0

0
1

文字

分享

0
0
1

週期表中哪些元素能超導?—《物理雙月刊》

物理雙月刊_96
・2016/11/08 ・3823字 ・閱讀時間約 7 分鐘 ・SR值 561 ・九年級

文/何健民|美國維奇塔州立大學物理系榮譽講座教授

從 1913 年,荷蘭物理學家、超導現象發現者海克.昂內斯Heike Onnes)受頒諾貝爾物理獎以來,陸續有眾多科學家也獲得諾貝爾桂冠,表揚他們在研究液氦、超流相、超導及其他低溫物理方面的成就。

荷蘭物理學家、超導現象發現者海克.昂內斯(Heike Onnes)。圖/Copyrighted free use, https://commons.wikimedia.org/w/index.php?curid=879737
荷蘭物理學家、超導現象發現者海克.昂內斯(Heike Onnes)。圖/Copyrighted free use, wikimedia commons.

超導是自然現象:當一電導體降溫到它的特定超導轉變溫度 (superconducting transition temperature,簡稱 Tc),電阻會完全消失。

從有到無的突變,似乎很難想像。但水蒸氣會在它的冷凝點 100 ℃ 變成水、水在凝固點 0 ℃ 又變成冰,我們司空見慣,沒有人會訝異。而從有電阻的正常態到零電阻的超導態,和這些氣態、液態、固態間的突變,都屬於自然科學中的相變。其他類似的突變,就我們已知的包括鐵磁(ferromagnetism)或反鐵磁 (antiferromagnetism),鐵電(ferroelectricity)或反鐵電(antiferroelectricity),以及液氦的超流態。

這些自然界奇特現象,在被發現以前,沒有人會知道它們的存在,也絕不可能經由技術去發明。一旦被發現後,科學家才經由研究去瞭解。無可否認的,除了液氦的超流態以外,各種相變都已有了很多應用,促進工業、經濟進展,提升人類生活品質。

一直到今天的高科技時代,任何物質的相轉變溫度,都無法預測,仍得靠實驗數據。當然了,要是有一個新材料,可以是合金或化合物,只要不會因熱分解,我們都能從經驗,大致猜到它的熔點。看似例外的二氧化碳,在極低溫下是俗稱乾冰的固體;升溫到 -78 ℃,不經過液體而直接氣化;但在高壓,超過 5.1 大氣壓時減溫,氣態仍是先變液體、再變固體。

從這裡,可以領悟到:

「壓力」和「溫度」在熱力學中佔同等地位,我們習慣的常溫、常壓在自然界中並沒有絕對意義。

這也指明,為什麼科學研究必需延伸到高、低溫及高、低壓。在技術上,改變溫度比改變壓力容易得多,所以一般實驗是由升、降溫著手。有進一步需求時,再調整壓力。類似溫度有不同的溫標,文獻中壓力也有不同的通用單位:bar、atm(標準大氣壓)、及 Pascal (簡稱 Pa)。

  • 高壓換算:1 kbar = 0.987 katm = 0.1 GPa (k 是 103、G 是 109)。

鐵磁轉變

無論如何,除非會在加熱時分解,幾乎所有物質,在適當的壓力情況下都會有固態、液態、氣態間的相變。相對的,超流態相變只發生在液氦。

介於兩者之間的鐵磁轉變,有材料的限制:它們的原子必須帶有磁矩 (magnetic moment)。鐵磁轉變溫度 (例如純鐵的 770 ℃)以上是順磁性(paramagnetism):在外加磁場中,只有隨溫度而定的部分磁矩順著磁場方向排列。轉變溫度以下,不需要外加磁場,原子磁矩就會同方向排列,成了鐵磁性。鐵磁性也就是永久磁鐵的基本特質。

反鐵磁性是指在轉變溫度以下,原子的磁矩正、反相間排列,抵消為零。鐵電及反鐵電與鐵磁及反鐵磁相似,只是原子磁矩被電偶(electric dipole)取代,也是限於少數材料。

超導體

至於超導體,一般分為兩類:1987 年出現所謂「高溫」超導體(high-Tc superconductors)的銅氧化物,有 100K (-173 ℃)附近的轉變溫度,遠超過了傳統超導體(traditional superconductors)的 20K 左右上限。有關的文獻很多,不在這裡贅述。只是指出,儘管傳統超導理論已在所有相變中最為完美,但仍無法預測任一物質是否會有超導轉變、更不必談超導轉變溫度了,還是得靠實驗。

一塊超導體沿著磁軌道前進。圖/wiki
一塊超導體沿著磁軌道前進。圖/Henry Mühlpfordt @ wiki

【回顧歷史】汞是第一個被昂內斯在 1911 年發現的超導體。一個世紀後,今天已知的超導體,種類繁多,尤其是合金,可以連續改變成分的比例,使得超導體的數量,沒有了有意義的答案。

電導體異於絕緣體,因為有部分電子可以在整個固體中自由運動。超導體除了必然是導電的固體外,有其他要求嗎?到底超導可被認為是自然界中很特殊(類似液氦的超流),或是很普通(類似固態、液態、氣態間相變)的現象?與其給一個似是而非的答案,不如就從週期表中,簡單的看一看,多少元素有超導轉變?都是意料中的嗎?其他非超導體的,是否有易於被接受的理由?

