0

0
0

文字

分享

0
0
0

個人的相變-《物理才是最好的人生指南》

PanSci_96
・2015/01/13 ・1457字 ・閱讀時間約 3 分鐘 ・SR值 484 ・五年級

source:Mathanki Kodavasal
source:Mathanki Kodavasal

從青春期到成人的相變,只花了幾年時間,但感覺起來卻像是好幾十年。就像每個高中生一樣,我相當確信自己要比爸媽聰明得多。查克曾經去過越南、柬埔寨、以色列,還會講西班牙文和一點希伯來文,這都算不上什麼。我媽曾經是位空姐,跑遍全國各地,當頹廢的年輕世代還忙著在咖啡店裡搏取掌聲的時候,她已經自食其力在舊金山過日子了。但不管是其中哪一個提出建議,我還是會翻白眼。我一直在等,等到哪天他們會承認我真的更聰明、更酷。

當時的我也跟之前一代又一代的青少年沒什麼兩樣,每天都接受爸媽的協助,卻從來沒表示什麼感激。媽媽會幫我打字、訂正拼字錯誤、加上標點符號。查克每天天還沒亮就起床,開一個小時的車去上班、修理汽車,要到我吃完晚餐很久後才回得了家。他每隔兩星期就會把薪水交給媽,
拿去付房租、帳單,還有我的高中學費。週末他不用上班,有時會趴在客廳地板上,把熱敷或冷敷袋放在背上。

有天晚上在餐桌邊,查克問我一些他正在念的東西,他搞不懂描述熱力學循環的數學。我不懂什麼熱力學循環,可是數學我會。我教他怎麼交叉相乘、消去,然後求出答案。他照著我所說的做,但在此之前,都是他教我。教他東西讓我覺得好奇怪。

坐在他旁邊,看著他把數字寫下來,仔細一看才發現手掌的油污底下布滿傷痕。有時回家用過晚餐之後,媽會拿鑷子把他手裡的金屬碎屑夾出來。這是我這輩子第一次為他擔心。過去我一直在擔心媽媽,因為她有癲癎的狀況,如今我卻以另一個角度為她和查克煩惱。我在想,如果查克太老,或是背痛太嚴重,沒法鑽到車底下修引擎,那該怎麼辦?

-----廣告,請繼續往下閱讀-----

在查克和我媽結婚、收養我和姐姐前,我們的房子已被法院拍賣了。屋子前也常有警車或救護車停著,因為我和姐姐不知該如何處理媽的癲癎,只要她一發作,我們就只能報案請人來幫忙。我們常常跑到隔壁借雞蛋,藉口說要做餅乾,其實是急著下肚當晚餐。家裡會有社工人員來訪,檢查我們的廚房,確定家裡有鍋碗瓢盆,可以好好使用食物券。

是查克讓一切都變得不一樣。現在我們這間幽靜的小房子外面有忍冬花爬上圍牆,享受著他一舉扛起的生活。他才三十三歲。我第一次覺得他似乎有點累了,看著他用滿布傷疤的雙手在橡木餐桌上寫二次方程式,我知道他沒
辦法永遠扛著我們。

我必須靠自己,說不定還得扛起查克跟我媽。我姐曾經念過大學,但待不久。全家人都要靠我了。我知道該怎麼做:首先我要拿個學位,然後幫媽和查克,讓他也去讀個工程學位。

這是我從女孩轉變成大人的開始。轉大人並不是把爸媽抛開不顧,而是知道自己對他們有責任。我在教育程度上已經超越了他們,我必須利用這項優勢幫助他們。我知道為什麼要追求好成績、上大學,還要選個主修、挑到好工作。他們從來不曾要我提供支援,但在那個時刻,當我開始轉大人的時候,我知道自己只想做好準備。

-----廣告,請繼續往下閱讀-----

20140506124603-1430854095

就像是沸騰的水溫度不會上升,也沒什麼測量得出來的立即變化。媽和查克依然幫我付高中學費和大學的學費,我還是把成績單拿給他們看;不管是誰提出建議,我還是會翻白眼。但現在我已經知道:他們需要我,我必須發揮智慧、必須出人頭地。

高三快結束的時候,我不再期待自己成為大人。我提出入學申請,還仔細研究不同四年制學位的起薪如何。屢試不爽,只要我不再張望等待,水就會整個沸騰起來。

本文摘自泛科學08ed364c0a044590893d0daf8511ac442015一月選書《物理才是最好的人生指南》,究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
1

