0

0
0

文字

分享

0
0
0

好山好水好宇宙,臺灣展望宇宙之眼: 鹿林天文臺——《蔚為奇談!宇宙人的天文百科》

三民書局_96
・2019/12/21 ・3578字 ・閱讀時間約 7 分鐘 ・SR值 539 ・八年級

  • 文/國立中央大學天文研究所教授 陳文屏、國立中央大學鹿林天文臺臺長 林宏欽、國立中央大學天文研究所技士 張光祥

鹿林天文臺位於臺灣南投縣與嘉義縣交界之鹿林前山,緊鄰玉山國家公園,是臺灣最重要的光學天文基地,兼具研究與教育功能。

俯瞰鹿林天文臺的全貌(Credits:國立中央大學天文研究所)圖/三民提供

為什麼選在高山上建立鹿林天文臺?

鹿林天文臺的基本檔案

  • 地理位置:東經 120°52′25″,北緯 23°28′07″
  • 海拔:2,862 公尺
  • 夜天光背景1:每平方角秒的視星等為 21.28 星等
  • 大氣寧靜度2:星點平均視角為 1.39 角秒
  • 年平均觀測時間:1,450 小時(約 180 個夜晚,以每晚 8 小時計)

此地受冬季東北季風、夏季西南氣流和颱風的影響較小;受惠於國家公園的優越環境,加上位處高山,空氣汙染和塵埃少,大氣透明度高,光害也較小;由於海拔高、大氣稀薄,所以消光較小,大氣寧靜度較好,秋冬兩季尤其適合觀測。

鹿林天文臺的開發緣起於 1990 年,由當時任職於中央大學天文所的蔡文祥教授與張光祥先生,考量臺灣各地的晴天率、海拔、後勤支援等因素,並歷經 3 年的大氣寧靜度、氣候、夜天光背景等條件調查後才選定臺址。

天文臺所使用的電力由臺電提供,玉山國家公園和中華電信的基地臺則分別提供用水和網路通訊服務。此外,天文臺內也設有自動氣象站、全天域相機以及雲量監測儀等儀器設備,可作為觀測參考。

鹿林天文臺有哪些設備?

基地內設置了數座小型可見光望遠鏡。除了有:

  • 鹿林一米望遠鏡(Lulin One­meter Telescope,簡稱LOT)
  • 中美掩星計畫(Taiwanese­American Occultation Survey,簡稱 TAOS)的 4 座 0.5 米自動望遠鏡
  • 0.4 米超輕型望遠鏡(Super Light Telescope,簡稱 SLT40)
  • 鹿林廣角望遠鏡(Lulin Wide­field Telescope,簡稱 LWT)

進行天文觀測外,另有成功大學的紅色精靈3地面觀測與極低頻無線電波偵測系統(ELF)、中央大學的氣暉全天相機、土石流偵測預警系統,以及環保署的鹿林山大氣背景測站(LABS)等設備,記錄大氣、環境、太空、地震等觀測數據,為我國珍貴的高山科學基地。

鹿林天文臺配置的小型可見光望遠鏡(依口徑大小排列)
望遠鏡 口徑 種類 焦比4 運作期間
LOT 100 cm 卡塞格林 (Cassegrain) 反射式望遠鏡 F/8 2003-
SLT76 76 cm 里奇—克萊琴 (Ritchey­Chrétien) 反射式望遠鏡 F/9 2000-2002
TAOS 50 cm×4 反射式望遠鏡 F/2 2005-2016
SLT40 40 cm 里奇—克萊琴反射式望遠鏡 F/8.4 2006-
LWT 40 cm 反射式望遠鏡 F/3.8 2018-
L35 35 cm 施密特—卡塞格林 (Schmidt­Cassegrain) F/8.25 2012-2017
LELIS 10 cm×3 攝影鏡頭 F/1.8 2002-2008

鹿林一米望遠鏡(LOT):

鹿林天文臺最大的望遠鏡—LOT,同時也是目前臺灣口徑最大的通用型光學望遠鏡。

LOT 具備良好的光學成像品質、指向和追蹤精度,並配備高靈敏儀器,包括專業天文相機,以取得天體影像,並測量在不同可見光波段的亮度。另外也配置低色散光譜儀及偏振儀等,藉以取得天體光譜或偏振訊息。

