0

0
1

文字

分享

0
0
1

週期表中哪些元素能超導?—《物理雙月刊》

物理雙月刊_96
・2016/11/08 ・3823字 ・閱讀時間約 7 分鐘 ・SR值 561 ・九年級

文/何健民|美國維奇塔州立大學物理系榮譽講座教授

從 1913 年,荷蘭物理學家、超導現象發現者海克.昂內斯Heike Onnes)受頒諾貝爾物理獎以來,陸續有眾多科學家也獲得諾貝爾桂冠,表揚他們在研究液氦、超流相、超導及其他低溫物理方面的成就。

荷蘭物理學家、超導現象發現者海克.昂內斯(Heike Onnes)。圖/Copyrighted free use, https://commons.wikimedia.org/w/index.php?curid=879737
荷蘭物理學家、超導現象發現者海克.昂內斯(Heike Onnes)。圖/Copyrighted free use, wikimedia commons.

超導是自然現象:當一電導體降溫到它的特定超導轉變溫度 (superconducting transition temperature,簡稱 Tc),電阻會完全消失。

從有到無的突變,似乎很難想像。但水蒸氣會在它的冷凝點 100 ℃ 變成水、水在凝固點 0 ℃ 又變成冰,我們司空見慣,沒有人會訝異。而從有電阻的正常態到零電阻的超導態,和這些氣態、液態、固態間的突變,都屬於自然科學中的相變。其他類似的突變,就我們已知的包括鐵磁(ferromagnetism)或反鐵磁 (antiferromagnetism),鐵電(ferroelectricity)或反鐵電(antiferroelectricity),以及液氦的超流態。

這些自然界奇特現象,在被發現以前,沒有人會知道它們的存在,也絕不可能經由技術去發明。一旦被發現後,科學家才經由研究去瞭解。無可否認的,除了液氦的超流態以外,各種相變都已有了很多應用,促進工業、經濟進展,提升人類生活品質。

一直到今天的高科技時代,任何物質的相轉變溫度,都無法預測,仍得靠實驗數據。當然了,要是有一個新材料,可以是合金或化合物,只要不會因熱分解,我們都能從經驗,大致猜到它的熔點。看似例外的二氧化碳,在極低溫下是俗稱乾冰的固體;升溫到 -78 ℃,不經過液體而直接氣化;但在高壓,超過 5.1 大氣壓時減溫,氣態仍是先變液體、再變固體。

從這裡,可以領悟到:

「壓力」和「溫度」在熱力學中佔同等地位,我們習慣的常溫、常壓在自然界中並沒有絕對意義。

這也指明,為什麼科學研究必需延伸到高、低溫及高、低壓。在技術上,改變溫度比改變壓力容易得多,所以一般實驗是由升、降溫著手。有進一步需求時,再調整壓力。類似溫度有不同的溫標,文獻中壓力也有不同的通用單位:bar、atm(標準大氣壓)、及 Pascal (簡稱 Pa)。

  • 高壓換算:1 kbar = 0.987 katm = 0.1 GPa (k 是 103、G 是 109)。

鐵磁轉變

無論如何,除非會在加熱時分解,幾乎所有物質,在適當的壓力情況下都會有固態、液態、氣態間的相變。相對的,超流態相變只發生在液氦。

介於兩者之間的鐵磁轉變,有材料的限制:它們的原子必須帶有磁矩 (magnetic moment)。鐵磁轉變溫度 (例如純鐵的 770 ℃)以上是順磁性(paramagnetism):在外加磁場中,只有隨溫度而定的部分磁矩順著磁場方向排列。轉變溫度以下,不需要外加磁場,原子磁矩就會同方向排列,成了鐵磁性。鐵磁性也就是永久磁鐵的基本特質。

反鐵磁性是指在轉變溫度以下,原子的磁矩正、反相間排列,抵消為零。鐵電及反鐵電與鐵磁及反鐵磁相似,只是原子磁矩被電偶(electric dipole)取代,也是限於少數材料。

