0

0
0

文字

分享

0
0
0

正轉可,反轉也行,雙向兼容

臺北天文館_96
・2011/07/16 ・528字 ・閱讀時間約 1 分鐘 ・SR值 541 ・八年級

這張螺旋星系NGC 7479圖像是在可見光和近紅外線波段拍攝所得,緊緊纏繞的旋臂以逆時鐘方向,呈「倒S」型旋轉。但在電波波段,另有一暱稱為「螺旋槳」星系的NGC 7479彎曲的噴流輻射,旋轉方向卻正與星系旋臂上恆星和塵埃的方向相反。在該星系,正轉亦可反轉也行,雙向兼容。

天文學家認為,像NGC 7479電波噴流這樣怪怪的開倒車轉法,應是肇因於它和另一個星系之間的合併事件。

恆星形成由星系碰撞引爆開始,圖像上看到NGC 7479的確正發生著星爆活動。不過,雖然旋臂和盤面上可見到許多明亮、年輕的恆星,圖中所出現三顆閃亮的星點,其實只是「前景」道具而已 – 它們因所在位置剛好在NGC 7479和哈柏望遠鏡的照相機之間,被鏡頭捕獲,純屬巧合。

星系本身這一塊略微拉長、模糊的光很容易辨識,用中階望遠鏡就可以看的到,但旋臂部份便需要更大型望遠鏡,並且要在較暗的環境中才看得到。

-----廣告,請繼續往下閱讀-----

本張圖像是由哈柏太空望遠鏡先進巡天(ACS)寬景相機拍攝而得的圖像疊加而成,黃光濾鏡(F555W)所得為藍色影像,近紅外線(F814W)波段得紅色影像。兩組各曝光520秒,影像寬幅達27角秒。(Lauren 譯)

資料來源:中研院天文網 [2011.07.11]

引用自臺北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 46 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
4

文字

分享

0
5
4
解析韋伯太空望遠鏡第一批影像背後的科學意義
EASY天文地科小站_96
・2022/07/14 ・4350字 ・閱讀時間約 9 分鐘

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星

萬眾矚目的詹姆士韋伯太空望遠鏡,在經過半年的校準與測試後,終於公開了它拍攝到的第一批成果。這些五彩斑斕、美麗絕倫的照片究竟是什麼樣的天體,照片的背後又有哪些深藏的意義?就讓我們一起深入解密,韋伯的第一批照片吧!

韋伯望遠鏡是什麼?

詹姆士.韋伯太空望遠鏡是美國、歐洲與加拿大太空總署合作開發的新一代旗艦級紅外線太空望遠鏡,也是無數天文學家夢寐以求、能幫助人類破解許多未解天文迷團的利器。

韋伯的研發其實早從 1996 年就已經開始,但是由於開發時遇到諸多困難,導致嚴重的預算超支與進度延宕,這台耗資上百億美金的超級望遠鏡,直到去年年底才終於從法屬圭亞那發射中心,用一枚亞利安 5 號運載火箭發射升空,前往距離地球 150 萬公里的日地第二拉格朗日點。

拉格朗日點是什麼?

日地拉格朗日點一共有五個。當物體在這些點上,其受到來自太陽與地球的重力恰到好處,因此太空船只需要少量的燃料,就可以長期與地球和太陽保持穩定的相對位置,可謂是地球軌道附近的風水寶地。

而韋伯繞行的,是位於地球後方的第二拉格朗日點,簡稱 L2。之所以選擇這裡,是因為只有 L2 的位置剛好會讓地球、太陽、月亮都在同一側,而這三個星體正是天文望遠鏡的主要紅外線光害來源。位在 L2 的韋伯,就可以用它的遮陽帆一次把三顆星體全部擋住,認真凝望遠方而不受干擾,因此 L2 可以說是觀測宇宙的絕佳地點。升空的幾個月之間,韋伯已經完成一系列的儀器校準工作,一步步把望遠鏡調整到最佳狀態。

