Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

能量守恆定律-《物理才是最好的人生指南》

PanSci_96
・2015/01/13 ・1809字 ・閱讀時間約 3 分鐘 ・SR值 497 ・六年級

-----廣告,請繼續往下閱讀-----

83ea263bce4fd233cec234cacca9a47e

就在同一個星期裡,艾蓮諾修女提到耶穌讓拉撒路死而復生,羅榭爾修女則表示能量無法創造也無法破壞,只能轉換形式。這兩堂課似乎有所關連。

我腦子裡一直在想羅榭爾修女寫在黑板上的位能與動能公式。假設事情就像耶穌和修女們堅持的那樣,我們死後還有某樣東西存在,那它一定要離開我們的身體。如果靈魂不是實體,就一定是某種形式的能量。當那最後一股能量離開拉撒路的身體往天堂飄去的時候,耶穌想必攔截了這縷小小的青煙,包在手掌心裡,然後小心翼翼送回拉撒路的身體裡,讓他重新活過來。

在我的想像中,耶穌使勁一揉,把能量推入拉撒路的胸膛,已死之人的眼睛就這樣再度張開,搞不清楚剛剛發生了什麼事。這就是改變了形式的能量,沒有創造,只是弄熱、搓揉、移動。顯然耶穌已經讀過熱力學第一定律,因為他讓這個改變形式的做法流傳下來。前一刻拉撒路死了,後一刻他坐了起來,還要了杯水。幹得好,耶穌你真是個科學家。

我在想,艾蓮諾修女和羅榭爾修女搞不好在隔壁的修道院裡一起擬定教學計畫。我想像她們一邊喝著調酒,一邊大聲討論各種轉換:死而復生、清水變美酒、信仰化成行動,並且把這些包裹在課堂的教材裡,讓我們把一切結合起來:耶穌是科學家、牛頓是救主、上帝把戒律寫在石板的一面,另一面則寫著熱力學定律。我知道這種想法有點牽強啦,但似乎也沒有什麼不合理。

-----廣告,請繼續往下閱讀-----

宇宙已經擁有它所能得到的全部能量。耶穌和羅榭爾修女對於這個想法或許很滿意,但對我來說仍是個很嚇人的概念。

我們絕對無法再造出更多能量,只能當能量變化的媒介。太陽的能量儲存在蔗糖裡,我們吃了糖,並把它的熱量轉換成接吻還有裸泳需要的能量,就像宇宙中其他生物一樣,我們都是能量轉換機。你可以把甜甜圈轉換成用美麗的雙腿跳舞、把餅乾轉換成在動個不停的腦子裡計算,但你不能創造任何新的能量。宇宙已經擁有我們所需要的一切能量。這就是熱力學第一定律。沒錯,規定就是這樣。

提高人生的能量轉換率

車子陷入泥巴或雪地的時候,需要將很多由汽油而來的位能轉換成動能:空轉的車輪、飛濺的泥巴,還有過熱的引擎。駕駛也會把熱量轉換成汗流浹背敲打儀表板的動能。結果並不怎麼有生產性,沒什麼價值,也不夠有氣質。

不論是困在除夕暴風雨裡的轎車,或是一邊輪胎卡進山溝的超大貨車,都能讓我們從中學到很多東西。早在幾年前,我就下定決心不再空轉。我列出一長串感覺像是空轉的活動:杞人憂天、小題大作、抱怨、受邀參加派對但沒空去(還跟人家說我有多忙)。我不會再做這些事。如果要休息,我就休息;如果要工作,就工作。如果無法參加派對,我就禮貌婉拒,再送些花過去。我不再讓自己空轉。

-----廣告,請繼續往下閱讀-----

練田徑還有越野賽跑的時候,我們稱那些既沒挑戰性又休息不了的訓練叫「不上不下的訓練」。以比賽時的速度和休息時的速度交替鍛鍊,是讓跑者的身體進步最快的方式。如果每天都用不快不慢的速度練習,跑者的身體就無法感受到培養更多肺活量和肌力的必要性,還有可能冒著受傷或累壞的風險,因為從來沒有機會休息。