文字

分享

0
0
1
週期表中哪些元素能超導?—《物理雙月刊》
物理雙月刊_96
・2016/11/08 ・3823字 ・閱讀時間約 7 分鐘 ・SR值 561 ・九年級

文/何健民|美國維奇塔州立大學物理系榮譽講座教授

從 1913 年,荷蘭物理學家、超導現象發現者海克.昂內斯Heike Onnes)受頒諾貝爾物理獎以來,陸續有眾多科學家也獲得諾貝爾桂冠,表揚他們在研究液氦、超流相、超導及其他低溫物理方面的成就。

荷蘭物理學家、超導現象發現者海克.昂內斯(Heike Onnes)。圖/Copyrighted free use, https://commons.wikimedia.org/w/index.php?curid=879737
荷蘭物理學家、超導現象發現者海克.昂內斯(Heike Onnes)。圖/Copyrighted free use, wikimedia commons.

超導是自然現象:當一電導體降溫到它的特定超導轉變溫度 (superconducting transition temperature,簡稱 Tc),電阻會完全消失。

從有到無的突變,似乎很難想像。但水蒸氣會在它的冷凝點 100 ℃ 變成水、水在凝固點 0 ℃ 又變成冰,我們司空見慣,沒有人會訝異。而從有電阻的正常態到零電阻的超導態,和這些氣態、液態、固態間的突變,都屬於自然科學中的相變。其他類似的突變,就我們已知的包括鐵磁(ferromagnetism)或反鐵磁 (antiferromagnetism),鐵電(ferroelectricity)或反鐵電(antiferroelectricity),以及液氦的超流態。

-----廣告,請繼續往下閱讀-----

這些自然界奇特現象,在被發現以前,沒有人會知道它們的存在,也絕不可能經由技術去發明。一旦被發現後,科學家才經由研究去瞭解。無可否認的,除了液氦的超流態以外,各種相變都已有了很多應用,促進工業、經濟進展,提升人類生活品質。

一直到今天的高科技時代,任何物質的相轉變溫度,都無法預測,仍得靠實驗數據。當然了,要是有一個新材料,可以是合金或化合物,只要不會因熱分解,我們都能從經驗,大致猜到它的熔點。看似例外的二氧化碳,在極低溫下是俗稱乾冰的固體;升溫到 -78 ℃,不經過液體而直接氣化;但在高壓,超過 5.1 大氣壓時減溫,氣態仍是先變液體、再變固體。

從這裡,可以領悟到:

「壓力」和「溫度」在熱力學中佔同等地位,我們習慣的常溫、常壓在自然界中並沒有絕對意義。

這也指明,為什麼科學研究必需延伸到高、低溫及高、低壓。在技術上,改變溫度比改變壓力容易得多,所以一般實驗是由升、降溫著手。有進一步需求時,再調整壓力。類似溫度有不同的溫標,文獻中壓力也有不同的通用單位:bar、atm(標準大氣壓)、及 Pascal (簡稱 Pa)。

-----廣告,請繼續往下閱讀-----
  • 高壓換算:1 kbar = 0.987 katm = 0.1 GPa (k 是 103、G 是 109)。

鐵磁轉變

無論如何,除非會在加熱時分解,幾乎所有物質,在適當的壓力情況下都會有固態、液態、氣態間的相變。相對的,超流態相變只發生在液氦。

介於兩者之間的鐵磁轉變,有材料的限制:它們的原子必須帶有磁矩 (magnetic moment)。鐵磁轉變溫度 (例如純鐵的 770 ℃)以上是順磁性(paramagnetism):在外加磁場中,只有隨溫度而定的部分磁矩順著磁場方向排列。轉變溫度以下,不需要外加磁場,原子磁矩就會同方向排列,成了鐵磁性。鐵磁性也就是永久磁鐵的基本特質。

反鐵磁性是指在轉變溫度以下,原子的磁矩正、反相間排列,抵消為零。鐵電及反鐵電與鐵磁及反鐵磁相似,只是原子磁矩被電偶(electric dipole)取代,也是限於少數材料。

超導體

至於超導體,一般分為兩類:1987 年出現所謂「高溫」超導體(high-Tc superconductors)的銅氧化物,有 100K (-173 ℃)附近的轉變溫度,遠超過了傳統超導體(traditional superconductors)的 20K 左右上限。有關的文獻很多,不在這裡贅述。只是指出,儘管傳統超導理論已在所有相變中最為完美,但仍無法預測任一物質是否會有超導轉變、更不必談超導轉變溫度了,還是得靠實驗。

