0

0
0

文字

分享

0
0
0

當車子掉進水裡,腦袋和鞋子千萬要保住-《物理才是最好的人生指南》

PanSci_96
・2015/01/13 ・1235字 ・閱讀時間約 2 分鐘 ・SR值 518 ・六年級

有天晚上,你開車參加晚宴,為了閃避在馬路上玩耍的小孩,方向盤用力一轉,沒想到直接開進湖裡,而且發現車窗全都打不開!這時別忘了,你已了解水壓的特性,它將能幫助你安全又有型地逃脫。

car-under-water-at-the-ferryboat-2

如果不了解流體的相關物理特性,很可能會越弄越糟,反而陷入危險。

你不斷拳打腳踢,嘴裡還罵著髒話;不只如此,額頭狂冒青筋、毫無優雅可言,連鞋子也弄壞了。總算打開車門後,雖然急著浮出水面,但剛剛已經嚇得半死、累得要命、分不清上下左右,根本不知道該往那個方向游,結果身體一邊在水裡掙扎,一邊卻不小心弄掉一隻鞋。

終於,救難人員把你拉上一隻小小的橘色充氣橡皮艇,這時你要不就是衣服往上掀起,露出大塊肥肉,要不就是褲子卡在屁股上,連裡頭的內褲都看得一清二楚。更慘的是,你一副驚嚇過度的樣子,不停發抖,只能緊抓著扶手,任憑小船駛近岸上的電視臺攝影機,而前女友還剛好在當地新聞現場連線中看到你的蠢樣。

-----廣告,請繼續往下閱讀-----

幸好你對車子周圍那些水壓有所了解,如此一來,就能以優雅的方式處理這樣的意外。你試著打開車門,但沒辦法,於是很快決定改用B計畫。車外的水急著想衝進來,好把裡頭的空間填滿;不過它沒有手可以開門,只好頑固地緊緊靠在車上,設法擠進來。

你知道水會把它的所有重量都壓在車上,也知道水的重量大得驚人,還知道即使自己能做出一些讓人印象深刻的瑜伽動作,仍然沒有足夠力量贏過水在車門外所施加的壓力。你心裡有數,水會透過車子內外各個沒有密封的小孔滲進來,讓水位逐漸升高。只要車子裡的水夠多,車子內外的水壓就會差不多,你就有辦法把車門打開。

在內外水壓達到平衡前,你還有一些時間可用,就拿來準備逃脫吧。你脫下鞋子,用鞋帶或其他什麼東西固定在腰部,等到水位跟你的下巴差不多高,就是把門推開的好時機。車子裡有水,車子外也有水,車門內外的水壓都差不多,也就沒什麼阻力。你順利從車內逃脫,還不忘使出優雅的海豚踢!浮上水面後,再以長而緩慢的划水動作把身體往岸邊帶,而岸邊早就聚集一大群消防隊員,十分佩服地看著你的一舉一動。你的行動迅速而確實,他們甚至來不及把那隻小小的橘色救生艇拿出來。

你爬上岸、穿上鞋子(因為它們是整套服裝畫龍點睛的部分),把頭髮往後順一順,再讓消防隊用毯子把你包起來。電視臺的人到了,架好燈光,把你的逃生經過以現場直播傳送出去,還加上字幕:「穿著時尚鞋款的英勇駕駛打敗死神,救了孩童一命。」那孩子的母親上前給你一個擁抱。記者提了幾個問題,你說你並不認為自己是個英雄……如果「英雄」是指有誰為了保護年幼的兒童,寧可讓自己陷入險境,接著又展現出科學知識的威力與臨危不亂的冷靜頭腦,那麼,沒錯,也許「英雄」這個說法 可以客觀地適用於這個狀況。

-----廣告,請繼續往下閱讀-----

本文摘自泛科學2015一月選書《物理才是最好的人生指南》,究竟出版社出版。08ed364c0a044590893d0daf8511ac44

文章難易度
PanSci_96
1217 篇文章 ・ 2149 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
2