-----廣告,請繼續往下閱讀-----

相比知名前輩「哈伯太空望遠鏡」,韋伯的優勢不只是擁有比哈伯大六倍的鏡面,更重要的是它是以紅外線為主力觀測波段。宇宙膨脹造成嚴重紅移,但哈伯望遠鏡的守備範圍主要是可見光,波長範圍是 90 – 2500 奈米,可說是鞭長莫及啊。

這時換上以波長 600 – 28500 奈米的紅外線為守備範圍的韋伯,就可以讓我們看到更遙遠、更古老的宇宙。此外,同一個天體在可見光和紅外線看起來,往往長得相當不一樣。這個強大的紅外線觀測能力,正是韋伯最引以為傲的武器。

作為深具儀式感的第一批科學影像,韋伯這次公布的影像分別對應四個主要科學主題:早期宇宙星系演化恆星的生命循環系外行星

1. 早期宇宙—— 星系團 SMACS 0723 與重力透鏡效應

星系團 SMACS 0723。圖/Webb Space Telescope

畫面中心黃白色的天體,是由成百上千的星系共同組成的星系團 SMACS 0723。在韋伯之前,哈伯太空望遠鏡就曾經花費數個禮拜的時間拍攝這個星系團。然而擁有更大鏡面、更精良儀器的韋伯,僅用了 12.5 個小時就拍出了解析度更高、畫面品質更好的照片,讓我們看到許多以前難以辨識的黯淡星系。可見哈伯與韋伯在觀測能力上的差距。

對天文學家來說,圖中最令人興奮的其實不是前景壯闊的星系團,而是後方這些經過重力透鏡扭曲和放大的小小星系們。星系團龐大的質量扭曲了周圍的時空,讓整個星系團好像一塊巨大的放大鏡一樣,可以偏折和聚焦通過的星光,稱為「重力透鏡效應」。

當星系團後方更遙遠、更古老的星系發出的光線通過星系團時,就會被星系團的重力透鏡效應偏折和聚焦,形成而圖中無數弧形的扭曲影像。

-----廣告,請繼續往下閱讀-----
紅圈為照片上受重力透鏡影響的區域之一,可以看到星系被拉長。

這些仍在襁褓中的小小星系,往往正在快速的孕育新的恆星,或是互相合併,因此有著混沌不規則的形狀。離我們越遠的星體發出的光,需要越長的時間才能到達我們的眼中。因此研究這些遙遠且古老的星系,能幫助天文學家理解宇宙早期的模樣。

2. 星系演化——史蒂芬五重奏(Stephan’s Quintet)

上一張照片讓我們認識星系的起源,這張「史蒂芬五重奏(Stephan’s Quintet)」則可以讓天文學家更仔細地研究星系內的複雜結構,以及星系與星系之間的交互作用。

史蒂芬五重奏(Stephan’s Quintet)。圖/Webb Scape Telescope

正如其名,「史蒂芬五重奏(Stephan’s Quintet)」是由五個視覺上相當靠近的星系所組成。但其實最左邊的這個星系(NGC7320)與另外四者並無關聯,只是從地球上看剛好位在天空中差不多的位置而已。

圖片中偏向黃白色,感覺如絲綢般順滑的部分是在近紅外線波段拍攝,主要顯示的是星系中恆星的分布;而醒目的橘紅色,則是來自中紅外波段的資料,展示的是星系中的高溫塵埃,以及星系中的氣體高速對撞時產生的震波(Shock wave)。

除了影像,韋伯還使用光譜儀仔細檢視了影像中右上方的星系(NGC 7319)中心,因為那裏有一顆比太陽重 2400 萬倍的超大質量黑洞,正在吸食周遭的氣體,並在過程中釋放巨大的能量。

