Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

當車子掉進水裡,腦袋和鞋子千萬要保住-《物理才是最好的人生指南》

PanSci_96
・2015/01/13 ・1235字 ・閱讀時間約 2 分鐘 ・SR值 518 ・六年級

有天晚上,你開車參加晚宴,為了閃避在馬路上玩耍的小孩,方向盤用力一轉,沒想到直接開進湖裡,而且發現車窗全都打不開!這時別忘了,你已了解水壓的特性,它將能幫助你安全又有型地逃脫。

car-under-water-at-the-ferryboat-2

如果不了解流體的相關物理特性,很可能會越弄越糟,反而陷入危險。

你不斷拳打腳踢,嘴裡還罵著髒話;不只如此,額頭狂冒青筋、毫無優雅可言,連鞋子也弄壞了。總算打開車門後,雖然急著浮出水面,但剛剛已經嚇得半死、累得要命、分不清上下左右,根本不知道該往那個方向游,結果身體一邊在水裡掙扎,一邊卻不小心弄掉一隻鞋。

終於,救難人員把你拉上一隻小小的橘色充氣橡皮艇,這時你要不就是衣服往上掀起,露出大塊肥肉,要不就是褲子卡在屁股上,連裡頭的內褲都看得一清二楚。更慘的是,你一副驚嚇過度的樣子,不停發抖,只能緊抓著扶手,任憑小船駛近岸上的電視臺攝影機,而前女友還剛好在當地新聞現場連線中看到你的蠢樣。

-----廣告,請繼續往下閱讀-----

幸好你對車子周圍那些水壓有所了解,如此一來,就能以優雅的方式處理這樣的意外。你試著打開車門,但沒辦法,於是很快決定改用B計畫。車外的水急著想衝進來,好把裡頭的空間填滿;不過它沒有手可以開門,只好頑固地緊緊靠在車上,設法擠進來。

你知道水會把它的所有重量都壓在車上,也知道水的重量大得驚人,還知道即使自己能做出一些讓人印象深刻的瑜伽動作,仍然沒有足夠力量贏過水在車門外所施加的壓力。你心裡有數,水會透過車子內外各個沒有密封的小孔滲進來,讓水位逐漸升高。只要車子裡的水夠多,車子內外的水壓就會差不多,你就有辦法把車門打開。

在內外水壓達到平衡前,你還有一些時間可用,就拿來準備逃脫吧。你脫下鞋子,用鞋帶或其他什麼東西固定在腰部,等到水位跟你的下巴差不多高,就是把門推開的好時機。車子裡有水,車子外也有水,車門內外的水壓都差不多,也就沒什麼阻力。你順利從車內逃脫,還不忘使出優雅的海豚踢!浮上水面後,再以長而緩慢的划水動作把身體往岸邊帶,而岸邊早就聚集一大群消防隊員,十分佩服地看著你的一舉一動。你的行動迅速而確實,他們甚至來不及把那隻小小的橘色救生艇拿出來。

你爬上岸、穿上鞋子(因為它們是整套服裝畫龍點睛的部分),把頭髮往後順一順,再讓消防隊用毯子把你包起來。電視臺的人到了,架好燈光,把你的逃生經過以現場直播傳送出去,還加上字幕:「穿著時尚鞋款的英勇駕駛打敗死神,救了孩童一命。」那孩子的母親上前給你一個擁抱。記者提了幾個問題,你說你並不認為自己是個英雄……如果「英雄」是指有誰為了保護年幼的兒童,寧可讓自己陷入險境,接著又展現出科學知識的威力與臨危不亂的冷靜頭腦,那麼,沒錯,也許「英雄」這個說法 可以客觀地適用於這個狀況。

-----廣告,請繼續往下閱讀-----

本文摘自泛科學2015一月選書《物理才是最好的人生指南》,究竟出版社出版。08ed364c0a044590893d0daf8511ac44

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
2

文字

分享

0
5
2
怪獸襲來!為什麼會有哥吉拉形狀的雲朵?:千變萬化的流體(三)
ntucase_96
・2021/12/11 ・2345字 ・閱讀時間約 4 分鐘

  • 作者/劉詠鯤

本文轉載自 CASE 報科學 《千變萬化的流體(三):哥吉拉雲—流體的不穩定性

海岸邊的雲層上緣,出現一隻隻如同哥吉拉形狀的雲;原子彈投下後,劇烈爆炸引起的蕈狀雲;土星大氣層內形狀獨特的雲帶……等。這些看似毫無相關的現象,背後其實成因都可以歸納為:流體中的不穩定性。

2020 年在青森縣的海邊,有網友分享了一張雲朵彷彿在進行「哥吉拉大遊行」的照片(圖一左上);也有飛行員在雲層上分享過類似的照片(圖一右上);除此之外,天文學家在土星的大氣層也觀察到相似形狀的雲層(圖一下)。這些「哥吉拉」的行動力竟然如此之高,不只在地球上出現,連土星上都有。這是否暗示它們背後其實具有相同的形成機制呢?