文字

分享

0
5
2
怪獸襲來!為什麼會有哥吉拉形狀的雲朵?:千變萬化的流體(三)
ntucase_96
・2021/12/11 ・2345字 ・閱讀時間約 4 分鐘

  • 作者/劉詠鯤

本文轉載自 CASE 報科學 《千變萬化的流體(三):哥吉拉雲—流體的不穩定性

海岸邊的雲層上緣,出現一隻隻如同哥吉拉形狀的雲;原子彈投下後,劇烈爆炸引起的蕈狀雲;土星大氣層內形狀獨特的雲帶……等。這些看似毫無相關的現象,背後其實成因都可以歸納為:流體中的不穩定性。

2020 年在青森縣的海邊,有網友分享了一張雲朵彷彿在進行「哥吉拉大遊行」的照片(圖一左上);也有飛行員在雲層上分享過類似的照片(圖一右上);除此之外,天文學家在土星的大氣層也觀察到相似形狀的雲層(圖一下)。這些「哥吉拉」的行動力竟然如此之高,不只在地球上出現,連土星上都有。這是否暗示它們背後其實具有相同的形成機制呢?

圖一左上:海岸邊的哥吉拉雲,圖/大間觀光土產中心推特
圖一 右上:飛行員在雲層上看到的哥吉拉雲,圖/世界氣象組織(WMO)推特
圖一下:土星大氣層內的雲帶照片。圖/NASA

在<千變萬化的流體(一)>一文中,我們介紹了流體流動的狀態主要可以分成兩種:層流與紊流。層流狀態的流體十分穩定,它可以被視為一層一層獨立的流動來討論;相對的,紊流如同它的名字所表示,流體內部的流動較為混亂,不同層之間的流體會互相混合、影響。而決定是層流還是紊流的關鍵因素便是「不穩定性」[1]

在描述天氣系統為甚麼難以預測時,常常會提到「蝴蝶效應」這個小故事:位在大西洋的颶風,其成因可能只是在亞馬遜森林裡面一隻蝴蝶煽動了翅膀,這個初始的小擾動,隨著時間演變,最終形成尺度龐大的結構。不穩定性在流體中扮演的角色也十分相似。起初流體內部隨機的產生十分微小的擾動,若整個流體的不穩定性足夠大,微小的擾動便有機會繼續成長,直到對整個流體都造成影響。流體中具有各式各樣的不穩定性,在本篇文章中,我們將會介紹與哥吉拉雲還有蕈狀雲有關的兩種不穩定性:克耳文-亥姆霍茲不穩定性以及瑞利-泰勒不穩定性。

-----廣告,請繼續往下閱讀-----

克耳文-亥姆霍茲不穩定性:哥吉拉雲

這個不穩定性得名於兩位對此現象進行研究的物理學家:發明絕對溫標的克耳文爵士,以及對聲學共振系統做出系統性研究的亥姆霍茲(在<香檳聲音哪裡來?>一文中,他曾經登場過)。這個不穩定性發生的條件是:兩層流體之間具有相對速度。

請搭配圖二,讓我們一起來理解這個不穩定性是如何產生哥吉拉雲的。假設有兩層流體,分別向左與向右運動。當它們彼此完美平行時,一切無事,如圖二(a)。但這個狀態其實並不穩定,任何的擾動,都可能會破壞這個完美狀態。例如,流體中形成了如圖二(b)的擾動,接下來流體的運動會如何變化呢?

對於淺藍流體來說,A 點的體積較原本略小,因此流動速度較大,如同澆花時,將水管捏住(管徑縮小),水可以噴得更遠。此外,流速較快也會使得 A 點的壓力減小;但對於紅色流體來說,A 點的壓力反而會增大。如此會導致流體內部的壓力分佈形成圖二(c)。兩種流體之間的壓力差,會進一步使擾動長大,如圖二(d)。最後,由於流體本身橫向的速度,使擾動在橫向上出現變形,如圖二(e)。如此一來,哥吉拉形狀是不是就出現了呢?