-----廣告,請繼續往下閱讀-----

一塊超導體沿著磁軌道前進。圖/wiki
一塊超導體沿著磁軌道前進。圖/Henry Mühlpfordt @ wiki

【回顧歷史】汞是第一個被昂內斯在 1911 年發現的超導體。一個世紀後,今天已知的超導體,種類繁多,尤其是合金,可以連續改變成分的比例,使得超導體的數量,沒有了有意義的答案。

電導體異於絕緣體,因為有部分電子可以在整個固體中自由運動。超導體除了必然是導電的固體外,有其他要求嗎?到底超導可被認為是自然界中很特殊(類似液氦的超流),或是很普通(類似固態、液態、氣態間相變)的現象?與其給一個似是而非的答案,不如就從週期表中,簡單的看一看,多少元素有超導轉變?都是意料中的嗎?其他非超導體的,是否有易於被接受的理由?

從週期表看超導體

有一點可以肯定,純元素都屬於傳統超導體。這一類超導體的理論機制,主要是晶體中的離子,經由與自由電子的交互作用、形成瞬間生成和消失的「虛聲子(virtual phonon)」,而虛聲子導致兩個有相同動量值,但方向相反的自由電子成為零動量的電子對(electron pair)。因此,當電流通過超導體,雖仍有電子和離子間的交互作用,但不產生電子整體的能量減少,或是晶挌振動的能量升高,也就是為什麼,從整體現象來看,就沒有了電阻或是熱的產生。

儘管這裡的討論著重定性,只有一些特殊情形,才會比較超導轉變溫度的高底。但是不妨提一下,已知的超導元素中,以鈮(Nb)的 9.2K 為最高,而鎢 (W) 的 0.015K 為最低。也順便說明,同一元素可以因晶體結構不同,有不同的超導轉變溫度。例如鑭(La)的六方密排體(hexagonal-close-packed)或面心立方體(face-centered-cubic)分別為 4.9K 或 6.0K。再有一點,對理論和應用都有相當貢獻的是薄膜和塊材間性質的差異。例如錫(Sn)的 Tc,塊材時是 3.7K,但在 1,000埃 (Å)左右的薄膜中可以達到 4.6K。為台灣科技產業奠基的元老李國鼎先生,早於 1936 年,就參與英國劍橋大學對液氦中錫薄膜的研究,是華人在低溫、超導工作的先驅。

-----廣告,請繼續往下閱讀-----

週期表中,超導呈現在常壓 (紅色)、高壓(藍色)、或薄膜(綠色)情況下的元素。圖/《物理雙月刊》
週期表中,超導呈現在常壓 (紅色)、高壓(藍色)、或薄膜(綠色)情況下的元素。圖/《物理雙月刊》

在週期表中,標明呈現超導的元素。利用元素間的週期性,可以大致作出一些結論:

 1. 從氫(H)到銤(Am)的 95 個元素,有超過半數的 54 個超導。其中 30 個,轉變在常壓下發生;23 個需要在高壓下;而唯一在薄膜中才會發生的是鉻(Cr)。

 2. 第七週期,從鋦(Cm)開始後段的元素,只能在高能實驗中形成,量少、放射性強而不穩定,至少目前還無法形成可用以量測的固體試樣。因此,它們是否會有超導轉變,仍是未知數。

-----廣告,請繼續往下閱讀-----

 3. 最後一族的 6 個不與其他物質發生化學反應的惰性氣體,氦(He)到氡(Rn),雖然可在低溫固化,但是它們沒有自由電子,也就不會超導。

 4. 理論上,超導與鐵磁不能共存,因為在超導態中,形成電子對的兩個電子有相反的自旋(electron spin)。離子磁矩若有序排列呈鐵磁性,就會破壞這種組合。屬於這類的非超導體有過渡元素中的鈷(Co)和鎳(Ni)。鐵(Fe)應該也是一樣,它的超導性(Tc ≈ 2K),是因為在 150 kbar 以上,原有產生鐵磁性的磁矩由於離域狀態(delocalization)消失。鑭系中,除了銪(Eu)之外,從鐠(Pr)到鐿(Yb)也都帶有相當磁矩。

