶來全新的太空想像。藝術家利用極端地貌與顯微影像並置,模糊人與微生物的分野,探討共生體概念在星際生態系中的應用。

感官賦能 ——透過科技重塑環境感知

「感官賦能」單元探索藝術家如何通過科技媒介重塑我們對環境的感知。兩位智利藝術家妮可·拉希利耶(Nicole L’Huillier)與派翠西亞·多明格斯(Patricia Domínguez)的《全像乳糜》(Leche Holográfica)是一場冥想式祈願,透過與不同元素的共鳴和諧,讓我們得以在螺旋時空中構想未來。

值得一提的是,藝術家妮可·拉希利耶與派翠西亞·多明格斯曾透過智利與歐盟的合作,在歐洲核子研究組織(CERN)進行藝術駐村計畫,並在那裡發展她們的作品。CERN 以其在粒子物理學上的重大科研成果而聞名,但即使是最前沿的科學研究,也需要藝術家的啟發。這樣的跨域合作不僅揭示了科學現象的美麗與複雜,更為科學研究注入了新的靈感和視角。藝術家的創意與想像力,能夠以不同於科學的方法來詮釋數據與實驗結果,從而開拓更廣泛的理解和應用。

-----廣告,請繼續往下閱讀-----

拉脫維亞藝術家羅莎‧史密特(Rasa Smite)和萊提斯‧史密茨(Raitis Smits)的《深度感知》(Deep Sensing),通過拉脫維亞伊爾本(Irbene) RT-32電波望遠鏡的歷史敘事,象徵性地橋接了技術的過去與現在,探問「為何擁有地球還不足以滿足人類?」該望遠鏡被前蘇聯遺棄,而藝術家們重返此地,探索這個巨大天線在當代的價值。虛擬點雲天線追蹤從太陽到地球的宇宙粒子流動,創造出沉浸式的視覺和聲音景觀,讓觀眾更易於理解氣候變遷的影響。

羅莎‧史密特和萊提斯‧史密茨是里加RIXC新媒體文化中心的共同創辦人,他們的作品結合科學數據、聲音化和視覺化、人工智慧和擴增實境技術,創造出前瞻性的網絡藝術。他們的作品曾在威尼斯建築雙年展、拉脫維亞國家藝術博物館等地展出,並獲得多項國際獎項。

網絡交織 —— 科技與社會的複雜關係

「網絡交織」單元深入探討科技如何影響我們的社會結構和人際關係。瑪麗莎·莫蘭·賈恩(Marisa Morán Jahn)的《銅色景觀》(Copperscapes)展示了銅在全球化勞動中的角色,揭示了這一自然元素如何影響我們的日常生活。她的作品以銅色眼睛作為見證,表現出礦區社區所承受的「身體負擔」,並在影片《銅的私處史》中探討礦物經濟的複雜性,突顯採礦活動對身體及地球主權的影響。

瑪麗莎·莫蘭·賈恩是具有厄瓜多和中國血統的藝術家,其作品致力於重新分配權力,展示藝術作為社會實踐的可能性。她的作品曾在歐巴馬時期的白宮、威尼斯建築雙年展、古根漢美術館等地展出,並獲得聖丹斯電影節和創意資本等獎項。

-----廣告,請繼續往下閱讀-----

李紫彤與孫詠怡的《岔經濟》(Forkonomy)利用區塊鏈技術,重新構想財產與國家之間的連結,探討擁有權背後的政治意義。這個藝術與社會運動計畫,通過工作坊和數位契約,探討如何購買或擁有一毫升的南海,並質疑現有的性別勞動分工和所有權制度。

李紫彤是台灣的藝術家兼策展人,作品結合人類學研究與政治行動,曾在國內外多個知名展覽中展出。孫詠怡是出生於香港的藝術家和程式撰寫者,專注於數位基礎設施的文化意義及廣泛權力的不對等問題,作品曾獲得林茲電子藝術節金尼卡獎等多項國際獎項。

印度藝術家艾蒂·桑德爾(Aarti Sunder)的《深海節點故事》(Nodal Narratives of the Deep Sea)將海底電纜這一隱藏基礎設施帶入視野,探討其與現代化項目、資本主義擴張及殖民主義的關聯。她的作品通過繪畫、物件和影片,展示了數據傳輸的路徑及其對生態系統的影響。