圖二:克耳文-亥姆霍茲不穩定性形成示意圖。圖/CASE 報科學

瑞利-泰勒不穩定性:核爆蘑菇雲

接下來,讓我們來看另一種在生活中沒那麼常見,但是看過就很難忘記的不穩定性現象:核爆產生的蘑菇雲。這種現象的成因,是來自於瑞利-泰勒不穩定性,它會發生於密度較大的流體壓在密度小的流體之上時。核彈爆發會在極短時間內釋放出極大熱量,將爆炸中心的空氣瞬間加溫。我們知道,氣體的溫度越高,密度越低,因此在爆炸中心,會瞬間形成大量的低密度空氣。

-----廣告,請繼續往下閱讀-----

讓我們用簡單的模型來看看,這種不穩定性是如何造成蘑菇雲的。圖三(a)中有兩種流體,密度較高的在上,此時整個流體系統處於不穩定態,只要有一點擾動 ,如圖三(b) ,不穩定性就會使擾動擴大。由於密度差異,重力使得密度小的流體上升,密度大的下降,使不穩定度振幅逐漸增大。此外,由於壓力差與密度差的方向並不平行,會導致流體的邊界形成渦旋,如圖三(c)。以上這些效應疊加在一起後[2],流體邊界處便會逐漸形成如蘑菇狀的特徵,如圖三(d)。

圖三:瑞利-泰勒不穩定性示意圖。圖/CASE 報科學

以上兩種流體不穩定性,其實在我們生活中也存在,例如:點燃的線香。由於線香燃燒處的溫度上升,空氣密度下降,此時就滿足瑞利-泰勒不穩定性的條件;當熱空氣上升時,和兩側靜止的空氣有一相對速度,也滿足了克爾文-亥姆霍茲不穩定性條件。只是由於規模較小,發生速度較快,肉眼未必可以清楚的看到如前文中提到的明顯特徵。儘管如此,各位讀者在了解這些不穩定性之後,若是試著觀察看看生活中的各種流體,也許也能找到隱藏起來的「蕈狀雲」喔!

註解

[1] 更詳盡的說明可以參考 CASE<上下顛倒漂浮船>一文
[2] 實際上,形成蘑菇狀構造還與流體在三維條件下的非線性效應有關,數學模型較為複雜,此處只是簡單概述其成因。

參考資料

  1. Kelvin–Helmholtz instability
  2. Rayleigh–Taylor instability
  3. “Single mode hydrodynamic instabilities” draft from Hideaki Takabe.
ntucase_96
30 篇文章 ・ 1320 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

3

16
2

文字

分享

3
16
2
鋪馬路的「瀝青」是液體?放置 94 年只滴下整整 9 滴:千變萬化的流體(一)
ntucase_96
・2021/12/04 ・2242字 ・閱讀時間約 4 分鐘

  • 作者/劉詠鯤

本文轉載自 CASE 報科學 《千變萬化的流體(一):一個做了90年的實驗

從躺在沙灘上,吹拂身體而過的微風,到吃果醬吐司時,苦苦等待滴落的黏稠果醬;光滑如鏡的湖水到構成平整路面的柏油(瀝青)。這些東西之間具有什麼共通性?又是什麼因素造成它們表現出來的性質,具有如此大的差異?

海水與海風都具有流體的特性。圖/Pixabay

流體,泛指任何可以流動的物體,在我們的經驗中,主要包含了氣體和液體。例如充斥我們四周的空氣,以及隨處可見的水。但實際上,有些我們看似為固體的東西,其實也屬於流體,例如堅硬的玻璃。以上這些物質都落在流體的範疇。很顯然地,它們之間應該有某種決定性的差異,那便是它們的「黏滯性」。

流體的黏滯性

從微觀的角度來看,黏滯性可以被看成是流體分子之間的吸引力強弱。我們可以想像眼前有一杯水和一坨麻糬。當我們對著它們吹一口氣時,從微觀的角度來說,便是在對它們表層的分子施力。水分子之間的吸引力比較弱,因此表層的水在受力後能夠自由移動,形成波紋;但麻糬分子之間的作用力較強,表層分子被其他分子緊緊抓住,因此不會形成明顯的運動。

麻糬看起來已經很黏了,但在黏滯性排行榜中,它可能還排不太進去。在生活中存在著一種黏滯係數非常大的流體,雖然可能大家都沒把他當成流體過,那便是:瀝青。為了量測瀝青的黏滯係數,物理學家進行了一個「持續時間最長」的實驗:「瀝青滴漏實驗」。到目前(2021 年)為止,已經持續了 90 幾年。有興趣的讀者可以透過以下連結參與這個實驗的直播:http://www.thetenthwatch.com/feed/