鹿林天文臺的一米望遠鏡(Credits:國立中央大學天文研究所)圖/三民提供

LOT 由德國 APM 公司製作,屬於卡塞格林反射式望遠鏡,由於採用鏡後端對焦座,因此卡焦儀器限重 50 公斤。LOT 觀測目標包括太陽系天體、銀河系中的恆星、變星、星團及鄰近星系等,除了提供中央大學師生研究與教學之用,也開放國內、外學者申請使用。

某些宇宙現象有時效性,例如星球爆發、掩星等,隨著地球自轉,只有面對該天體的觀測者才能夠看到。由於臺灣位處西太平洋,向東 6 個時區內缺乏其他天文臺,因此對於會隨時間變化,需連續監測的天象,或是國際間需要位在不同經度的天文臺(或太空望遠鏡)針對特定天體聯合觀測時,鹿林天文臺便扮演著舉足輕重的角色。

多年來,鹿林天文臺的望遠鏡積極參與此類計畫,例如:全球望遠鏡聯合觀測(Whole Earth Telescope,簡稱 WET)聯合不同時區的望遠鏡,接力監測恆星的亮度變化,以星震5手段探討恆星內部結構;全球蝎虎 BL 類星體聯合觀測(Whole Earth Blazar Telescope,簡稱 WEBT)監測活躍星系核,藉此研究黑洞與噴流的性質;年輕系外行星掩星觀測計畫(Young Exoplanet Transit Initiative,簡稱 YETI)則監測星團成員、搜尋系外行星造成的凌星事件等,均與國際天文臺建立良好合作模式,並取得優良成果。

啟用至今,鹿林天文臺的望遠鏡共發現 15 顆超新星、800 餘顆小行星,以及一顆彗星。每年通常約有十幾個研究計畫利用 LOT 執行,使用 LOT 數據發表的研究論文已超過百篇。除了研究之外,LOT 也支援大學、高中及社教機構進行觀測教學實習,另有多座小型望遠鏡提供特定課題使用。

中美掩星計畫(TAOS):

TAOS 計畫原理示意圖。圖/嵌入自中央大學天文所 中美掩星計畫簡介

天文臺原來設有 4 座 TAOS 望遠鏡,由中央研究院天文所、中央大學天文所、美國哈佛史密松天文物理中心,以及韓國延世大學共同合作。每座望遠鏡的口徑 50 公分,具備 3 平方度6的超廣角視野,全年監測可能由柯伊伯帶天體造成的掩星事件,藉以估計分布在太陽系外圍的小型天體數量。

TAOS 計畫自 2005 年開始運行,累積 6 年的觀測結果一共收集超過 10 億筆恆星光度的測量數據,因為沒有偵測到任何掩星事件,提供了柯伊伯帶天體的數量上限。

第一代 TAOS 的設備已於 2016 年拆除、撤離,第二代的海王星外自動掩星普查計畫(Transneptunian Automated Occultation Survey,簡稱 TAOS­II)選在墨西哥的聖彼德羅瑪蒂爾天文臺(San Pedro Mártir Observatorio)落腳,一共有 3 座口徑 1.3 米的望遠鏡。

超輕型望遠鏡(SLT):

中央大學天文研究所於 1997 年獲得太空計畫室(現在的國家太空中心)補助,興建鹿林第一座天文臺 “SLT”。1999 年 SLT 完工後,內部安裝自行設計、製造的 76 公分超輕型望遠鏡(SLT76),並從 2000 年開始進行觀測,是鹿林天文臺初期最重要的觀測設備。

SLT76 於 2005 年換裝口徑 40 公分的超輕型望遠鏡(SLT40),並自 2006 年開始進行鹿林巡天計畫(Lulin Sky Survey,簡稱 LUSS),搜尋太陽系小天體。計畫進行 3 年期間共發現 800 多顆小行星,其中有 400 多顆已獲得永久編號,小行星發現數量排名世界第 47。

鹿林天文臺的 40 公分超輕型望遠鏡(Credits:國立中央大學天文研究所)圖/三民提供

目前鹿林天文臺發現的小行星已有 100 多顆得到永久命名,名稱涵蓋臺灣的代表性人物、團體、地理、山水及原住民族等。2007 年 LUSS 首度發現彗星(C/2007 N3)與近地小行星(2007 NL1),該彗星後來被命名為鹿林彗星(Comet Lulin)。LUSS 計畫結束後,自 2010 年起 SLT40 投入變星、彗星的長期監測工作。