超導體

至於超導體,一般分為兩類:1987 年出現所謂「高溫」超導體(high-Tc superconductors)的銅氧化物,有 100K (-173 ℃)附近的轉變溫度,遠超過了傳統超導體(traditional superconductors)的 20K 左右上限。有關的文獻很多,不在這裡贅述。只是指出,儘管傳統超導理論已在所有相變中最為完美,但仍無法預測任一物質是否會有超導轉變、更不必談超導轉變溫度了,還是得靠實驗。

一塊超導體沿著磁軌道前進。圖/wiki
一塊超導體沿著磁軌道前進。圖/Henry Mühlpfordt @ wiki

【回顧歷史】汞是第一個被昂內斯在 1911 年發現的超導體。一個世紀後,今天已知的超導體,種類繁多,尤其是合金,可以連續改變成分的比例,使得超導體的數量,沒有了有意義的答案。

電導體異於絕緣體,因為有部分電子可以在整個固體中自由運動。超導體除了必然是導電的固體外,有其他要求嗎?到底超導可被認為是自然界中很特殊(類似液氦的超流),或是很普通(類似固態、液態、氣態間相變)的現象?與其給一個似是而非的答案,不如就從週期表中,簡單的看一看,多少元素有超導轉變?都是意料中的嗎?其他非超導體的,是否有易於被接受的理由?

從週期表看超導體

有一點可以肯定,純元素都屬於傳統超導體。這一類超導體的理論機制,主要是晶體中的離子,經由與自由電子的交互作用、形成瞬間生成和消失的「虛聲子(virtual phonon)」,而虛聲子導致兩個有相同動量值,但方向相反的自由電子成為零動量的電子對(electron pair)。因此,當電流通過超導體,雖仍有電子和離子間的交互作用,但不產生電子整體的能量減少,或是晶挌振動的能量升高,也就是為什麼,從整體現象來看,就沒有了電阻或是熱的產生。

儘管這裡的討論著重定性,只有一些特殊情形,才會比較超導轉變溫度的高底。但是不妨提一下,已知的超導元素中,以鈮(Nb)的 9.2K 為最高,而鎢 (W) 的 0.015K 為最低。也順便說明,同一元素可以因晶體結構不同,有不同的超導轉變溫度。例如鑭(La)的六方密排體(hexagonal-close-packed)或面心立方體(face-centered-cubic)分別為 4.9K 或 6.0K。再有一點,對理論和應用都有相當貢獻的是薄膜和塊材間性質的差異。例如錫(Sn)的 Tc,塊材時是 3.7K,但在 1,000埃 (Å)左右的薄膜中可以達到 4.6K。為台灣科技產業奠基的元老李國鼎先生,早於 1936 年,就參與英國劍橋大學對液氦中錫薄膜的研究,是華人在低溫、超導工作的先驅。

週期表中,超導呈現在常壓 (紅色)、高壓(藍色)、或薄膜(綠色)情況下的元素。圖/《物理雙月刊》
週期表中,超導呈現在常壓 (紅色)、高壓(藍色)、或薄膜(綠色)情況下的元素。圖/《物理雙月刊》

在週期表中,標明呈現超導的元素。利用元素間的週期性,可以大致作出一些結論:

 1. 從氫(H)到銤(Am)的 95 個元素,有超過半數的 54 個超導。其中 30 個,轉變在常壓下發生;23 個需要在高壓下;而唯一在薄膜中才會發生的是鉻(Cr)。

 2. 第七週期,從鋦(Cm)開始後段的元素,只能在高能實驗中形成,量少、放射性強而不穩定,至少目前還無法形成可用以量測的固體試樣。因此,它們是否會有超導轉變,仍是未知數。

 3. 最後一族的 6 個不與其他物質發生化學反應的惰性氣體,氦(He)到氡(Rn),雖然可在低溫固化,但是它們沒有自由電子,也就不會超導。

 4. 理論上,超導與鐵磁不能共存,因為在超導態中,形成電子對的兩個電子有相反的自旋(electron spin)。離子磁矩若有序排列呈鐵磁性,就會破壞這種組合。屬於這類的非超導體有過渡元素中的鈷(Co)和鎳(Ni)。鐵(Fe)應該也是一樣,它的超導性(Tc ≈ 2K),是因為在 150 kbar 以上,原有產生鐵磁性的磁矩由於離域狀態(delocalization)消失。鑭系中,除了銪(Eu)之外,從鐠(Pr)到鐿(Yb)也都帶有相當磁矩。