-----廣告,請繼續往下閱讀-----
圖一、瀝青滴落實驗。筆者於 2021/8/17 截圖自上述實驗直播。

若是讀者們沒有看出瀝青正在滴落,不用懷疑播放鍵是不是壞了。畢竟,根據實驗記錄,上一次滴落花了 13 年時間!這個實驗從 1927 年架設完畢,到目前為止,一共只有 9 滴瀝青滴下。以此估計,瀝青的黏滯係數會是水的千億倍。因此,瀝青大概會是黏滯係數排行榜榜首的候選人之一。

那若是我們看向另一端,黏滯係數很小的部分,可以想像當這樣的流體一旦受到外力,會非常容易流動。也許讀者們會好奇,有沒有可能黏滯係數為零呢?有,這種流體被稱作「超流體」。打個比喻,若是咖啡是種超流體,當我們加入奶精、糖攪拌完後,過半個小時來看,會發現它還在不停的旋轉,完全沒有停下來的跡象!這種流體具有非常獨特的性質,但由於其背後物理原理較為複雜(有數個諾貝爾物理獎都與此題目有關),筆者將此題目留至下一篇文章,再進行完整的介紹。接下來,我們先介紹如何描述流體的運動,也就是流體流動的類型:層流與紊流。

層流與紊流

當我們想要描述流體時,可以將某一個特定時刻,流體中每一個點的瞬間速度以箭頭的方式標出,箭頭的方向指向該點的運動方向,箭頭長度則為運動速度大小。例如在一根細管中,若有水流過,可以預期水流會和管壁大致平行。此外,由於管壁的摩擦力,靠近管壁的流體速度會最慢,正中間的流體則最快,形成如圖二般的速度分布。

圖二、管內流體速度分布示意圖。

這種情形下,流體可以被看作一層一層、彼此不會互相混合且穩定的流動,稱為「層流」。雖然表面上看起來流體分子之間如排隊般,以非常整齊的隊伍前進,但是實際上,流體中存在各種各樣的不穩定性(流體中的不穩定性遍布日常生活中,我們會在超流體之後的文章和各位讀者介紹此現象。),會使得流體發生微小的擾動。若是流體的黏滯性夠大,這些微小的擾動便會被摩擦力消耗掉,使得整體看起來依舊穩定流動;但若是擾動足夠克服摩擦力,則不同層之間的流體會開始混合,形成如漩渦般的複雜結構,這種情況被稱為紊流。由以上描述可知,流體的運動會是哪種情況,會和擾動大小與流體黏滯性有關。在科學上,會透過流體的「雷諾數」來加以描述一個流體運動屬於哪種類型。

-----廣告,請繼續往下閱讀-----

層流與紊流的現象在日常生活中其實非常普遍,我們不需要去計算雷諾數,也能夠從流體的外觀來大致分辨它是處於層流還是紊流。例如在欣賞壯麗的瀑布時(如圖三),會發現在水流落下之前,水的流動是相對平穩,顏色呈現深藍色;但當水開始下落形成瀑布時,水的流動變的不穩定,形成白色的水花。讀者們看到這裡,想必已經可以判斷它們分別對應的流體運動種類為何了。

圖三、尼加拉瀑布風景圖。可看到水流在落下前流動較穩定,接近層流;落下後則轉為紊流,充滿白色的泡沫。圖片來源:Kevin Payravi

流體在日常中無處不在,流體性質的研究並非僅僅只是純科學的探索,它們早以走進每個人的生活中。例如飛機機翼如何設計增加浮力、高鐵車頭什麼形狀可以降低風阻、甚至容器瓶口要如何設計,才不會倒水時沿著瓶身留下…等等,這些都和流體的特性密切相關。流體,值得我們更深入的認識它!

參考資料

2021.12.12 PM 0:45 更新:圖三敘述原寫「尼加拉瓜瀑布」。感謝 codocodo2009 提醒,已修改成「尼加拉瀑布」。

所有討論 3
ntucase_96
30 篇文章 ・ 1320 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。