除了硬體設備,還能善用地理優勢進行觀測

鹿林天文臺的主要策略是利用小型望遠鏡的機動性,以及臺灣本身的觀測條件優勢,與其他的天文臺合作、競爭。

臺灣的地理位置緯度較低,因此可以觀測範圍較大的南半球天空;而經度方面則可以跟國際間的其他天文臺互補。對於需要長期監測或瞬變的天文現象(如超新星及伽瑪射線爆等),鹿林天文臺參與跨國合作,在全球天文觀測網和太空與地面的聯合觀測中占據不可或缺的位置。

比如 2006 年中央大學天文所參加夏威夷大學主導的泛星計畫(Pan­STARRS),另外近年加入由加州理工學院主導的茲威基瞬變探測利器(Zwicky Transient Facility,簡稱 ZTF),並加入伊甸園觀測網(Exoearth Discovery and Exploration Network,簡稱 EDEN),以搜尋鄰近太陽之 M 型恆星周圍可能位於適居區內的系外行星等,都因為地理位置的優勢,能藉由鹿林天文臺的設備追蹤並確認新的科學發現。

在臺灣近百年的天文發展史上,鹿林天文臺締造了多項紀錄,包括首度發現小行星、首度發現超新星、首度發現彗星、首度發現近地小行星及首度進行小行星命名。天文臺的望遠鏡口徑雖然小,但做為天文教育與基本研究工具,多年來配合規劃的課題立基,亦取得良好的成果。

註解:

  1. 夜天光背景:夜空背景的亮度。星等數字越大,表示亮度愈低,意即光害愈小,能夠觀測愈暗的天體。
  2. 大氣寧靜度:大氣擾動對星光成像的影響程度。以星點的視角表示,視角愈小表示大氣寧靜度愈好,觀測到的星像愈清晰。
  3. 紅色精靈:積雨雲層上方發生的放電現象,由於主要發出紅光,而且發生的時間非常短暫不易捉摸,因此被稱為紅色精靈。
  4. 焦比:口徑與焦距的比值。
  5. 星震:利用亮度變化或光譜都卜勒效應研究天體的震動,藉此瞭解無法直接觀測的恆星內部結構,其原理類似利用地震波研究地球的內部結構。
  6. 平方度:一度乘以一度的天空範圍。例如滿月的張角約半度,3 平方度相當於 10 個滿月的天空面積。

——本文摘自泛科學 2019 年 12 月選書《蔚為奇談!宇宙人的天文百科》,2019 年 11 月,三民出版

文章難易度
三民書局_96
18 篇文章 ・ 12 位粉絲
創立於1953年,為了「傳播學術思想,延續文化發展」,60年來默默耕耘著書的園地。從早期的法政大學用書、三民文庫、古籍今注新譯叢書、《大辭典》,到各式英漢字典及兒童、青少年讀物,成立至今已出版了一萬多種優良圖書。不僅讀者佳評如潮,更贏得金鼎獎、小太陽獎、好書大家讀等諸多獎項的肯定。在見證半個世紀的社會與時代變遷後,三民書局已轉型為多元、綜合、全方位的出版機構。

0

0
0

文字

分享

0
0
0
記錄台灣早期山林樣貌的博物學者——鹿野忠雄
PanSci_96
・2023/09/21 ・2891字 ・閱讀時間約 6 分鐘

博物學家如何養成?為什麼要來台灣?

大正十四年(一九二五年)鹿野忠雄特地到台灣就讀台灣總督府高等學校第一屆高等科,那年他已十九歲,硬是等到台灣有設高等科,才來台就讀。但其實他很早就開始將四處旅行的採集成果發表成文章。自中學開始就嘗試單獨採集旅行,足跡踏遍日本東北地方、北海道、庫頁島,結交當時昆蟲學者,出入他們的研究室,學習昆蟲分類學和閱讀歐美文獻的方法。

鹿野忠雄。圖/wikimedia

他是看到前輩從台灣帶回來的昆蟲標本後,才下定決心要到台灣讀書,以便就近上山採集。高中三年曠課不斷,留級一年,畢業後也沒有馬上回日本本島申請大學,還展開一百五十天的野外調查。這些日子裡他不斷獨自入山,聘僱原住民獵人採集並且撥制標本,走過今日南投縣信義鄉的布農族部落、阿里山鄒族部落、攀爬玉山、雪山、合歡山霧社、八仙山、蘭陽溪上游桃山南湖大山間等地,甚至前往恆春探訪排灣族,到紅頭嶼探訪雅美族。