從週期表看超導體

有一點可以肯定,純元素都屬於傳統超導體。這一類超導體的理論機制,主要是晶體中的離子,經由與自由電子的交互作用、形成瞬間生成和消失的「虛聲子(virtual phonon)」,而虛聲子導致兩個有相同動量值,但方向相反的自由電子成為零動量的電子對(electron pair)。因此,當電流通過超導體,雖仍有電子和離子間的交互作用,但不產生電子整體的能量減少,或是晶挌振動的能量升高,也就是為什麼,從整體現象來看,就沒有了電阻或是熱的產生。

儘管這裡的討論著重定性,只有一些特殊情形,才會比較超導轉變溫度的高底。但是不妨提一下,已知的超導元素中,以鈮(Nb)的 9.2K 為最高,而鎢 (W) 的 0.015K 為最低。也順便說明,同一元素可以因晶體結構不同,有不同的超導轉變溫度。例如鑭(La)的六方密排體(hexagonal-close-packed)或面心立方體(face-centered-cubic)分別為 4.9K 或 6.0K。再有一點,對理論和應用都有相當貢獻的是薄膜和塊材間性質的差異。例如錫(Sn)的 Tc,塊材時是 3.7K,但在 1,000埃 (Å)左右的薄膜中可以達到 4.6K。為台灣科技產業奠基的元老李國鼎先生,早於 1936 年,就參與英國劍橋大學對液氦中錫薄膜的研究,是華人在低溫、超導工作的先驅。

週期表中,超導呈現在常壓 (紅色)、高壓(藍色)、或薄膜(綠色)情況下的元素。圖/《物理雙月刊》
週期表中,超導呈現在常壓 (紅色)、高壓(藍色)、或薄膜(綠色)情況下的元素。圖/《物理雙月刊》

在週期表中,標明呈現超導的元素。利用元素間的週期性,可以大致作出一些結論:

 1. 從氫(H)到銤(Am)的 95 個元素,有超過半數的 54 個超導。其中 30 個,轉變在常壓下發生;23 個需要在高壓下;而唯一在薄膜中才會發生的是鉻(Cr)。

 2. 第七週期,從鋦(Cm)開始後段的元素,只能在高能實驗中形成,量少、放射性強而不穩定,至少目前還無法形成可用以量測的固體試樣。因此,它們是否會有超導轉變,仍是未知數。

 3. 最後一族的 6 個不與其他物質發生化學反應的惰性氣體,氦(He)到氡(Rn),雖然可在低溫固化,但是它們沒有自由電子,也就不會超導。

 4. 理論上,超導與鐵磁不能共存,因為在超導態中,形成電子對的兩個電子有相反的自旋(electron spin)。離子磁矩若有序排列呈鐵磁性,就會破壞這種組合。屬於這類的非超導體有過渡元素中的鈷(Co)和鎳(Ni)。鐵(Fe)應該也是一樣,它的超導性(Tc ≈ 2K),是因為在 150 kbar 以上,原有產生鐵磁性的磁矩由於離域狀態(delocalization)消失。鑭系中,除了銪(Eu)之外,從鐠(Pr)到鐿(Yb)也都帶有相當磁矩。

 5. 高壓引發的超導態,主要是因為壓力導致固態晶體結構改變,使得在常壓下不見的轉變在新結構中發生。例如第五族的磷(P, Tc = 5.8K)、砷(As, 0.3K)、銻(Sb, 3.6K)分別需要 17、15、8.5 kbar 的高壓。

 6. 超導元素中,最令人訝異的可說是我們賴以生存的。常壓下,氧在 90K 液化、55K 固化,由雙原子分子(O2)構成的晶體沒有自由電子,根本是不導電的絕緣體。但壓力超過 950 kbar,會有晶體結構改變,同時引發金屬性。再高到 1,000 kbar (近 100 萬大氣壓),就成了有 0.6K 轉變溫度的超導體。

為何在常溫下最好的電導體,包括銅(Cu)、銀(Ag)、金 (Au)反倒不超導?圖/By Alchemist-hp (talk) www.pse-mendelejew.de - Own work, CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=7611254
為何在常溫下最好的電導體,包括銅(Cu)、銀(Ag)、金 (Au)反倒不超導?圖/By Alchemist-hp, CC BY-SA 3.0, wikimedia commons.