-----廣告,請繼續往下閱讀-----

藉由觀察光譜的細節,韋伯可以分辨出像是氬離子、氖離子或是氫分子等等化學組成,甚至知道氣體的溫度、運動速度這些從一般照片難以辨識的資訊。

史蒂芬五重奏就像一個天然的實驗場,讓天文學家研究星系演化的詳細過程。

3. 系外行星——WASP-96 b 的大氣光譜

這一張照片可能是整批影像中,視覺上最不起眼的一張,它是系外行星 WASP-96 b 的大氣光譜。

WASP-96 b 的大氣光譜。圖/Webb Scape Telescope

最近 20 多年來,人類對太陽系以外行星的認識越來越多。截至今日,人類已經發現超過 5000 顆系外行星。然而,以現有的觀測技術,天文學家通常只能用一些間接的方法,測量它們的質量、半徑、軌道週期等粗略的特性。想知道這個行星是否適合生命生存,就不能少了行星大氣層的化學組成和溫度資訊。

那要怎麼取得行星的大氣資訊呢?當行星通過恆星跟地球中間時,恆星的一部分星光將會通過行星的大氣層,並被行星的大氣吸收。吸收的多寡和波段,取決於行星大氣層的溫度和化學組成等特性。此時,天文學家就可以藉由分析光譜中的各種特徵,去回推行星大氣層的性質。

圖片中的白點,即是韋伯實際觀測 WASP-96 b 時取得的光譜資訊。而藍色的線,則是天文學家認為最貼合觀測數據的理論模型。

-----廣告,請繼續往下閱讀-----

根據這個觀測結果,天文學家計算出 WASP-96 b 的大氣溫度約為 725°C,大氣中明顯有著水氣,並推測可能還有雲和霾存在。未來進一步的分析和觀測,將為世人揭開更多系外行星的神祕面紗。

4. 恆星的生命循環——「南環狀星雲」與「船底座大星雲(Carina)」

最後兩張照片都與恆星的生命循環有關。正如人會有生老病死,恆星也是一樣。

恆星一般誕生在巨大分子雲中,氣體在重力吸引下逐漸塌縮、升溫並點燃核融合,成為一顆恆星。

當小質量的恆星步入晚年,其結構容易變得不穩定,最終將自己的外層氣體拋射出去,形成美麗的行星狀星雲,也將氣體吐回到星際空間中,成為下一代恆星的養分。氣體都拋射完之後留下的核心,就是白矮星。

-----廣告,請繼續往下閱讀-----

各位現在看到的,是暱稱「南環狀星雲」的行星狀星雲,左右兩張圖分別於近紅外線與中紅外線拍攝。

南環狀星雲。圖/Webb Scape Telescope

我們可以看到,左圖中的影像比右圖要更清晰一些,這是因為在相同的望遠鏡口徑下,波長越短所能達到的理論解析度就越高。

有趣的是,在左圖中看起來位於星雲中心的明亮恆星,其實並不是行星狀星雲的核心。真正的核心其實是在其左下方,一顆被塵埃包裹著的黯淡白矮星。在近紅外線波段的影像中,這顆白矮星幾乎淹沒在隔壁恆星的炙烈星芒之中。

但在中紅外波段,由於恆星的亮度相對降低,包裹著白矮星的塵埃發出的光就變得清晰可見。再次展示即使是同一個天體,使用不同的波段進行觀測,往往可以看到不同的東西。

最後這片壯麗的宇宙山崖,則是位於「船底座大星雲 Carina」西北角的 NGC3324 恆星形成區。在這裡,源自星雲中無數初生恆星所發出的炙烈輻射、恆星風與噴流,吹散、游離了星雲中原有的濃密氣體與塵埃。交織出這片壯闊而複雜的結構。