實地調查讓他大開眼界,特別是在南方的昆蟲採集跟原住民調查當中,他發現紅頭嶼動物相跟台灣不太相同,他開始思索台灣生物到底是靠大陸系統近,還是靠菲律賓近些。這使他對自然地理學產生興趣,回本島後考上東京帝國大學的理學部地理學科。

文字版 MIT 臺灣誌——《山、雲與蕃人》

鹿野忠雄想深入山區調查,必須取得警方許可,且還要聘雇原住民幫忙背裝備,登山費用頗高。學生時期他多是仰賴母親的資助。且在日本統治台灣期間,台灣五萬分之一地形圖的側繪並未完整,因此民間或者政府的登山活動,都還沒有精確的山岳測量依據,很多地方只有主要高峰有山名,標示著山稜、溪流與「番社」的相對位置,以及粗略的等高線。因此如果想要一窺台灣山岳的面貌,當時的文獻相當欠缺,因此也才引發登山活動的熱潮,許多非原住民的民間登山隊首次登頂記錄,也約略是發生在這時期。

比如鹿野打算在雪山尋找圈谷地形時,便要聘雇原住民腳伕扛行李,同時也請他們追捕小動物跟鳥類,在路上做些標本的前期剝制處理。但是由於鹿野行速飛快,腳伕不堪折磨,最後甚至丟下行李逃走。

值得一提的是,當中有一位阿美族青年托泰布典,是以助手的身份隨行。他會講流利的日語,還看得懂英文,因此能幫鹿野整理英文書籍,也能看得懂藥罐上的英文標示。他眼中的鹿野忠雄,討厭警察官僚作風,尊重蕃人的風俗,而且膽子很大,喜歡走沒人走過的路線,四處拍照跟觀察地形,晚上也不休息,要馬上洗底片,以及漏夜寫筆記,記錄下白天發生的事情。

鹿野忠雄的著作《山、雲與蕃人》。圖/臺灣歷史博物館

在他的重要作品《山、雲與蕃人》中,留下登山路線圖和仔細的登山日誌,當中不時出現對特殊地質現象的描繪,比如在海拔 3900 公尺處發現海底沈積的岩面有濂痕(ripple mark)。或者是當時特殊景觀的描寫,比如攀登玉山南峰與南玉山段,便曾記錄與新高駐在所的警官真瀨垣丑丙與東埔社的布農壯丁馬其里(Makili Takeshitahoan)一同登玉山絕頂,途中行經路段,不屬於東埔社布農族的狩獵範圍,因此馬其里也沒來過。真瀨垣警官則帶他們去看玉山神社,鹿野特別寫道,裡面的「御神體」是一面鏡子。

跨界整合台灣自然與人文知識

在《山、雲與蕃人》中可以讀到鹿野幾個面向的關懷:

  1. 挑戰攀登台灣山岳的熱情
  2. 發現原先地圖跟文獻沒有記載的地形、地質現象
  3. 出於研究跟溫飽,在獵捕動物時親自體會到動物的生之本能
  4. 理番政策下,警方極力希望日人不要跟蕃人來往,並產生不少突發事故,怎麼順利入山並與蕃人相處變成重要問題。

但是在這樣的旅行之眼下,卻反映出鹿野這種看似個人興趣,自發的台灣自然知識採集和分類工作,能夠一次又一次的出發調查,其實是以國家殖民統治以及研究經費為後盾。

鹿野並非台灣自然知識研究的第一個人,在他之前,西方跟日本已經陸陸續續展開零星的調查,逐步推進從平地到山地的動物相、植物相調查,相關的動植物學、礦物學和地質學的目錄、圖譜出版越來越多,以及地質學跟地形學考察也逐漸系統化發展,同時因為總督府的理蕃事業與藩地開發政策,也展開人類學的調查,這些科學政策及科學教育改革,影響到民間文化活動,如昆蟲、植物的採集旅行,大眾刊物的發表及閱讀等等。

因此鹿野忠雄的貢獻在於他是跨學科的研究者,熟悉博物學以及人種誌的調查方法,在那時代也是少數。他想徹底了解台灣山林,就連被日本以蕃地治理的狀態也想去了解,而不只是關心自然的那部分。同時他也不像是在室內的地理學家或者人類學家,只靠文獻判讀並且歸納,而是不畏艱難,親身去到現場,採集並且記錄下第一手的材料。