 7. 最有趣的問題:為何在常溫下最好的電導體,包括銅(Cu)、銀(Ag)、金 (Au)反倒不超導?其實這也可從傳統超導理論中,找出原因:超導態中自由電子形成電子對,是依靠虛聲子的生成和消失,而虛聲子則是受電子和離子交互作用激發。好的導體,電阻小,是因為電子和離子交互作用弱,反而使得虛聲子、及電子對不易生成。當然也有可能,超導態會在比今天可達到的低溫更低的溫區出現。既然理論無法決定,只有靠時間,等待技術的提升了。

 8. 最有挑戰性的是高壓下的固態氫。理論上,在所有元素中,它有最輕的離子和最大的自由電子密度,有助於虛聲子和電子對的形成,成為超導體,並且有相當高轉變溫度的可能,但是實驗一直沒有成功。直到 2015 年後期,有研究報告,在極高壓下,固態硫化氫(H2S)呈現金屬性。而在 1,500 kbar(差不多是 150 萬大氣壓)下,冷卻到 203K(-70 ℃)時,就有了超導轉變。203K 是今天所有超導轉變溫度最高的記錄。這份令人驚喜的結果,被認為有可能,來自主要成分氫的貢獻。

其他元素,例如鈉(Na)、鉀(K)、鎂(Mg)、鉑(Pt),不超導並沒有任何理論上的支持。或許只是有限的實驗尚未達到適當的高壓和低溫。讓我們拭目以待。

往回看,許多現象,包括超導,雖然它們在自然界中,極為普遍,但是假如沒有低溫科技,我們就不會知道它們的存在。更不會利用到它們,對人類生活可以有重大貢獻的潛力。也許這就是自然法則:要求新、要突破、就必需儘可能向前所未知的領域深入研究。低溫科技如此,太空、奈米、生物科技又何嘗不是?


38卷10月號封面

 

本文摘自《物理雙月刊》38 卷 10 月號 ,更多文章請見物理雙月刊網站


數感宇宙探索課程,現正募資中!

文章難易度
物理雙月刊_96
54 篇文章 ・ 6 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。


0

0
0

文字

分享

0
0
0

遲來報到的質數——《數學,這樣看才精采》

天下文化_96
・2022/05/20 ・2868字 ・閱讀時間約 5 分鐘

2013 年國際數學界最轟動的新聞,應屬中國留美學者張益唐在孿生質數問題上所作出的突破。他個人的經歷更增加了整件事的傳奇性。

數學家張益唐。圖/VOA, 公有領域

張益唐雖然是北大數學系的高材生,但是 37 歲從美國普渡大學拿到博士學位之後,因與指導教授意趣不合,一時在學界無法發展,多年靠打工餬口。1999 年才好不容易至新罕布夏大學數學系任講師。在張益唐長期不得意的歲月裡,他雖然沒有發表什麼數學論文,但是也不曾喪失志氣,還是堅持研究自己喜歡的數學問題。

張益唐在 58 歲暴得大名,各種獎項與頭銜接踵而來,在最是少年逞英豪的數學世界裡,真成為一個異數。英國數學家哈代在他著名的小冊子《一個數學家的辯白》裡曾說:「我不知道有任何一項數學的主要進展,是由超過五十歲的人所啟動。」張益唐正好給哈代的偏見一個反例。

張益唐研究的是關於質數的性質。

一個自然數 p 是質數(也稱為素數)的條件有二:其一,p 大於 1;其二,除了 1 與 p 自己之外,沒有別的自然數能整除 p。全體質數可以從小到大排成一個數列 2, 3, 5, 7, 11, 13, …,通常把排在第 n 個位置的質數記作 pn。如果 pn 與 pn+1 相差為2,則稱質數對 (pn, pn+1) 為一對孿生質數,例如 3 與 5,5 與 7,11 與 13。

圖/envato elements

「孿生質數猜想」就說這樣的質數對有無窮多組。因為古希臘的歐幾里得在他的巨著《原本》裡,曾經證明質數有無窮多個,所以有人以為也是歐幾里得最先提出孿生質數猜想。其實不然,目前從文獻中所見, 1879 年英國數學家格萊舍(James Whitbread Lee Glaisher)在《數學信使》(Messenger of Mathematics)雜誌上的一篇文章,才是第一次將孿生質數猜想見諸文字。

張益唐的大突破是證明有無窮多組質數對 (pn, pn+1) 使得 pn 與 pn+1 相距不超過 7 千萬。

為什麼這是一個大突破呢?因為在張益唐之前,不管給出什麼固定數 m,完全不知道相差在 m 之內的質數對,到底是有限多個還是無窮多個。自從 2013 年 5 月他的成就在國際媒體上廣為流傳之後,世界上很多數學家努力要把 7千萬的差距往下壓縮,目前已經改善到 246 之內。但是距離孿生質數猜想所需的 2,還有巨大而艱困的鴻溝。

一般人從媒體得知張益唐對數學做出了重大貢獻,可能會好奇問他的結果有什麼用?這裡「用」當然是指實際的應用。其實,他的成果目前還只有純學術價值,與國計民生毫不相干。自從古希臘人辨識出質數,在兩千多年的時間裡,除了數學家關心質數外,質數一直缺乏任何應用價值。二十世紀電腦發達之後,才利用因數分解成質數的超級困難特性,產生了某些幾乎無法有效破解的密碼系統,廣泛的應用到金融、通信、資料保密上。

圖/envato elements

在中國古算裡缺席?