雖然在跑步的時候知道「不上不下」的概念,我卻還是在工作和創意提案時犯了大忌。應該好好休息或全心衝刺的時候,反而東想西想,一直空轉。

我必須來點不一樣的。一旦發現自己在空轉,就換件事情做。我全心全意做那些看起來完全沒用的事情,像是去電影院看場以會說話的動物為主角的電影,或是做些杯子蛋糕──最簡單的那種,用現成的預拌粉,一點都不難。等頭腦清楚了,再回去工作。如果停止空轉、真正休息,很快就能再上陣;而經過卡通和巧克力糖霜帶來的真正放鬆後,也會變得更有效率。

人的一生就這麼幾年,一天就這幾個小時,還有那麼多的創意要發揮。如果想要運作得更有效率,就需要稍作休息。如果我們一直轉個不停,那麼這一生也就不過就是陣無用的煙塵、噪音,還有燒焦的橡膠。對我來說,不想再多花一秒鐘空轉,因為過去浪費得夠多了,想把握時間將自己的潛能充分發揮出來。我要付諸行動,不管是與生俱來或從經驗學會的任何才能、運氣、力量和幽默,都要讓它們產生動能,這樣當我嚥下最後一口氣的時候,就不會殘存任何能量。就算是手腳最快的救世主也沒辦法抓到什麼東西塞回我胸膛。

-----廣告,請繼續往下閱讀-----

08ed364c0a044590893d0daf8511ac44本文摘自泛科學2015一月選書《物理才是最好的人生指南》,究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2418 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
1

文字

分享

0
4
1
達文西教你一起動手玩能量!——《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》
快樂文化
・2021/01/28 ・1234字 ・閱讀時間約 2 分鐘 ・SR值 452 ・五年級

無所不在的能量

彩虹、跳繩與藍天,這些都是開始了解能量的好主題。首先要知道,能量可以改變形式。舉例來說,能量可能先以風能的形式出現,然後變成了電能。能量無法消失毀滅,也無法增補重生;能量只能轉換形式。現今宇宙所有的能量,也是未來能量的總和。

達文西曉得空氣(風)的能量和水波的能量有關,兩者又都與太陽的能量有關。波動可以在水裡、陸上與空中傳播,他對此深深著迷:「水波從生成點快速遠離,但是水並沒有改變位置,就像五月清風拂過麥田一樣。你看到麥浪經過,但是麥穗還是在原本的位置。」

波動與水流讓達文西著迷,此畫作完成於1510年左右。圖/天才達文西的科學教室

用跳繩舞動能量、興風作浪!

讓繩子以波動舞動起來,是解釋電磁波光譜的好範例,就先從跳繩開始吧!電磁波,也是彩虹與藍天的起源。接下來,你要縱身跳入一起動手玩的實驗中,體驗能量守恆

電磁波以波浪的形式傳播,如同跳繩產生的波浪一樣。圖/天才達文西的科學教室

雙手抓緊跳繩的一端,手臂上下擺動,讓繩子跳起波浪舞。不管你身在何處,現在就被無所不在的能量波動撞擊著,而跳舞的繩子就是能量波動的絕佳模型。這些能量波動就是電磁波——真的是透過磁場與電場的緊密關係產生的。打開電燈開關、收看電視、收聽收音機、使用微波爐、以手機互相溝通等,利用的能量都是電磁波。電磁波以波浪的方式傳播,如同跳繩產生的波浪一樣。