鹿野忠雄(中排右三)於紅頭嶼警察署前。圖/wikimedia

忘了回家的探險者

在太平洋戰爭期間,西方駐菲律賓學者貝雅,曾在馬尼拉和鹿野短暫交流過,鹿野從貝雅身上知道不少西方學術動態,而他曾經幫助貝雅,把原來的玻隕石標本收藏悄悄搬到安全的地方——帕西古河北岸的沃森大廈,但又不會落人口舌,讓人覺得日軍大敗,不敵美軍,已經在安排撤退的情勢。

而在一九四四年,鹿野被派駐到北婆羅洲,要沿著日軍的補給路線,調查一支未開化的姆錄族(Muruts),確保到時補給運送時能夠跟當地民族協調順利。他們要穿越雨季中的昏暗紅樹林,在飢餓、瘧疾等風土病的威脅下,還要面對當地人士對日軍的不滿,設法確認或更新原本很粗略的地形圖,以及正確標示部落名稱跟位置。

但隨著戰況情勢危及,美軍轟炸亞庇,日第三十七司令部南移到沙蓬,使得鹿野和助手金子必須跟著南下覆命,卻在途中失去蹤跡。在戰爭中原本就很容易失去彼此聯繫,鹿野消失的訊息是在戰爭結束後才輾轉傳開,找他的人如貝雅發現戰俘收容所裡也沒有他的蹤跡,有傳言因為抗命所以遭到日軍殺害。

參考資料

  • 高嘉勵(2016)鹿野忠雄的台灣高山行旅書寫——日治時期「自然」的現代知識建構與美學表現,中外文學,第 45 卷,第 1 期,頁 119-165。
  • 鹿野忠雄(2000)山、雲與蕃人——台灣高山紀行,台北:玉山社。
  • 王鑫(2000)南湖大山圈谷群古冰河遺跡研究初步調查,內政部營建署太魯閣國家公園管理處八十九年度研究報告。
  • 山崎柄根(1998)鹿野忠雄——縱橫台灣山林的博物學者,台北:晨星出版。
PanSci_96
1189 篇文章 ・ 1742 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

13
3

文字

分享

0
13
3
太空種電?不受天氣影響的發電廠登場,人類將迎來能源自由?
PanSci_96
・2023/08/12 ・4585字 ・閱讀時間約 9 分鐘

要核能、綠能、還是天然氣?大家不用吵了,因為讓我隆重介紹,宇宙太陽能準備登場,地球將進入能源自由,人類文明將邁入下一個時代!

雖然只是邁入第一步,但我沒有在開玩笑,美國、日本、歐盟、英國都陸續展開宇宙太陽能計畫,預計在太空中布下大量太陽能板,將取之不盡的能量,不分晝夜、不分天氣地將能量源源不絕的傳回地球。而且第一階段的測試,已經在宇宙中測試成功了!

宇宙太陽能真的可行嗎?我們離能源自由,還有多遠?

為什麼要去太空中進行太陽能發電?地面太陽能的困境

台灣要選擇哪種能源配比,各方論點各有道理。而同樣的問題,不只是台灣,對世界各國來說都是爭論不休的議題。面對這樣的困境,竟然有人提議往太空探索,去太空中進行大規模太陽能發電,並將能量傳回地球,成為宇宙太陽能電廠,一舉解決所有能源問題。可是就算不去太空,在地面上的太陽能近年來成長迅速,安裝量和產量都持續增加,為什麼非得跑到太空中去做一樣的事呢?

雖然太陽能板的設置成本近年來降低很多,能不能穩定發電卻要看老天臉色,而且需要的佔地面積廣大。世界上只有少數幅員廣大,日照充足的國家可以打造 GW 等級的太陽能發電廠,像是印度,中國,以及中東地區。許多地方例如台灣,多以民間業者小規模發展為主,很難建設大規模的太陽能發電廠,如果要大規模使用農地、魚塭、屋頂種電,也有許多問題等待解決。

不過只要把太陽能搬到外太空,就可以大喊:「解開束縛、重生吧!太陽能,我還你原型!」

首先,太空中可以接收到更多的陽光。由於太空中沒有夜晚,所以軌道上的衛星幾乎可以 24 小時暴露在陽光之下。此外,太空中的陽光不會像地面上的冬天或傍晚,有傾斜入射的問題。太陽能板可以隨時指向太陽的方向,和太陽光的方向保持垂直,接受百分之百的陽光照射。根據計算,同一塊太陽能板放在太空中可以接受到的陽光量至少是地表的三倍以上。

地球上陽光傾斜入射的問題示意圖。圖/PanSci YouTube

另外,地球的大氣其實幫我們阻隔了許多陽光,保護地表上的我們不會被瞬間曬傷。就算是晴朗無雲的日子,大氣層還是會散射掉許多的陽光。太空中的太陽輻射比地表強上不少,大約多了 40% 左右。

綜合前面所說的,只要把現有的光電材料放到衛星軌道上,就可以輕鬆獲得約四倍的發電量。此外還不需要任何占地,不會對環境生態帶來負面影響。

太空種出的電要怎麼運回地球?