艾蒂·桑德爾的創作涉及影像、寫作與繪畫,專注於探討科技政治和基礎設施相關議題。她的作品曾在柏林藝術學院、新加坡雙年展、世界文化之家等國際場所展出。

-----廣告,請繼續往下閱讀-----

科藝匯聚 —— 跨學科的創新邊界

「科藝匯聚」單元彰顯了藝術與科學共同探索未知領域的力量。國家太空中心的《來自遙遠的訊息》管絃樂曲選粹、麻省理工學院前衛視覺研究中心(CAVS)的歷史檔案,以及臺灣共演化研究隊的「邊界測繪學」年度計畫成果,展示了藝術家與科學家跨域合作的豐富成果和未來潛能。

跨域交流與活動

在展覽期間,策展團隊與台灣致力於促進科學家與藝術家合作的「共演化研究隊」規劃了一系列精彩的跨域交流活動,讓大家能近距離與藝術家、科學家們交流,體驗科技與藝術如何共同作用於當代社會。

活動包括圓桌論壇、藝術家講座和放映會,涵蓋了多個有趣且深入的主題。例如,在「宇宙共生」週末,觀眾可以參與討論極地科學與藝術實踐的圓桌論壇,聆聽來自麻省理工學院媒體實驗室「太空探索倡議」的成員分享他們在極端地貌探索的經驗。另一活動是國家太空中心委託製作的管弦樂曲《來自遙遠的訊息》放映會,由作曲家趙菁文進行演前導聆,帶領觀眾進入一場視覺與聽覺的雙重盛宴。

在「網絡交織」週末,藝術家李紫彤與孫詠怡將帶來一場關於區塊鏈技術應用於南海議題的討論,這場圓桌論壇將探討技術如何影響社會結構和資源分配。印度藝術家艾蒂·桑德爾則會在線上分享她對於海洋及網路基礎設施的研究與創作,揭示隱藏在我們日常生活背後的複雜科技網絡。

-----廣告,請繼續往下閱讀-----

「感官賦能」週末將邀請拉脫維亞藝術家羅莎‧史密特和萊提斯‧史密茨現場分享他們的作品《深度感知》,並探討電波望遠鏡的技術敘事,展示如何通過藝術手段使抽象的科學數據變得可以感知。這不僅讓觀眾更易於理解氣候變遷的影響,也體現了藝術在科學溝通中的重要角色。他們將分享長期研究「自然廣播」的概念,以及每年舉辦「藝術科學節」的經驗。

在「科藝匯聚」週末,觀眾可以參與科學家與藝術家的提案室,直接感受跨領域合作的火花。這些活動將展示跨學科合作如何激發創新,促進我們對世界更深層次的理解。此外,拍攝麻省理工學院前衛視覺研究中心創始人故事的紀錄片將在台灣首映,導演並將與觀眾進行映後座談,分享創作背後的故事和啟發。

藝術與科學的相互啟發,不僅僅是知識和美學的結合,更是對創新與理解的共同追求。在這個亟需跨學科解決方案的時代,這樣的合作顯得尤為重要,為我們探索未知領域提供了無限可能。這次展覽通過多樣的跨域交流活動,讓觀眾能夠親身體驗並參與其中,進一步體會到藝術與科學融合所帶來的豐富成果和未來潛力。

展覽資訊

  • 展覽名稱:《匯聚:從自然到社會的藝術探索 | 國際交流展》
  • 日期:2024/5/10 至 2024/8/10
  • 時間:週一至週五 09:00-18:00(國定假日休)
  • 地點:科技大樓一樓大廳(臺北市大安區和平東路二段106號)
  • 指導單位:國家科學及技術委員會
  • 主辦單位:國家實驗研究院
  • 策展人:紀柏豪
  • 執行單位:融聲創意
  • 協力單位:共演化研究隊

討論功能關閉中。

PanSci_96
1225 篇文章 ・ 2319 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

6
2

文字

分享

0
6
2
歐幾里得望遠鏡開工——目標是尋找暗物質證據!一起從科學家的角度欣賞這片夢幻光景!
PanSci_96
・2024/01/27 ・6276字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

14 億歐元天文望遠鏡拍出的照片,你看過了嗎?你看到現在這些照片,揭開了宇宙過去與現在、空間與時間所交織的祕密嗎?

今年 11 月 7 日,位在 L2 拉格朗日點的歐幾里得望遠鏡,終於傳回來它升空後的第一批照片。這 5 張照片不只展示了望遠鏡的強大性能,更讓我們窺見過去無法看到的,宇宙深處的幽美與奧秘。就讓我們一起透過這些獨特的照片,來一場探索宇宙的奇異之旅吧!

歐幾里得望遠鏡有什麼厲害之處?