 5. 高壓引發的超導態,主要是因為壓力導致固態晶體結構改變,使得在常壓下不見的轉變在新結構中發生。例如第五族的磷(P, Tc = 5.8K)、砷(As, 0.3K)、銻(Sb, 3.6K)分別需要 17、15、8.5 kbar 的高壓。

 6. 超導元素中,最令人訝異的可說是我們賴以生存的。常壓下,氧在 90K 液化、55K 固化,由雙原子分子(O2)構成的晶體沒有自由電子,根本是不導電的絕緣體。但壓力超過 950 kbar,會有晶體結構改變,同時引發金屬性。再高到 1,000 kbar (近 100 萬大氣壓),就成了有 0.6K 轉變溫度的超導體。

為何在常溫下最好的電導體,包括銅(Cu)、銀(Ag)、金 (Au)反倒不超導?圖/By Alchemist-hp (talk) www.pse-mendelejew.de - Own work, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=7611254
為何在常溫下最好的電導體,包括銅(Cu)、銀(Ag)、金 (Au)反倒不超導?圖/By Alchemist-hp, CC BY-SA 3.0, wikimedia commons.

 7. 最有趣的問題:為何在常溫下最好的電導體,包括銅(Cu)、銀(Ag)、金 (Au)反倒不超導?其實這也可從傳統超導理論中,找出原因:超導態中自由電子形成電子對,是依靠虛聲子的生成和消失,而虛聲子則是受電子和離子交互作用激發。好的導體,電阻小,是因為電子和離子交互作用弱,反而使得虛聲子、及電子對不易生成。當然也有可能,超導態會在比今天可達到的低溫更低的溫區出現。既然理論無法決定,只有靠時間,等待技術的提升了。

 8. 最有挑戰性的是高壓下的固態氫。理論上,在所有元素中,它有最輕的離子和最大的自由電子密度,有助於虛聲子和電子對的形成,成為超導體,並且有相當高轉變溫度的可能,但是實驗一直沒有成功。直到 2015 年後期,有研究報告,在極高壓下,固態硫化氫(H2S)呈現金屬性。而在 1,500 kbar(差不多是 150 萬大氣壓)下,冷卻到 203K(-70 ℃)時,就有了超導轉變。203K 是今天所有超導轉變溫度最高的記錄。這份令人驚喜的結果,被認為有可能,來自主要成分氫的貢獻。

其他元素,例如鈉(Na)、鉀(K)、鎂(Mg)、鉑(Pt),不超導並沒有任何理論上的支持。或許只是有限的實驗尚未達到適當的高壓和低溫。讓我們拭目以待。

往回看,許多現象,包括超導,雖然它們在自然界中,極為普遍,但是假如沒有低溫科技,我們就不會知道它們的存在。更不會利用到它們,對人類生活可以有重大貢獻的潛力。也許這就是自然法則:要求新、要突破、就必需儘可能向前所未知的領域深入研究。低溫科技如此,太空、奈米、生物科技又何嘗不是?


38卷10月號封面

 

本文摘自《物理雙月刊》38 卷 10 月號 ,更多文章請見物理雙月刊網站

文章難易度
物理雙月刊_96
54 篇文章 ・ 10 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

2

12
3

文字

分享

2
12
3
科學實證「心情不佳真的會造成消化、皮膚發炎、心血管健康問題」,但為什麼?
PanSci_96
・2023/05/28 ・3156字 ・閱讀時間約 6 分鐘

你一定聽過安慰劑效應,但到底為什麼會有呢?這個謎團難倒了好幾個世代的科學家,超過百年依舊未解,直到最近,終於揭開了一部分謎底。

生醫圈非常振奮,認為一旦破解祕密,就能知道壓力為什麼會讓人生病!更棒的是,還有機會打造出嶄新療法,治療困擾無數人的疾病和癌症!?難道可以靠「轉念」來治病嗎?