你可能會好奇,在太空中收穫這麼多太陽能,要怎麼運回地球給大家使用呢?難道要存在電池裡再回收嗎?科幻大師艾西莫夫早在 1941 年就想過這個問題了。在他的短篇小說《理性》中,各個太空站會再收集太陽能之後,用微波光束將能量傳送至不同行星,也就是遠距無線傳輸能量。

雖然這種技術在當時屬於科幻情節,但現在的我們知道這樣的技術在原理上可能辦到的。在我們介紹無線獵能手環那集,我們有提到電磁波傳遞能量的問題,就是能量會以波源為中心向外發散,並且能量隨著距離快速衰減。想要高效率傳輸能量,如果不想接條線,就必須使用指向性的波源,將能源都集中到一點。

現在,我們使用多個天線組成陣列,並調整他們的相位,讓各個天線發出的微波產生干涉,形成筆直前進的單方向微波束,將能量精準發射到遠處的一個點。除此之外,因為選擇的電磁波頻段是微波,就像手機訊號可以穿過牆壁到你的手機一樣,特定頻率的微波也能穿透大氣層或雲層的阻擋。即使地球上的我們是下雨天,宇宙太陽能仍能透過微波將能量傳至地表,大幅降低天氣造成的影響。

所以,只要把所有太陽能板發射到地球同步軌道上,讓它們在軌道中展開,組裝成大還要更大,邊長長達數公里的超大太陽能板。這樣空中太陽能發電廠就會一直維持在天空中的某一點,地面的我們,只要蓋個微波接收站就可以了。當然要將所有設備發射到地球同步軌道上所費不貲,較可行的做法是先用火箭將衛星射入高度較低的低地球軌道中,再利用衛星本身的離子噴射等方式把自己慢慢推到地球同步軌道。

太空太陽能發電廠概念圖。圖/Space.com

這個主意,在 1968 年工程師 Peter Glaser 就在 Science 期刊上提出,還向美國政府申請了專利。當時,美國能源局和 NASA 也覺得這個概念挺「有趣」的,針對宇宙太陽能做了一系列的調查並提出了正式的可行性報告。不過當時各方面的技術未成熟,無法進行測試。最重要的是,要把一整個太陽能發電廠射到太空,實在要花太多錢,產出的電根本就不敷成本。

好消息是,太空運輸成本近年來已經降低很多。SpaceX 的獵鷹九號火箭將每公斤物質運到低地球軌道的成本,只需要約三千美元,是過去使用太空梭運載的二十分之一。這讓宇宙太陽能的可能性,從僅只於科幻,搖身一變成為潛力無窮的未來能源。

宇宙太陽能離我們有多遠?

從美國、英國、歐盟到日本,都已經放話要加入這場全新的太空能源競賽。領跑者之一是日本的太空機構,宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組,是有生之年就能看到的成果!

從宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組。圖/PanSci YouTube

這個時程也不是信口開河,日本在 1980 年代左右便開啟了宇宙太陽能計畫。經過數十年的規劃與研發, JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。這個實驗相當重要,因為在發射成本的問題解決之後,宇宙太陽能要面對的下一個難題,就是如何有效地從外太空軌道遠距送電。雖然我們已經知道可以透過干涉的方法,讓微波束直線前進,但實際運作時,還是會有一個很小的發散角,不會完全平行。

JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。圖/PanSci YouTube

失之毫釐。差之千里。地球同步軌道離地表可是有三萬六千公里,小小的發散角到地面就會嚴重發散,地面的接收天線尺寸也不可能無限擴張。這任務的難度差不多等於要從操場的一端用雷射筆打到另一端的蚊子,非常困難。JAXA 的天線雖然目前還未達到需要的準度,但是發散角已經能控制在 0.15 度左右,足以從較低的低地球軌道傳輸能量回地球,做初步的測試。