今年 7 月 1 號升空的歐幾里得望遠鏡,任務是觀察宇宙大尺度結構,來研究暗物質與暗能量在宇宙中的分布與性質,讓我們進一步了解自己身處的這個宇宙。

去年七月,接棒哈伯望遠鏡任務的詹姆斯.韋伯太空望遠鏡,傳回來了升空後的第一批相片,每張照片都美的震撼人心,也帶著我們從全新的視角,眺望遙遠的系外行星、恆星、星雲與早期宇宙。當時,我們製作了一集節目,和大家分享這批照片背後的重要意義。我們也提到,每個望遠鏡在完成校準以後,都會發布一批「開光照」,向外界傳達望遠鏡已經可以順利運作的好消息,同時也讓大家了解這台新望遠鏡身上,背負了哪些重要的使命與任務。

-----廣告,請繼續往下閱讀-----

而這次,新升空的歐幾里得望遠鏡也終於完成校正,傳回來不同於韋伯望遠鏡,從另一個視角看宇宙的開光照。先讓我們來了解一下歐幾里得望遠鏡。它的觀測波段是可見光到近紅外線波段,目標是觀測大範圍、不同遠近的宇宙天體。預計在 6 年的服役期間,建立完整清晰的宇宙 3D 立體圖像。只是,剛退役的哈伯太空望遠鏡,主要任務就是可見光波段的研究,去年剛任務正式開始的韋伯太空望遠鏡,則是紅外線波段的佼佼者。那歐幾里得望遠鏡有什麼突破之處嗎?這座花費 14 億歐元的望遠鏡當然有它獨到之處,它強大的地方在於,可以在更短時間內獲得更高解析度的照片,同時拍攝更大範圍的宇宙。比如哈伯太空望遠鏡需要好幾天觀測的天體,歐幾里得望遠鏡一個小時就可以搞定,而且解析度更高。

歐幾里得太空望遠鏡。圖/wikimedia

其實看它們的任務目標就能很快理解,現在在天空上的韋伯和歐幾里得,雖然有部分任務重疊。但韋伯更著重在尋找系外行星與觀察星系、恆星系統的演化。歐幾里得呢,則是將視野放大到整個宇宙,希望了解暗物質、暗能量在整個宇宙間扮演的角色。所以比起韋伯太空望遠鏡著重在拍攝小範圍、高解析度的天體照片,歐幾里得望遠鏡一開始的設計,就是要在短時間內掃描更大片的宇宙。因此,歐幾里得望遠鏡也確實成為建立宇宙 3D 立體圖像的最佳望遠鏡,定期的大範圍掃描天空,讓我們能一窺宇宙隨時間的演化動態。

那麼,就讓我們來欣賞歐幾里得望遠鏡的第一批照片吧!

歐幾里得望遠鏡第一批照片公開!

第一張照片,像是在宇宙這張巨大的黑布上,撒下大小珍珠。它是一張距離地球 2.4 億光年,英仙座星系團的影像照。

-----廣告,請繼續往下閱讀-----

宇宙中有許多星系團,英仙座星系團就是其中之一,裡面包含超過 1000 個星系,是宇宙中最大的結構之一。除此之外,這張照片不僅清楚拍下了星系團,如果將照片放大來看,還會發現背景中有許多過去難以看到的星系,數量超過 10 萬個,最遠的甚至達 100 億光年。為什麼第一批照片要選擇拍攝星系團呢?因為研究星系團能幫助我們了解宇宙大尺度結構,進一步推算暗物質與暗能量的比例。

宇宙中的星系分佈其實是不均勻的,有些地方有許多星系,有些區域則幾乎沒有。整個宇宙中天體的分布看起來就像是一張巨網。可是,為什麼宇宙的大尺度結構是網狀的呢?天文學家認為宇宙大爆炸之後,物質在宇宙中的分佈會有些微的不均勻。當宇宙逐漸冷卻,氣體物質密度較高的地方會因為重力吸引而塌縮。但因為溫度很高,高溫產生的巨大壓力又讓氣體團反彈回來,就像擠壓一個壓力球一樣。來回震盪的過程中氣體會像聲波朝四面八方傳遞出去,稱為重子聲學振盪(BAO,baryon acoustic oscillations)。最後整個宇宙就像下毛毛雨時的池塘,形成由許多漣漪交織的網狀結構,波腹的地方氣體密度較高,變成星系高度聚集的區域,我們稱為星系團。其他地方氣體密度低,形成的星系數量較少,就像是宇宙間的孔洞。

而根據宇宙學家計算,要形成星系團、宇宙網(cosmic web)這類的宇宙大尺度結構,只靠已知物質提供的重力是不夠的,很可能還有許多我們還不了解的物質參與其中,也就是暗物質。這張照片不僅能幫助科學家研究宇宙大尺度結構,更彰顯歐幾里得望遠鏡的重要任務之一,就是幫助科學家深入了解暗物質的分佈與本質。