安慰劑效應,指的是患者即使吃到或注射的不是真正的藥,對於外來病原體或體內病變的抵抗力竟然也會變好,讓身體好轉。有很長一段時間,科學家對這個現象背後的原理一無所知。

有兩個問題和解開安慰劑效應之謎有直接關係,乍聽之下都是非常不起眼的問題,可是只要多想兩三秒鐘,就會發現居然回答不出來。

小感冒、腸躁症、安慰劑,藏著同一個答案

你一定有過這樣的經驗:感冒以後沒食慾、提不起勁、只想攤平在沙發上,為什麼會這樣?不就是因為病原體攻進身體裡才造成我們「覺得」不舒服嗎?但是再仔細想想,細菌或病毒根本沒有直接攻擊到腦部,那為什麼會冒出這些討厭的感覺?

再來,不少人一緊張就容易拉肚子,或是肚子痛、脹氣,也有人相反,一緊張就便祕,這些都是大腸激躁症(irritable bowel syndrome),簡稱腸躁症的常見症狀。但是,為什麼發生在大腦裡面的情緒會直接刺激遠在腹腔裡的腸子呢?

針對第一個問題,2022 年 6 月《Nature》一項研究發現,只要刺激腦部下視丘的特定區域,即使體內沒有病菌,小鼠也會發燒和食慾不振。換句話說,感染會引發免疫細胞攻擊病原體,導致體內發炎,腦部不必碰觸到病原體,只要透過血液等途徑感知到發炎的刺激,就會出現不舒服症狀。

感冒時沒食慾、提不起勁、只想攤平在沙發上。圖/Envato Elements

至於第二個,發表在 2021 年 11 月《Cell》期刊的研究指出,小鼠如果腸道曾經發炎,刺激腦島皮質(insular cortex)就可以使發炎狀態重現;也就是說,大腦會保有免疫系統活動的記憶,以後只要活化同一群神經細胞,就能在腸道重啟一樣的免疫反應。

2023 年 2 月底《Nature》一篇評論文章說,科學家懷疑這種神經機制是身體為了抵抗可能發生的威脅,事先做好準備,但也會聰明反被聰明誤,在沒有原始觸發因素的時候自行啟動,例如壓力使腸躁症的症狀惡化,說不定就屬於這類情況。

這些發現透露了什麼線索呢?

病得輕重、多快復原,是腦在掌控

安慰劑效應和前面這兩個問題都指向一個方向,三個現象裡不斷出沒的——免疫系統。

科學家發現,目前所有的證據都指出,大腦和遍佈全身的神經,實際上是用一種還不太清楚的方式和免疫系統綁在一起。

也可以換一種說法:喜怒哀樂的情緒及正負面心態究竟是如何和身體連結,已經發現至少有一條路徑是透過神經系統和免疫細胞的緊密互動。

2022 年 5 月底,《Nature》刊登一篇報告,介紹了美國哈佛大學醫學院的研究團隊利用「光遺傳學」和其他技術,畫出小鼠腦部和全身的白血球如何「互動」的地圖,這讓我們有機會進一步揣測人體裡發生的事。

所謂的光遺傳學,可以簡單想像成把設計好的蛋白質基因植入想要觀察的神經元細胞裡,這種蛋白質一旦照到特定波長的光就會啟動,刺激神經細胞跟著活化,這樣就可以非常精細地一次只操作單一種神經細胞,畫出解析度相當高的大腦圖譜。

身心透過神經系統和免疫細胞緊密互動。圖/Envato Elements

團隊很驚訝地發現,腦部透過兩種方式指揮免疫系統,一種是大腦控制身體動作的運動迴路(motor circuits)發出訊號刺激骨骼肌,釋出能吸引嗜中性白血球這種免疫細胞的細胞因子,誘導原本在骨髓裡的嗜中性白血球快速移動到感染或受傷的部位。另一個則是腦部的下視丘腦室旁核(paraventricular hypothalamus)會分泌特定的化學分子,命令腎上腺分泌激素,快速引導單核球和淋巴球從淋巴結、脾臟、血管等位置移動到骨髓。