 5. 高壓引發的超導態,主要是因為壓力導致固態晶體結構改變,使得在常壓下不見的轉變在新結構中發生。例如第五族的磷(P, Tc = 5.8K)、砷(As, 0.3K)、銻(Sb, 3.6K)分別需要 17、15、8.5 kbar 的高壓。

 6. 超導元素中,最令人訝異的可說是我們賴以生存的。常壓下,氧在 90K 液化、55K 固化,由雙原子分子(O2)構成的晶體沒有自由電子,根本是不導電的絕緣體。但壓力超過 950 kbar,會有晶體結構改變,同時引發金屬性。再高到 1,000 kbar (近 100 萬大氣壓),就成了有 0.6K 轉變溫度的超導體。

-----廣告,請繼續往下閱讀-----

為何在常溫下最好的電導體,包括銅(Cu)、銀(Ag)、金 (Au)反倒不超導?圖/By Alchemist-hp (talk) www.pse-mendelejew.de - Own work, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=7611254
為何在常溫下最好的電導體,包括銅(Cu)、銀(Ag)、金 (Au)反倒不超導?圖/By Alchemist-hp, CC BY-SA 3.0, wikimedia commons.

 7. 最有趣的問題:為何在常溫下最好的電導體,包括銅(Cu)、銀(Ag)、金 (Au)反倒不超導?其實這也可從傳統超導理論中,找出原因:超導態中自由電子形成電子對,是依靠虛聲子的生成和消失,而虛聲子則是受電子和離子交互作用激發。好的導體,電阻小,是因為電子和離子交互作用弱,反而使得虛聲子、及電子對不易生成。當然也有可能,超導態會在比今天可達到的低溫更低的溫區出現。既然理論無法決定,只有靠時間,等待技術的提升了。

 8. 最有挑戰性的是高壓下的固態氫。理論上,在所有元素中,它有最輕的離子和最大的自由電子密度,有助於虛聲子和電子對的形成,成為超導體,並且有相當高轉變溫度的可能,但是實驗一直沒有成功。直到 2015 年後期,有研究報告,在極高壓下,固態硫化氫(H2S)呈現金屬性。而在 1,500 kbar(差不多是 150 萬大氣壓)下,冷卻到 203K(-70 ℃)時,就有了超導轉變。203K 是今天所有超導轉變溫度最高的記錄。這份令人驚喜的結果,被認為有可能,來自主要成分氫的貢獻。

其他元素,例如鈉(Na)、鉀(K)、鎂(Mg)、鉑(Pt),不超導並沒有任何理論上的支持。或許只是有限的實驗尚未達到適當的高壓和低溫。讓我們拭目以待。

-----廣告,請繼續往下閱讀-----

往回看,許多現象,包括超導,雖然它們在自然界中,極為普遍,但是假如沒有低溫科技,我們就不會知道它們的存在。更不會利用到它們,對人類生活可以有重大貢獻的潛力。也許這就是自然法則:要求新、要突破、就必需儘可能向前所未知的領域深入研究。低溫科技如此,太空、奈米、生物科技又何嘗不是?


38卷10月號封面

 

本文摘自《物理雙月刊》38 卷 10 月號 ,更多文章請見物理雙月刊網站

-----廣告,請繼續往下閱讀-----
物理雙月刊_96
54 篇文章 ・ 15 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

0
0

文字

分享

0
0
0
【Gene思書齋】只要讓宇宙定律為你效勞,物理就是最好的人生指南!
Gene Ng_96
・2015/02/01 ・2185字 ・閱讀時間約 4 分鐘 ・SR值 525 ・七年級

t0500035_vpfr_ojncda

《物理才是最好的人生指南:讓宇宙定律為你效勞》Physics for Rock Stars: Making the Laws of the Universe Work for You)是本很搞怪的書,它的英文原名直譯過來其實該是「給搖滾巨星的物理課」,由此可見作者克莉絲汀.麥金利(Christine McKinley)鎖定的讀者群原來是夜店裡的男女XD

讀了這本書,還真是輕鬆愉快,因為《物理才是最好的人生指南》裡頭的物理學,其實只有初中程度而已(美國的高中程度),比起大一理工科程度的《我在MIT燃燒物理魂》For the Love of Physics : From the End of the Rainbow to the Edge of Time—A Journey Through the Wonders of Physics),還有大學通識課程度的《給未來總統的物理課:從恐怖主義、能源危機、核能安全、太空競賽到全球暖化背後的科學真相》Physics for Future Presidents: The Science Behind the Headlines)來說,顯得很不「物理」(請參見〈我在MIT燃燒物理魂-教學的典範!〉〈給未來總統的物理課-必須面對的科學真相〉)。