第二張照片是螺旋星系 IC342,離地球只有 1100 萬光年,算是離地球很近的星系,但由於它被明亮的銀河系盤面擋住了,觀測的難度非常高。歐幾里得望遠鏡利用近紅外線儀器穿透塵埃進行觀察,並移除許多銀河系中的恆星光芒,最後才形成這張極高解析度的照片,展現了它觀測隱藏星系的實力。

-----廣告,請繼續往下閱讀-----
IC342。圖/Judy Schmidt

這個螺旋星系在天空中的大小相當於一個滿月那麼大,要一次觀測這樣大範圍的天空,同時保有超高解析度,目前只有歐幾里得望遠鏡才辦得到。由於螺旋星系 IC342 和銀河系很像,觀察它的演化有助於科學家理解銀河系的形成過程。未來歐幾里得望遠鏡也會觀測更多隱藏星系和遙遠的天體,繪製出它們的 3D 分佈圖。

第三張照片是不規則星系 NGC 6822。雖然跟 IC342、銀河系一樣也是星系,但形狀不是螺旋而是不規則的。

透過光譜分析,我們知道這個星系中的重元素含量很低。重元素是透過大質量恆星核融合所產生的,重元素含量少表示星系裡的恆星才剛形成,也就是一個很早期、相對年輕的星系。科學家認為,在宇宙早期星系剛開始演化時,大部分的星系就長得像這樣,質量小、形狀也不太規則。之後這些小星系會因為重力吸引其他星系,彼此相撞、融合成更大的星系,逐漸產生旋轉的結構,形成像銀河系這樣的大質量螺旋星系。所以藉由觀測這些早期星系,可以幫助科學家了解星系的形成過程。

另外,照片中一顆顆藍色的圓形區域,是球狀星團。球狀星團中的星星都是由同一團氣體產生,是宇宙最早形成的天體之一,有些甚至比星系本身還早。透過觀測這些球狀星團的運動,能協助我們更了解這個星系的形成史。

-----廣告,請繼續往下閱讀-----

球狀星團大部分分佈在星系的外圍,以很慢的速度繞行星系,可能要好幾年才能觀察到要它們的運動。那科學家要怎麼知道這些星團是如何移動的呢?凡走過必留下痕跡,其中一種方式就是觀察到它們與星系本身互動所留下的痕跡。在歐幾里得望遠鏡傳回來的第四張照片中,就呈現了這些細節。第四張照片是球狀星團 NGC 6397,一個繞行銀河系的球狀星團。

當星團經過星系中的高密度區域,比如暗物質集中區、旋臂或星系盤面,星團中的星星會受到不同強度的重力吸引,使得星星彼此遠離,這個力量稱為潮汐力。顧名思義與潮汐的產生是相同的原理,由於地球各處受到太陽與月亮的重力總和不相同,在重力較強的地方海水受拉伸而漲潮,重力較弱的地方就會退潮。同樣道理,球狀星團在靠近星系中心的一側受重力較強,遠離星系的一側則較弱,球狀星團因而被拉伸,形成一條由星星組成的尾巴,稱為潮汐尾。

透過觀測潮汐尾,就可以了解球狀星團,乃至星系的演化過程。如果沒有潮汐尾,也可能代表有暗物質暈阻止外層恆星逃脫,能幫助我們進一步了解暗物質在星系當中的分佈。但要瞭解潮汐尾的形成過程,必須有星團中每顆星星的移動資料,也就是需要同時進行大範圍、短時間、高精度的觀測。而歐幾里得望遠鏡的優勢此時就能充分發揮,它可以一次拍攝整個球狀星團,而且只須一小時就可以得到這張高解析度的照片,連裡面的很暗的星星也看的一清二楚。只要每隔一段時間拍攝一張照片,就可以製作成動畫,了解星團中星體的運動軌跡。

最後,我們來介紹最後一張照片。它看起來最為夢幻,猶如一張宇宙中以繁星點綴的絲綢。它是距離地球約 1375 光年的馬頭星雲,也是離我們最近,正在形成新生恆星的區域。在星雲的上方(照片之外),有一顆明亮的恆星:獵戶座 sigma 星,這顆星輻射出的紫外光激發了位在馬頭後方的星雲,形成明亮、宛若薄紗的區域。組成馬頭的暗星雲氣體則因為溫度較低,只有些微的熱輻射,形成較為黯淡的前景,並稍微遮掩背後的明亮星雲。前後星雲層層堆疊,就像一幅宇宙給我們的水彩畫。更進一步,藉由歐幾里得望遠鏡高解析度的照片,科學家得以從中看到更多類木星、棕矮星、嬰兒恆星等,協助科學家了解星雲中的恆星形成過程。