-----廣告,請繼續往下閱讀-----

能量的原理讓彩虹變成你的畫筆

實驗材料:小型LED手電筒紅色藍色與紫色各一個、夜光紙或銀色布膠帶擇一,貼在厚卡紙上 (12.7公分 × 17.7公分)、筆、普通的手電筒、筆記本

只需紅藍紫色小型LED手電筒,加上貼上夜光紙或銀色布膠帶的厚卡紙,就能用可見光書寫啦!
圖/天才達文西的科學教室
  1. 打開紅色LED手電筒,把手電筒當成筆,投射在夜光紙上,會產生怎樣的效果?
  2. 你看到什麼?每種色光和夜光紙之間,交互作用有什麼不同?
  3. 接著以藍色光做測試,再以紫色光做測試。
  4. 最後,以普通的手電筒照射夜光紙,光產生的反應又是什麼?
——本文摘自《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》,2020 年 10 月,快樂文化

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
焦耳誕辰|科學史上的今天:12/24
張瑞棋_96
・2015/12/24 ・1082字 ・閱讀時間約 2 分鐘 ・SR值 528 ・七年級

用火藥槍發出巨響所造成的回聲測距離,一次因為反作用力太大而將槍掉入水中,另一次因火藥裝太多而燒掉一邊眉毛。電一隻馬的瘸腿,看看是不是會抽動;拿家裡的工人來實驗,結果把他電暈了。不,這不是豆豆先生的喜劇橋段,而是英國物理學家焦耳在中學階段搞的實驗。

詹姆斯.焦耳。圖/wikimedia

不過在當時的英國科學家眼中,焦耳的形象有那麼一陣子也沒比豆豆先生好多少。雖然焦耳念的中學是提出原子論的道爾吞所創辦,成為他親自教導的最後一批學生,接著也唸完了曼徹斯特大學,但是焦耳畢業後即回家接掌事業,成為釀酒廠老闆,也難怪科學圈內的學者不將他看在眼裡。因此,當焦耳從釀酒槽發熱的現象得到啟示,將不同的金屬線放入水中通電加熱,測量電流大小與水溫的變化,而得出Q = I2Rt的焦耳定律(熱量跟電流的平方成正比,跟導體的電阻成正比,跟通電的時間成正比),而於1841年將發表論文時並沒有引起多少注意,直到第二年一位俄國科學家也得出同樣的結論,焦耳定律才得到肯定。

1843年,他開始著手另一個實驗:熱與能量間的轉換關係。他讓砝碼以自由落體方式落下,透過滑輪帶動密封水筒內的槳轉動,使筒內的水摩擦生熱,證明熱能是由機械能轉換而來,並非當時普遍以為的熱是存在物質內部的一種「熱質」。他還發現固定單位的功會產生一定的熱量,兩者之間固定的數量關係稱為熱功當量。焦耳所做的實驗意義重大,除了顛覆關於熱的傳統認知,還產生了一個前所未聞的創見:能量不生不滅,只是在不同形式間轉換;也就是後來所稱的「能量守恆定律」。

但畢竟大家的錯誤觀念已根深蒂固,加上焦耳本身的業餘玩家形象,當時聆聽焦耳發表論文的科學家們即使沒有跟著出言譏諷,也都只是沉默以對,以他的實驗不夠嚴謹為由,將他與他的主張打入冷宮。

-----廣告,請繼續往下閱讀-----

焦耳不吭不响,默默地回去繼續精進實驗,鍥而不捨地做了四百多次實驗,求出熱功當量的值為4.159焦耳/卡,與現今的4.186焦耳/卡相差無幾。焦耳的論點後來也由其他科學家的實驗得到驗證,終於在1850年獲選為皇家學會的會士,當初嘲笑他的湯姆生 (William Thomson, 1st Baron Kelvin),也就是後來訂出絕對溫度的開爾文男爵,也跟他變成好友,兩人一起合作,聯名發表了許多論文。

1889年焦耳與世長辭,當初的釀酒商得以科學家的身分長眠地下,他的名字也被作為能量的單位,以紀念他的偉大貢獻。
日──波耳誕辰

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1030 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。