一個基本的數學概念,經歷了兩千多年的滄桑,才顯現出它的實用價值,這不是一件平凡的成就。因此,我們不得不佩服希臘人研究質數的真知灼見,並且感嘆十八世紀前的中國傳統數學裡卻不見質數的蹤跡。質數為什麼會在中國遲來報到?實在是一個令人費解的現象。

歐幾里得的《原本》約在西元前 300 年左右成書,是古希臘數學集大成之作。第七卷討論數的性質,是使用幾何的觀點來理解數。也就是從「單位」的概念出發,以度量直線段的方式引入「數」。第七卷定義 2 說「一個數是由許多單位合成的。」因此,1 代表單位而不算作「數」。定義 11 說「質數是只能為一個單位所量盡者。」定義 16 說「兩數相乘得出的數稱為面,其兩邊就是相乘的數。」所以質數只能是線,而不能稱為面。

歐幾里德畫像。圖/wiki, 公有領域

從這些定義可看出來,古希臘人所謂的「數」是依附在幾何的體系裡而得以操作。中國古代缺乏像《原本》這種按照邏輯次序鋪陳結果的數學書,通常是以解決實際問題的風貌來書寫,因此不太可能探討與闡述「數」的純粹性質。

例如,以《九章算術》為代表的中國古算裡,數字是與矩形、直角三角形的面積緊密相連結,但卻沒有像希臘人那樣分辨,有些數是可以表現為面,而有些數卻不可以。

也許古代中國缺乏一項歐幾里得所擁有的知識背景,因而造成了雙方關注問題的差異。古希臘有一位重要的哲人德謨克利特(Democritus),他主張萬物皆由不可分割的「原子」所構成。在「原子論」的知識背景下,數目 1 就不會與其他數目等量齊觀了,1 是「單位」,是數的「原子」。

圖/envato elements

中國古代沒有明確的「原子論」,《墨子.經說下》所說:「非半,進前取也。前,則中無為半,猶端也。」其中切得不能再切的「端」在《墨子.經說上》解釋為「端,體之無序而最前者也。」也只是類似「原子」的概念,並未發展到德謨克利特的思想程度。「原子論」思想的欠缺,或許是質數在中國古算裡缺席的因素之一。

難以望其項背

康熙敕編的《御製數理精蘊》(簡稱《數理精蘊》)是融合中西數學的百科全書,其中將質數譯為「數根」,並且在附表〈對數闡微〉中列有質數表。雖然質數已經在中國現身,但是數學家並沒有感到相見恨晚而深入探討。

晚清數學名家李善蘭在翻譯歐幾里得《原本》後九卷時,第一卷第一界說為:「數根者唯一能度而他數不能度」,也把質數翻譯成「數根」。

數學家李善蘭。圖/傅任敢 《中華教育界》 1936 -1937年, 公有領域

李善蘭很可能受《數理精蘊》的影響,而去研究判別給定數是否為質數的方法。英國傳教師偉烈亞力(Alexander Wylie)將其中一法,以給編輯的信公布在香港一家英文雜誌上,其敘述為「以 2 的對數乘給定的數,求出其真數,以 2 減同數,以給定數除餘數,若能除盡,則給定數為質數;若不能除盡,則不是質數。」

此命題常被稱為「中國定理」,其實是歐洲早已知道的「費馬小定理」的逆命題,該定理斷言若 p 為質數,則 2p − 2 ≣ 0 (mod p)。

其實李善蘭的方法並不永遠正確,例如:2341 − 2 是 341 的整倍數,但是 341 = 11 × 31 並不是一個質數。1872 年李善蘭在《中西聞見錄》報刊發表了〈考數根法〉一文,成為清末關於質數研究的重要成果,但是他並沒有收錄「中國定理」,應該是他已經知道命題並不為真。

要知道李善蘭與高斯的生命是有重疊的時期,因此當西方以質數為基礎所建立的數論,已經繁複深刻美不勝收之時,也許連李善蘭都不曾完全清楚中國落後的程度是多麼巨大!


數感宇宙探索課程,現正募資中!

天下文化_96
9 篇文章 ・ 7 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。