無獨有偶,2022 年 4 月底,德國和其他歐洲科學家組成的跨國團隊也在《Nature》上發表研究結果,直接表明動脈發生粥狀硬化的過程可能部分受腦部控制;也就是說,他們發現了神經、免疫和血液循環這三個系統是怎麼樣融合在一起的。

動脈粥狀硬化是血液裡的膽固醇堆積在血管內側,形成斑塊,在局部區域會有慢性發炎,血管也會愈來愈窄。斑塊一旦剝落就變成血栓,是造成中風、心絞痛和心肌梗塞的關鍵因素,目前還沒有醫療技術可以逆轉病人的動脈硬化。

研究團隊發現,小鼠動脈血管壁外層的神經纖維會傳訊號到腦部,也會接收腦部發來的訊號,免疫細胞會大量聚集在神經末梢周圍,人體也有類似的現象。他們以小鼠做試驗,用化學方法或手術切斷神經聯繫,免疫細胞迅速就地解散,血管斑塊的堆積速度也跟著減慢。

懂得向大腦求助

大腦能指揮身體抵抗病痛,這合理的解釋了你我大概都有過的切身之痛,那就是當滿腦子塞滿消極的情緒如壓力、焦慮的時候,特別容易生病,例如感冒、腸胃炎、皮膚癢等等。

更有趣的是,反過來說,如果創造出積極的情緒,對於抵禦疾病是不是也有用呢?答案可能也是肯定的。

積極的情緒有利於對抗疾病。圖/Envato Elements

過去就有報告指出,加入支持團體和接受一些心理療法的乳癌患者,可以延長存活時間,在其他幾種癌症像是肺癌、惡性黑色素瘤、胃腸道癌症研究上也有提出類似的現象。

因此,現在世界各地有多個研究團隊正在鑽研如何善用「身」和「心」的力量,結合起來一起治好病痛。

例如癌症腫瘤會以釋放神經訊號、分泌化學物質等方式,造成患者的新陳代謝機制和睡眠大亂,美國紐約冷泉港實驗室的團隊發現刺激罹癌小鼠下視丘的特定區塊,可以把代謝和睡眠週期「喬」回來,有助於幫助癌症病人的復原過程變舒服。

而以色列理工學院團隊則把焦點放在位於中腦的腹側被蓋區(Ventral Tegmental Area, VTA)。VTA 是腦部的獎勵中心,含有分泌多巴胺的細胞,和期望、動機、喜好等情緒有關,也就是讓我們會感到快樂、振奮而去做出實際行動的腦部區域。該團隊發現,刺激 VTA 可以驅動免疫系統,使小鼠肺部和皮膚的腫瘤縮小,他們現在要把成果從小鼠用到人身上。

也有一個團隊是從迷走神經(vagus nerve)下手。迷走神經是副交感神經系統的主要成員,從腦一路向下走過心、肺、胃,一直延伸到大腸,已知和調節免疫反應有關。有一家新創企業 SetPoint Medical 運用他們的技術,研發一種大小像膠囊的神經刺激裝置,植入脖子的迷走神經旁邊,可以無線充電、還可以用 iPad 的程式調整刺激強度,目標是治療類風濕性關節炎、克隆氏症(Crohn’s disease)等自體免疫疾病。

「身心一體」除了個人感受,也有生理學上的意義。圖/Envato Elements

「身心一體」,用比較感性的話來說就是:心靈受苦,身體也受苦。原來,這件事不只是主觀的個人感受,其實它有生理學上的道理。

或許,更重要的是,讓明明覺得不舒服卻一直檢查不出病因的人知道,自己的感受並非無病呻吟,也不是想逃避壓力或做錯事情,而是一體的身心真的在發出警報,或許這就是最大的安慰了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 2
PanSci_96
1189 篇文章 ・ 1738 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

5
3

文字

分享

0
5
3
當壓力比山大,你需要安靜的力量!
雅文兒童聽語文教基金會_96
・2023/04/24 ・2200字 ・閱讀時間約 4 分鐘

  • 文/王冠雅(雅文基金會聽語科學研究中心 助理研究員)

翻開行事曆,總有開不完的會、做不完的報告,真的是壓力山大。雖然身旁的人都輕聲說話,周遭的環境也沒有過度喧鬧,但不知為何,就是什麼聲音都不想聽到!