-----廣告,請繼續往下閱讀-----
圖/wikimedia

對了,在我們介紹韋伯望遠鏡時有提到過,這些宇宙照通常不是它可見光波段下,真正我們肉眼所見的樣貌。而是選定特定波長後透過顏色校正,甚至將不同波段的照片疊合,才得到的結果。也就是說,選則不同的電磁波波段,或是採取不同的調色方式,得到的照片都會有不同風味。

所以如果你覺得這張淡麗的馬頭星雲不滿意,也有這張,特別強化氫元素的紅色光譜與氧元素藍色光譜後,成為一張猶如滅世風格,帶有點詭譎濾鏡的另一種美照,是不是跟剛才的氛圍完全不一樣呢?

馬頭星雲。圖/wikimedia

順帶一提,對我來說,一樣是星雲照片,韋伯望遠鏡校色出來的照片還是覺得比較好看。例如之前介紹過的,韋伯望遠鏡開光照之一的船底座星雲。還有原本是望遠鏡大前輩哈伯代表作,後來韋伯又重新翻拍的創世之柱,都更令人讚嘆不已,對比與彩度都高上許多,給人一種正在仰望廣闊宇宙的壯烈感。

韋伯望遠鏡所拍攝的船底座星雲。圖/wikimedia
創生之柱,左哈伯、右韋伯。圖/PanSci YouTube

我們更了解這個宇宙了嗎?

我們對於宇宙的瞭解還太少,目前宇宙中的已知物質,包括元素週期表上的所有原子,根據計算只佔宇宙質能的 5%,剩下的估計都是暗物質與和能量。

-----廣告,請繼續往下閱讀-----

但宇宙的奧秘就像一張複雜的拼圖,每拼上一小塊,都會給我們一些線索,猜測周圍的拼圖可能會是什麼。當拼的夠多,我們終有一天能得知宇宙整體的圖畫長什麼樣貌。恆星形成、星系演化方式、暗物質、暗能量等等,都各自是一塊塊重要的拼圖,唯有了解它們才能逐步得知暗物質與暗能量的奧秘。

舉例來說,暗物質所提供的重力在星系形成中扮演重要角色,目前最被科學界接受的冷暗物質(cold dark matter)模型,假設暗物質是由質量很大的粒子所組成,透過重力吸引聚集成許多小塊,小塊暗物質再彼此融合成更大的暗物質團塊,質量足夠大的團塊就可以吸引夠多的氣體,形成早期星系,之後再彼此融合成為更大的螺旋或橢圓星系。但透過數值模擬,科學家發現這個模型有些問題。理論上來說應該要有數百到數千個小衛星星系,繞行像銀河系這麼大的螺旋星系旋轉。但是天文學家實際上只觀測到約十個小星系繞行銀河系,這是著名的衛星遺失問題(Missing satellite problem)。

因此科學家又提出更多暗物質模型,比如與冷暗物質相對的熱暗物質(warm dark matter)模型,可以透過熱運動所產生的壓力抵銷重力,使得小暗物質團塊變得不穩定,從而解釋為何小星系的數量這麼少。除了熱暗物質以外,還有眾多的暗物質模型。但要證明哪個模型是正確的,就需要更多觀測數據與星系演化的模擬結果進行比較,才能得到答案。

不過看過歐幾里得望遠鏡傳回來的第一批照片,並了解其中代表的重要意義,就能充分感受到我們離解開這個謎團又更近了一步。還沒完,預計於 2027 年升空的羅曼太空望遠鏡(Nancy Grace Roman Space Telescope),與歐幾里得望遠鏡相同,都肩負研究暗能量與暗物質的重要任務。兩座望遠鏡將一同一個從可見光,一個從紅外線波段觀察大範圍宇宙,期待能為科學家帶來寶貴的數據,解開這盤旋好幾十年的謎團。

-----廣告,請繼續往下閱讀-----

最後問問大家,在這批照片中,你最喜歡的是哪一張呢?

  1. 英仙座星系團,大尺度的宇宙圖像,原來長這樣。
  2. 螺旋星系 IC342,我們的鄰居竟然這麼漂亮,這麼具有螺旋力。
  3. 馬頭星雲,有層次感的星雲照,真的令人目不暇給。
  4. 更多你喜歡的照片,或希望我們來介紹的天文照片,分享給我們吧!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

討論功能關閉中。

PanSci_96
1225 篇文章 ・ 2319 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。