船底座大星雲(Carina)。圖/Webb Scape Telescope

這張照片一共結合了這六個不同的濾鏡的影像拍攝而成。每個濾鏡涵蓋的波段各不相同,代表的物理意義也不一樣。比如(F090W、F200W、F444W)這三個寬帶濾鏡,分別在影像中按照波長順序,以藍色、綠色和紅色這三原色呈現,為照片打下骨幹。而在此之上,照片的製作團隊又疊上青色代表氫原子的(F187N)濾鏡影像,以黃色代表氫分子的(F470N)濾鏡影像,以及用橘色代表甲烷和多環芳香烴的 (F335M) 濾鏡影像,為照片再添更多的細節。

-----廣告,請繼續往下閱讀-----

想要將這麼多個波段的影像全部結合起來,仔細調整讓細節更加突出,最終呈現出一張如此絢麗又震撼的照片,是非常不容易的。這展示了韋伯太空望遠鏡不僅在科學上相當重要,在藝術上也價值非凡。

最後別忘了,以上只挑選介紹了第一批資料中最具代表性的幾張,更多關於五個目標的照片和光譜,可以在韋伯的官網上找到。而這批照片,又只是韋伯未來二十年服役生涯中,前兩個月的小試牛刀而已。韋伯的時代,才剛剛要開始!

-----廣告,請繼續往下閱讀-----
EASY天文地科小站_96
23 篇文章 ・ 1698 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

0
0

文字

分享

0
0
0
天文學家發現巨大的超級螺旋星系
臺北天文館_96
・2016/04/04 ・1318字 ・閱讀時間約 2 分鐘 ・SR值 561 ・九年級

-----廣告,請繼續往下閱讀-----

文/張桂蘭

美國加州理工學院(California Institute of Technology)天文物理學家 Patrick Ogle 等人在宇宙荒野發現一種新型的星系野獸,其規模與亮度睨視宇宙所有的星系,因此 Ogle 等人暱稱其為「超級螺旋星系(super spirals)」。

超級螺旋星系因為外觀與一般典型螺旋星系類似,因此一直沒有被單獨提出討論研究過。天文學家利用 NASA 的 NASA/IPAC 河外星系資料庫(NASA/IPAC Extragalactic Database, NED)進行研究,結果發現這些原本以為是鄰近銀河系的螺旋星系們,其實都是離我們非常遠、非常龐大的螺旋星系。由於已知的超級螺旋星系數量非常稀少,雖然揭發了它們的存在,但它們由何而來仍是個謎。

NED 為線上資料庫,其中包含 1 億多個星系的訊息,乃彙整了星系演化探索者號(Galaxy Evolution Explorer)的紫外觀測、史龍數位巡天計畫(Sloan Digital Sky Survey,SDSS)的可見光觀測,和2微米全天巡天觀測計畫(Two Micron All-Sky Survey,2MASS)、史匹哲太空望遠鏡(Spitzer)與廣角紅外巡天觀測衛星(Wide-field Infrared Survey Explorer,WISE)的紅外觀測資料。

-----廣告,請繼續往下閱讀-----

圖中是其中3個超級螺旋星系,由左至右分別為:2MASX J08542169+0449308、2MASX J16014061+2718161 和 SDSS J094700.08+254045.7。其中 2MASX J08542169+0449308 和 2MASX J16014061+2718161 擁有雙核心,SDSS J094700.08+254045.7 則是最大、最亮的已知超級螺旋星系之一,其螺旋狀的旋臂長達320,000 光年,是銀河系旋臂的 3 倍以上。

Ogle 等人在 NED 資料庫搜尋最亮星系的過程中,原本以為龐大而成熟的橢圓星系(ellipticals)會佔據他們搜尋結果的最大宗,但結果卻讓他們相當意外。在離地球約 35 億光年的範圍內約有 80 萬個星系,其中有 53 個最亮星系有著螺旋外觀,而非原本他們設想的橢圓外觀。Ogle 等人再度檢測這些螺旋星系的距離,結果發現沒有一個是在鄰近宇宙中,最近的一個甚至在 12 億光年外。他們確信這些星系的距離訊息應該無誤,那麼這些螺旋特性就顯得怪異而突出。