沒錯,當我們身心充滿壓力、腦袋滿載的狀態下,腦中的思緒(或是雜訊)總喋喋不休,即便是平時熱愛的旋律都會聽不下去。在無法緩和壓力的狀況下,身心壓力就持續拉高。此刻,或許可以問問自己:

「今天,你累了嗎?」

不過咖啡或能量飲料可能都不是正解,你需要的,是去感受「安靜的力量」。

靜不下來,有時是周遭的聲音,有時可能是腦海中喧囂的壓力。
圖/freepik

壓力來襲,全身心都要一起扛

首先,讓我們先來一起認識「壓力」究竟為何物!

壓力其實是生理或心理受到脅迫的狀況下所引發的個體狀態。任何的壓力對我們的身體來說都可能是一種威脅。當接收到「壓力」的訊息,大腦就如同一個中央指揮中心,會本能地激發身體激素,開啟戰鬥或逃跑的生存機制。

像是在開車時,路邊的小巷子突然衝出一台疾駛的摩托車,我們能隨即透過身體調適壓力的本能,而瞬間激發出一連串的荷爾蒙,迅速地做出迴閃的反應行為,並敏捷地應對突如其來的意外威脅。

除了係關生命安全的壓力,那些會對我們日常生活、工作有所影響的壓力也會被身體視為一種威脅。特別是在數位科技的黃金時代,在過度追求速度、效率、產值,或是在處理家庭和人際關係、工作及課業問題所積累出的情緒,都容易成為長期的慢性壓力。

想耳根清靜,多半是聆聽也成了一種壓力

當我們備感壓力時,哪怕是冷氣的滴水聲,或是慣常的風扇運轉聲,都可能變得難以忍受,更別說是有點大聲的說話音量,更容易讓人倍感刺耳。

事實上,壓力與聽覺是密切關聯。

長期研究壓力的科學家 Dan Hasson 和他的研究夥伴,對具有慢性情緒衰竭(Emotional Exhaustion,意指在長期壓力下身心俱疲的精神狀態)的受試者進行誘發壓力的實驗,包括 208 名女性和 140 名男性(年齡區間為 23-71 歲,分別具有低、中、高的情緒疲憊程度)。

試驗過程會讓受試者承受短期的壓力實驗,並從中了解他們是否對聲音更加敏感。結果發現,身心俱疲程度較高的女性經過誘發壓力後,對聲音會更加無法忍受(男性受試者雖有類似的反應,但在統計上並不顯著)。有一些受試者甚至聽到正常談話的音量(約 60 分貝),便開始覺得聲音太大,而感到不適。

此外,當壓力襲來,身體會非常有感,是因為大腦與身體會企圖去平衡、調適我們所感受到的壓力。

倘若大腦一直對壓力保持警覺,身體則需要長時間維持高度戒備,且繼續啟動調控壓力代謝的荷爾蒙系統。如果長期處於慢性壓力的狀態,身體便會像空轉的馬達般虛耗運作,並產生過量的腎上腺素到血液,讓耳朵內的血液循環變差。然而,耳朵中脆弱的內毛細胞(Inner hair cells),仰賴充分的血液循環來接收足夠的氧氣與養分,若因日復一日地高壓讓血液循環長期受阻,以至於內耳的毛細胞供血不足,嚴重的話,將會導致聽力受損。


因此,若是身處在壓力風暴中,即便是聆聽一般的說話聲、用腳踩踏的節奏或是空調的低頻聲,都能令人感到煩躁與不耐。這可能是壓力所導致的焦慮及疲憊已經讓感官過載,才無法良好地調整自己,更失去了與他人對話的能量。

走出戶外、接近大自然,可以有效地洗滌日常生活中所積累的壓力與情緒。圖/freepik

心靜自然涼,用六分半分鐘補充「靜能量」

許多研究證實,待在安靜的環境,將有助於恢復我們的神經系統、提升能量並調節身心狀態。不論是待在室內或戶外綠意盎然處,只要安靜地待上六分半鐘,便能有效放鬆身心。在靜謐的自然環境中,我們的身心與意識會出現類似冥想時的泰然,因此在戶外的綠地放鬆,會有更顯著的效果!