就因為《物理才是最好的人生指南》實在非常淺顯易懂,它太適合文科生來讀了!夠簡單到完完全全不需要任何理科基礎!可是卻能夠從數理裡學到一些人生智慧。而理科生呢?當然可適合來讀這本書,因為裡頭談到的物理原理,連我這個對物理有點恐懼的理科生,也沒有負擔,還讓我回想去過去在普物實驗室裡的糗事。即使是主修物理的朋友,更應該來讀這本書,認識一下物理定律如何展示了讓人生更美好所應遵循的法則!

《物理才是最好的人生指南》在每一章末都有些非常有趣、富娛樂性的小習題。雖然有不少打諢插科,可是裡頭的物理卻一點也不馬虎。《物理才是最好的人生指南》也算是麥金利的半自傳,她想原本當一個壞女孩,後來被迫念教會學校當乖乖女,充滿夢想的女生時期,在高中物理課堂天馬行空地用物理定律來進行各種幻想,這是否也讓人回憶起過去青澀並敢於作夢的青少年時期呢?

-----廣告,請繼續往下閱讀-----

物理不是冷冰冰的科學嗎?怎麼會和人生扯上了關係呢?難道物理公式能夠幫忙我們回答各種人生的問題呢?物理能教我們如何把妹嗎?(這不是生物學和心理學嗎?)物理能讓我們擺脫失戀之痛嗎?(這不是要靠化學嗎?用乙醇啊XD)物理能為我們茫茫的前途作出指引嗎?物理能教我如果應付壓力嗎?物理能告訴我們選哪個科系和工作嗎?……《物理才是最好的人生指南》就是要用幽默有趣又易於理解的方式告訴你,當然有可能!不過首先先要乖乖上課XD

回想當年,我最害怕的科目就是物理。初中在馬來西亞的放牛班,決定一定要念理科班,否則我就當一個壞學生,可是物理老師連精神都有問題,只好硬著頭皮自己K書,也勉強K到剛好及格,雖然全班似乎也只有兩三個人及格。到了高中,我們窮學校師資嚴重不足,老師只能把三大冊物理課本的力學和幾何光學教完,到了大學卻遇到普物老師實驗新課本,用了研究所程度的醫學物理,完全沒有學過任何電磁學和近代物理,只能被同學白眼、低聲下氣跟老師求情才勉強過關Orz 大二上物理化學時我最開心的一件事不是還拿了不錯的成績,而是以後再也不需要再碰物理了XD

不過人生還真奇妙,最恐懼和討厭的科目,往後可能要靠它吃飯。我碩班論文就是用物理的方法研究生物現象(蜜蜂磁鐵),部分實驗場所就在物理館;導師說他大學時最討厭的課是遺傳學,後來卻念了遺傳學博士班,我聽到時心裡OS想說這絕對不會發生在我身上,因為我在生科系最討厭的課是遺傳學,沒想到我也拿了遺傳學博士XD

言歸正傳,《物理才是最好的人生指南》的內容頗豐富,用能量守恆定律來讓人生切莫空轉、用原子的吸引與鍵結來知道自己是哪一型、理想氣體定律叫你別穿內衣應門、無所不在重力讓大家都有一樣的加速度、力與力圖分析來用工程方法規畫人生、利用機械利益來幫自己找根槓桿、利用浮力想辦法別讓自己沉下去、利用流體讓逃命時也要很有型、熱力學第二定律告訴你人生的混亂在所免、利用物質的相變產生一飛沖天需要累積能量、飄忽不定的電子教你培養神祕感、相對性教你尊重其他觀點、四種基本作用力讓你享受漫漫旅程……

-----廣告,請繼續往下閱讀-----

在讀《物理才是最好的人生指南》的時候,真的會一直驚嘆「什麼!降都可以!」。所以,人生啊,何必劃地自限?我們擁有的可能性,說不定比亞佛加厥常數還多!只是機運像電子雲,我們有適合自己的軌域。宇宙萬物都有其運行的道理,只要用對了方法和摸對了條件,就只要順手推舟了吧?