從還處在規劃階段的日本,瞬間移動到地球的另一端,美國的研究團隊,在這個月已經宣布取得重大突破。加州理工學院的宇宙太陽能計畫在今年初,成功讓一個小型測試模組,乘著 SpaceX 的獵鷹 9 號前進低地球軌道,進行太空中的實際測試。這個小型模組包含三個小實驗。第一個實驗是測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。第二個實驗則是要在 32 種不同的光電材料中,找出哪種在太空中效果最好。第三則是要測試微波傳輸能量在太空中的可行性。

測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。圖/caltech.edu

就在今年的 6 月 1 號,團隊宣布他們設計的可彎曲天線陣列,在太空中成功傳送能量到三十公分外的接收天線,點亮了 LED 燈。雖然距離只有短短的 30 公分,但是整個實驗暴露在外太空的環境中進行,證明他們的設計可以承受最嚴苛的環境條件。做為測試,他們也嘗試讓天線發射能量到遠在地球表面,大學實驗室的屋頂上。並且,還真的被他們量測到了數值。儘管規模不大,但這是宇宙太陽能第一次的軌道測試,結果相當振奮人心。

可彎曲天線陣列。圖/PanSci YouTube
右方為可彎曲天線陣列(發射端),左邊為接收端的 LED 燈泡。圖/caltech.edu

如此看來,技術的發展似乎相當樂觀。可是要用於民生發電,成本是很大的重點。宇宙太陽能真的符合經濟效益嗎?或是我們該把資源留給其他選項呢?

宇宙發電廠符合經濟效益嗎?

根據美國能源情報署 EIA 的資料,1GW 發電容量的發電廠,傳統燃煤發電廠的初期建設成本,大約是一千億台幣,核電廠大約是兩千億台幣。那宇宙太陽能呢?每 1kW 的發電需要二十公斤的材料,1GW 就需要兩萬公噸。目前 SpaceX 獵鷹重型火箭運送每公斤材料進入軌道,需要三萬台幣。也就是說,光是將設備全部送上太空的運輸成本,就需要六千億的驚人花費。再加上太陽能板與相關設備的建置成本,以地面型太陽能發電廠為參考的話,大概還要多花500億台幣。而 JAXA 方面的預估,打造第一座 1GW 宇宙太陽能至少需要一兆兩千億日圓,雖然比我們用獵鷹重型火箭預估的還要低,但仍是一筆龐大費用。

各種發電方式的成本與性能表現。圖/美國能源情報署 EIA

那宇宙太陽能真的只是將鈔票往太空撒,空有理想的計畫嗎?當然不是,有兩個讓科學家不放棄的理由——首先是未來建造成本一定會下修。太空的發射成本相比 50 年前,已經少了兩個零,在 SpaceX 的發展下,還在持續地快速減少。另一方面,太陽能材料的輕量化工程也持續在進行,每 kW 發電重量只有十公斤或以下的太陽能材料已經不是虛構。新式的太陽能材料,我們未來也會陸續介紹。這兩個因素加乘在一起,一兆兩千億日圓的成本,很有機會在幾年內就減少為十分之一或更少。

發射火箭的成本逐年降低。圖/futuretimeline.net

更重要的是,宇宙太陽能一但建置完成,就會成為可做為基載能源的再生能源,減少對石化燃料的依賴。甚至因為主要設備都在太空,地面只需要建設接收站,可能將解決許多偏遠地區的能源問題,一舉改變全世界的能源型態。而且與許多八字還沒一撇的發電方式相比,宇宙太陽能已經算是距離現實很接近的選項,也難怪各個國家紛紛搶著要發展這塊領域。不過雖說是永續能源,還是有許多方面值得深入研究。例如要把幾萬公噸的材料射到軌道中,需要排放多少的火箭廢氣?一但規模化,這些巨大的宇宙太陽能板是否會成為小行星的標靶,或在一次的太陽風暴過後,讓軌道中堆滿太空垃圾?