在忙碌的現代生活,壓力難免罩頂,若能經由自我的良好覺察,辨識內心的喧囂,進一步理解哪一種外在刺激、內在情緒成了壓力來源,並適時地自我關照、調養,定期放鬆及運動,將能讓身心保持安寧與健康。

參考文獻

  1. 鄧夙舫。(2008,9月19日)。壓力是什麼?衛生福利部桃園療養院。https://www.typc.mohw.gov.tw/?aid=509&pid=44&page_name=detail&iid=100
  2. Harvard Health Publishing. (2020, July 6th). Understanding the stress response. Harvard Health Publishing. https://www.health.harvard.edu/staying-healthy/understanding-the-stress-response
  3. Hasson, D., Theorell, T., Bergquist, J., & Canlon, B. (2013). Acute stress induces hyperacusis in women with high levels of emotional exhaustion. PloS one, 8(1), e52945. https://doi.org/10.1371/journal.pone.0052945
  4. Teague, T. (2019, May 20th). A Link Between Stress and Hearing Loss. Hearing Consultants. https://hearingconsultants.com/a-link-between-stress-and-hearing-loss/#:~:text=Stress%20can%20Cause%20Hearing%20Loss,of%20oxygen%20and%20other%20nutrients
  5. 簡婉曦。(2021,1月27日)。【焦慮腦學】有一種恐懼,害怕聲音可能存在。VOCUS。https://vocus.cc/article/6011126efd89780001410d53
  6. Zorn, J & Marz, L.(2022). Golden: the power of silence in a world of noise. Harper Wave.
  7. Kirste, I., Nicola, Z., Kronenberg, G., Walker, T. L., Liu, R. C., & Kempermann, G. (2015). Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis. Brain Structure & Function, 220(2), 1221–1228. https://doi.org/10.1007/s00429-013-0679-3
  8. Pfeifer, E., Fiedler, H., & Wittmann, M. (2020). Increased relaxation and present orientation after a period of silence in a natural surrounding. Nordic Journal of Music Therapy, 29(1), 75–92. https://doi.org/10.1080/08098131.2019.1642374
雅文兒童聽語文教基金會_96
50 篇文章 ・ 208 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

3
3

文字

分享

0
3
3
壓力,讓綿羊更親密
胡中行_96
・2023/02/23 ・1937字 ・閱讀時間約 4 分鐘

生活中,無處不是壓力:上下班通勤、陌生互動、遭狗追逐、天災人禍,以及定期電動除毛。起伏跌宕都在汗水與喘息間完成,日復一日。承擔澳大利亞牧業重擔的主角,向來行程滿檔,抗壓性要夠強。參與國家級科學研究的成年雌性美麗諾綿羊(Merino ewes),更是於 2021 年秋冬,展現成熟堅韌的心理素質。[1]

澳洲的非當事綿羊。圖/Christopher Burns on Unsplash

親疏遠近

澳洲聯邦科學暨工業研究組織(Commonwealth Scientific and Industrial Research Organisation,簡稱CSIRO)的學者,從 5 個羊群中,各揀 14 隻,也就是總共 70 隻的雌性美麗諾綿羊,並額外預留幾隻備用。牠們的年紀介於 3 到 6 歲之間,健康且無身孕。在飲水充足的牧場上,依照所屬的羊群分開放養,避免牠們跨越藩籬,廣結新友。[1]

成群的綿羊,放眼望去彷若白雪皚皚。旁人見了,不免覺得每隻都一個模樣。然而就像日本青春女團 AKB48,多如過江之鯽的成員即使化成了灰,忠實歌迷仍喊得出個別的全名。綿羊認得人,也記得彼此。[2]互動上有親疏遠近之分,並非生張熟魏,皆能依偎。牠們透過視覺和嗅覺,辨別自己同誰照過面,放牧時自然找熟識者相陪。[1]