書摘:

本文原刊登於The Sky of Gene

-----廣告,請繼續往下閱讀-----
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

0
0

文字

分享

0
0
0
個人的相變-《物理才是最好的人生指南》
PanSci_96
・2015/01/13 ・1457字 ・閱讀時間約 3 分鐘 ・SR值 484 ・五年級

source:Mathanki Kodavasal
source:Mathanki Kodavasal

從青春期到成人的相變,只花了幾年時間,但感覺起來卻像是好幾十年。就像每個高中生一樣,我相當確信自己要比爸媽聰明得多。查克曾經去過越南、柬埔寨、以色列,還會講西班牙文和一點希伯來文,這都算不上什麼。我媽曾經是位空姐,跑遍全國各地,當頹廢的年輕世代還忙著在咖啡店裡搏取掌聲的時候,她已經自食其力在舊金山過日子了。但不管是其中哪一個提出建議,我還是會翻白眼。我一直在等,等到哪天他們會承認我真的更聰明、更酷。

當時的我也跟之前一代又一代的青少年沒什麼兩樣,每天都接受爸媽的協助,卻從來沒表示什麼感激。媽媽會幫我打字、訂正拼字錯誤、加上標點符號。查克每天天還沒亮就起床,開一個小時的車去上班、修理汽車,要到我吃完晚餐很久後才回得了家。他每隔兩星期就會把薪水交給媽,
拿去付房租、帳單,還有我的高中學費。週末他不用上班,有時會趴在客廳地板上,把熱敷或冷敷袋放在背上。

有天晚上在餐桌邊,查克問我一些他正在念的東西,他搞不懂描述熱力學循環的數學。我不懂什麼熱力學循環,可是數學我會。我教他怎麼交叉相乘、消去,然後求出答案。他照著我所說的做,但在此之前,都是他教我。教他東西讓我覺得好奇怪。

-----廣告,請繼續往下閱讀-----

坐在他旁邊,看著他把數字寫下來,仔細一看才發現手掌的油污底下布滿傷痕。有時回家用過晚餐之後,媽會拿鑷子把他手裡的金屬碎屑夾出來。這是我這輩子第一次為他擔心。過去我一直在擔心媽媽,因為她有癲癎的狀況,如今我卻以另一個角度為她和查克煩惱。我在想,如果查克太老,或是背痛太嚴重,沒法鑽到車底下修引擎,那該怎麼辦?

在查克和我媽結婚、收養我和姐姐前,我們的房子已被法院拍賣了。屋子前也常有警車或救護車停著,因為我和姐姐不知該如何處理媽的癲癎,只要她一發作,我們就只能報案請人來幫忙。我們常常跑到隔壁借雞蛋,藉口說要做餅乾,其實是急著下肚當晚餐。家裡會有社工人員來訪,檢查我們的廚房,確定家裡有鍋碗瓢盆,可以好好使用食物券。

是查克讓一切都變得不一樣。現在我們這間幽靜的小房子外面有忍冬花爬上圍牆,享受著他一舉扛起的生活。他才三十三歲。我第一次覺得他似乎有點累了,看著他用滿布傷疤的雙手在橡木餐桌上寫二次方程式,我知道他沒
辦法永遠扛著我們。

我必須靠自己,說不定還得扛起查克跟我媽。我姐曾經念過大學,但待不久。全家人都要靠我了。我知道該怎麼做:首先我要拿個學位,然後幫媽和查克,讓他也去讀個工程學位。

-----廣告,請繼續往下閱讀-----

這是我從女孩轉變成大人的開始。轉大人並不是把爸媽抛開不顧,而是知道自己對他們有責任。我在教育程度上已經超越了他們,我必須利用這項優勢幫助他們。我知道為什麼要追求好成績、上大學,還要選個主修、挑到好工作。他們從來不曾要我提供支援,但在那個時刻,當我開始轉大人的時候,我知道自己只想做好準備。

20140506124603-1430854095

就像是沸騰的水溫度不會上升,也沒什麼測量得出來的立即變化。媽和查克依然幫我付高中學費和大學的學費,我還是把成績單拿給他們看;不管是誰提出建議,我還是會翻白眼。但現在我已經知道:他們需要我,我必須發揮智慧、必須出人頭地。

高三快結束的時候,我不再期待自己成為大人。我提出入學申請,還仔細研究不同四年制學位的起薪如何。屢試不爽,只要我不再張望等待,水就會整個沸騰起來。

本文摘自泛科學08ed364c0a044590893d0daf8511ac442015一月選書《物理才是最好的人生指南》,究竟出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。