超級螺旋星系的亮度比我們的銀河系還亮 8~14 倍,質量則為銀河系的 10 倍左右,滿佈恆星的銀盤直徑是銀河系的 2~4 倍,其中最大的超級螺旋星系的銀盤直徑可達 440,000光年,比我們銀河系的 100,000 光年大了 4.4 倍。超級螺旋星系也會發出大量紫外和紅外輻射,這通常代表著星系內的新恆星誕生率極高,估計是銀河系的 30 倍左右。

根據現行天文物理理論,螺旋星系受限於它們的大小和造星能力,應該無法達到上述這些「功績」。螺旋星系是經由重力捕捉來自星系際空間中的新鮮低溫氣體以成長茁壯,它們的質量會因氣體衝入星系得太快而達到上限,這是因為這些一頭衝入星系的氣體會被加熱,導致無法收縮聚集而形成新恆星,即天文學家所謂的「抑制過程(quenching process)」。然而,超級螺旋星系顯然沒發生這樣的抑制過程,所以才會長成龐然大物。

-----廣告,請繼續往下閱讀-----

Ogle等人找出的最亮星系中的 53 個螺旋星系,其中有 4 個或許能給出超級螺旋星系來源的重要線索。這 4 個超級螺旋星系含有 2 個星系核,與典型星系只有一個星系核的狀況不同。雙核心的存在,顯然是兩個星系合併在一起的結果。理論上來說,兩個螺旋星系合併後應該是會形成一個橢圓星系;可是,Ogle 等人推測若螺旋星系合併發生時,牽涉到的是兩個富含氣體的螺旋星系,最後當一切歸於平靜時,這滿當的氣體會安頓至一個新形成的、比原來螺旋星系還大的星系盤,然後很快的就形成了我們現今所見的超級螺旋星系。也因此,超級螺旋星系的發現,顯示了我們對那些質量最大的星系如何形成和演化的觀點,必須要徹底改變才行。

資料來源:http://www.jpl.nasa.gov/news/news.php?feature=6149, 2016.03.17, KLC

本文轉載自網路天文館

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
正轉可,反轉也行,雙向兼容
臺北天文館_96
・2011/07/16 ・528字 ・閱讀時間約 1 分鐘 ・SR值 541 ・八年級

這張螺旋星系NGC 7479圖像是在可見光和近紅外線波段拍攝所得,緊緊纏繞的旋臂以逆時鐘方向,呈「倒S」型旋轉。但在電波波段,另有一暱稱為「螺旋槳」星系的NGC 7479彎曲的噴流輻射,旋轉方向卻正與星系旋臂上恆星和塵埃的方向相反。在該星系,正轉亦可反轉也行,雙向兼容。

天文學家認為,像NGC 7479電波噴流這樣怪怪的開倒車轉法,應是肇因於它和另一個星系之間的合併事件。

恆星形成由星系碰撞引爆開始,圖像上看到NGC 7479的確正發生著星爆活動。不過,雖然旋臂和盤面上可見到許多明亮、年輕的恆星,圖中所出現三顆閃亮的星點,其實只是「前景」道具而已 – 它們因所在位置剛好在NGC 7479和哈柏望遠鏡的照相機之間,被鏡頭捕獲,純屬巧合。

星系本身這一塊略微拉長、模糊的光很容易辨識,用中階望遠鏡就可以看的到,但旋臂部份便需要更大型望遠鏡,並且要在較暗的環境中才看得到。

-----廣告,請繼續往下閱讀-----

本張圖像是由哈柏太空望遠鏡先進巡天(ACS)寬景相機拍攝而得的圖像疊加而成,黃光濾鏡(F555W)所得為藍色影像,近紅外線(F814W)波段得紅色影像。兩組各曝光520秒,影像寬幅達27角秒。(Lauren 譯)

資料來源:中研院天文網 [2011.07.11]

引用自臺北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 46 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!