2021 年 5 月 24 日到 6 月 18 日期間,CSIRO 團隊每回進行測試前,會從上述 5 個羊群的代表中,再分別隨機挑出 2 隻,即一共 10 隻綿羊:5 隻實驗;5 隻對照。集合不同羊群的實驗組,一起接受壓力考驗,然後觀察所有綿羊的行為。挑選出來的個體,皆不再送回。[1]

按表操課

綿羊受到壓力刺激的 10 至 15 分鐘後,血漿中皮質醇(cortisol,又稱「皮質酮」或「可體松」)的濃度會達到高峰,並於接下來的 60 分鐘內逐漸消退。CSIRO 團隊根據此現象,決定施壓的時間長度,設計出以下行程,讓實驗組的綿羊按表操課。[1]

起始時間壓力來源過程長度
10:00聯結車運送羊群全程 15 分鐘
10:45徒手束縛羊隻每隻 2 分鐘
11:30牧羊犬追趕羊群全程 5 分鐘
12:15以電動刀去除後腿與尾巴周圍的羊毛每隻 2 分鐘
13:00聯結車運送羊群全程 15 分鐘
13:45徒手束縛羊隻每隻 2 分鐘
14:30牧羊犬追趕羊群全程 5 分鐘

社交距離

對比人類勾心鬥角,互動往來盤根錯節;綿羊的個性直白,交際單純。CSIRO 團隊得以仰賴科技,測量個體間距,比較誰的友誼親密。每隻綿羊都穿著犬用背帶,上頭安裝定位儀(rover),記錄即時動態(real-time kinematic,簡寫 RTK)與衛星導航系統(Global Navigation Satellite System,縮寫 GNSS)的綜合數據。身上還用澳洲國產的羊毛專用顏料,畫上與各台機器相應的標記,方便研究人員觀測牠們的社交距離。[1]

揹著定位儀,又畫上標記的綿羊。圖/參考資料 1,Figure S1(CC BY 4.0)

群居動物

群居動物除了交配繁殖,也會有其他社交關係。前者目的直接;而後者的機制則較不明確。延長的接觸、同步的行為,或社交連結的動作,在情勢使然的共處後產生。一塊兒被捕的吸血蝙蝠(vampire bats),勤奮地幫彼此梳毛(allogrooming);而抽籤同寢的大學室友,也可能於畢業後保持聯絡。同甘共苦會強化感情:一起面對的威脅,鞏固了孔雀魚(guppies)之間的情誼;共同觀賞影片的猩猩(great apes),關係亦顯得加倍緊密。[1]

那綿羊呢?

緩衝壓力

飽受折騰的實驗組綿羊,理所當然在跑完行程後,貼近來自同個羊群的夥伴。然而CSIRO團隊透過監控,發現牠們竟也逐漸與原先不認識的綿羊交好。想必是實驗過程中的患難與共,使陌生的綿羊培養出革命情感。於是,彼此的陪伴促進催產素(oxytocin)分泌,進而降低皮質醇的濃度,調節了下視丘-腦垂腺-腎上腺軸(hypothalamic–pituitary–adrenal axis)的反應,最後達到緩衝壓力(stress buffering的效果,也鼓勵生存導向的群體合作。[1]

短暫壓力

從此以後,牧羊人只要別隨意拆散羊群,就不必為了造成人家的生活壓力,而感到罪孽深重。畢竟研究證實綿羊會在下班後,自行尋求朋友陪伴,從而獲得心靈慰藉。牠們絕對有辦法承受短暫的壓力。如果有非執行不可的任務,切記「動作愈快愈好」,CSIRO 的研究人員溫馨提醒。[2]

  

參考資料

  1. Keshavarzi H, Lee C, Dyall TR, Johnson M, Campbell DLM. (2023) ‘Shared stressful experiences affect social proximity in Merino sheep’. Biology Letters,19 (2): 20220396.
  2. Claughton D, Williams L. (08 FEB 2023) ‘Sheep and humans have more in common when it comes to sharing stress, study finds’. ABC News.
胡中行_96
149 篇文章 ・ 54 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。