宇宙太陽能究竟能不能成為可靠的新興未來能源,從想都不敢想,到開始精算成本,相信我們很快就會知道答案。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1189 篇文章 ・ 1742 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

6
0

文字

分享

0
6
0
花中西施是誰?點綴山野的臺灣原生杜鵑花——《橫斷臺灣》
春山出版
・2023/07/30 ・1712字 ・閱讀時間約 3 分鐘

臺灣原生的杜鵑花——烏來杜鵑

在進入大學之前,我對臺灣原生的杜鵑花物種瞭解甚少。小時候,我曾認為所有的杜鵑花都是同一種植物,只是天生具有各種花色。甚而,由於經常出現在校園或私人花園裡,我也一度以為杜鵑花必須和人類在一起才能存活。一直要到我開始登山,接觸了山岳文學,才從鹿野忠雄的著作中認識到臺灣原生的玉山杜鵑,並發現它原來與日常生活中的杜鵑花大不相同。

後者大多是園藝栽培而出的品種,較能忍受夏季平地的高溫。此後,在植物學課程中,我進一步瞭解到臺灣除了玉山杜鵑,還有至少十六種本土杜鵑花。它們大多是山地物種,從烏來的丘陵到太魯閣的石灰岩峰,從大武地壘的密林到雲海之上的玉山之巔,只要走上山,你基本上都能遇到臺灣原生杜鵑花。

而我從童年開始對杜鵑花的錯誤印象,純粹只是因為我不會爬山,沒有能力到山裡和杜鵑花相遇。

玉山杜鵑。圖/行政院農委會林試所

對喜愛植物和山林的人來說,春天是一年一度,他們和山地杜鵑花說好相見的時刻。每當第一道花訊從山巔傳來,他們便紛紛趕赴山林,無視親友的不解,無畏春雨及山上的詭譎天氣。遼闊的中央山脈就是他們的私人多寶格,收藏著十七種姿色各異的原生杜鵑花,每年都要在此時仔細審視一次才能舒心。

相對的,我雖然也喜歡山地杜鵑花,但並非將它們視為一套植物珍玩。我喜歡,是因為它們經常在山上撫慰我的疲憊心靈,更是建構臺灣高山植被裡的重要植物。十七種原生杜鵑花各自獨具特色,從形態到自然史,揭示了島嶼與特有種演化的奧祕。

慚愧的是,雖然至今山齡將滿二十年,我卻仍未見過臺灣全部的原生杜鵑花。臺灣看似狹小,但山就像巨大的迷宮,充斥著未被踏過的角落。玉山杜鵑雖然是我知曉的第一種臺灣原生杜鵑,但我跟它充其量只能算在書裡神交過,我真正親眼見到的第一種原生杜鵑花並不在山裡,而是在臺大的校園。

杜鵑葉片形狀之謎

它叫烏來杜鵑,曾經在臺北盆地郊山生長,如今已在野外滅絕。因其美麗脫俗的粉色花朵,深受人們喜愛,在經過保育單位復育後,現已廣泛種植於各地。不開花的烏來杜鵑乍看之下並不好認,它就是一般常見,外觀纖弱的某種小灌木。我是在樹木學助教的指導下才知道它的特徵——柳葉狀且密生紅棕色剛毛的葉片。然而助教卻沒說,為什麼烏來杜鵑會有這種形態的葉片,因此我也一直無法將這個特徵認真刻在腦海裡。

美麗的烏來杜鵑雖目前多種植於校園,但身上的特徵可能暗示了它原生的生育地樣貌。圖/《橫斷臺灣》

二○一五年,我獲得日本交流協會的資助前往日本擔任訪問學生。在關西地區進行野外植物採集時,有植物小百科稱號的友人伊東拓朗向我介紹了一種在河谷中生長的杜鵑花,名為皋月杜鵑。

他告訴我,皋月杜鵑是一種溪流植物(riparian plant),擁有隨河流環境演化而來的獨特形態,例如,它具有披針狀且厚實的葉片。這類葉片因呈流線形,能減少植物在水流中所受的阻力,當植物因河水暴漲而被淹沒時,便可於激流存活。

聽完伊東君的介紹,我突然想到烏來杜鵑。它那狀似柳葉的葉片、細小但柔韌的枝條,是否也與它的生存息息相關呢?從過去的採集紀錄得知,烏來杜鵑喜歡生長在河岸邊,甚至似乎只分布在北勢溪的上游。烏來杜鵑柳葉狀的葉片看似十分流線,與皋月杜鵑一樣,有可能是幫助它應付臺灣北部夏季溪谷洪水的適應性特徵。

此外,雖然未能在過往研究報告中找到剛毛與河谷生育地間的關聯,但另一方面,說不定柔韌的枝條在洪流中也較不易被沖斷。事隔多年,我這才順利地把當年助教描述的東西牢牢記住。

——本文摘自《橫斷臺灣》,2023 年 7 月,春山出版未經同意請勿轉載。

春山出版
9 篇文章 ・ 2 位粉絲