圖一左上:海岸邊的哥吉拉雲,圖/大間觀光土產中心推特
圖一 右上:飛行員在雲層上看到的哥吉拉雲,圖/世界氣象組織(WMO)推特
圖一下:土星大氣層內的雲帶照片。圖/NASA

在<千變萬化的流體(一)>一文中,我們介紹了流體流動的狀態主要可以分成兩種:層流與紊流。層流狀態的流體十分穩定,它可以被視為一層一層獨立的流動來討論;相對的,紊流如同它的名字所表示,流體內部的流動較為混亂,不同層之間的流體會互相混合、影響。而決定是層流還是紊流的關鍵因素便是「不穩定性」[1]

在描述天氣系統為甚麼難以預測時,常常會提到「蝴蝶效應」這個小故事:位在大西洋的颶風,其成因可能只是在亞馬遜森林裡面一隻蝴蝶煽動了翅膀,這個初始的小擾動,隨著時間演變,最終形成尺度龐大的結構。不穩定性在流體中扮演的角色也十分相似。起初流體內部隨機的產生十分微小的擾動,若整個流體的不穩定性足夠大,微小的擾動便有機會繼續成長,直到對整個流體都造成影響。流體中具有各式各樣的不穩定性,在本篇文章中,我們將會介紹與哥吉拉雲還有蕈狀雲有關的兩種不穩定性:克耳文-亥姆霍茲不穩定性以及瑞利-泰勒不穩定性。

-----廣告,請繼續往下閱讀-----

克耳文-亥姆霍茲不穩定性:哥吉拉雲

這個不穩定性得名於兩位對此現象進行研究的物理學家:發明絕對溫標的克耳文爵士,以及對聲學共振系統做出系統性研究的亥姆霍茲(在<香檳聲音哪裡來?>一文中,他曾經登場過)。這個不穩定性發生的條件是:兩層流體之間具有相對速度。

請搭配圖二,讓我們一起來理解這個不穩定性是如何產生哥吉拉雲的。假設有兩層流體,分別向左與向右運動。當它們彼此完美平行時,一切無事,如圖二(a)。但這個狀態其實並不穩定,任何的擾動,都可能會破壞這個完美狀態。例如,流體中形成了如圖二(b)的擾動,接下來流體的運動會如何變化呢?

對於淺藍流體來說,A 點的體積較原本略小,因此流動速度較大,如同澆花時,將水管捏住(管徑縮小),水可以噴得更遠。此外,流速較快也會使得 A 點的壓力減小;但對於紅色流體來說,A 點的壓力反而會增大。如此會導致流體內部的壓力分佈形成圖二(c)。兩種流體之間的壓力差,會進一步使擾動長大,如圖二(d)。最後,由於流體本身橫向的速度,使擾動在橫向上出現變形,如圖二(e)。如此一來,哥吉拉形狀是不是就出現了呢?

圖二:克耳文-亥姆霍茲不穩定性形成示意圖。圖/CASE 報科學

瑞利-泰勒不穩定性:核爆蘑菇雲

接下來,讓我們來看另一種在生活中沒那麼常見,但是看過就很難忘記的不穩定性現象:核爆產生的蘑菇雲。這種現象的成因,是來自於瑞利-泰勒不穩定性,它會發生於密度較大的流體壓在密度小的流體之上時。核彈爆發會在極短時間內釋放出極大熱量,將爆炸中心的空氣瞬間加溫。我們知道,氣體的溫度越高,密度越低,因此在爆炸中心,會瞬間形成大量的低密度空氣。

-----廣告,請繼續往下閱讀-----

讓我們用簡單的模型來看看,這種不穩定性是如何造成蘑菇雲的。圖三(a)中有兩種流體,密度較高的在上,此時整個流體系統處於不穩定態,只要有一點擾動 ,如圖三(b) ,不穩定性就會使擾動擴大。由於密度差異,重力使得密度小的流體上升,密度大的下降,使不穩定度振幅逐漸增大。此外,由於壓力差與密度差的方向並不平行,會導致流體的邊界形成渦旋,如圖三(c)。以上這些效應疊加在一起後[2],流體邊界處便會逐漸形成如蘑菇狀的特徵,如圖三(d)。

圖三:瑞利-泰勒不穩定性示意圖。圖/CASE 報科學

以上兩種流體不穩定性,其實在我們生活中也存在,例如:點燃的線香。由於線香燃燒處的溫度上升,空氣密度下降,此時就滿足瑞利-泰勒不穩定性的條件;當熱空氣上升時,和兩側靜止的空氣有一相對速度,也滿足了克爾文-亥姆霍茲不穩定性條件。只是由於規模較小,發生速度較快,肉眼未必可以清楚的看到如前文中提到的明顯特徵。儘管如此,各位讀者在了解這些不穩定性之後,若是試著觀察看看生活中的各種流體,也許也能找到隱藏起來的「蕈狀雲」喔!

註解

[1] 更詳盡的說明可以參考 CASE<上下顛倒漂浮船>一文
[2] 實際上,形成蘑菇狀構造還與流體在三維條件下的非線性效應有關,數學模型較為複雜,此處只是簡單概述其成因。

  1. Kelvin–Helmholtz instability
  2. Rayleigh–Taylor instability
  3. “Single mode hydrodynamic instabilities” draft from Hideaki Takabe.
-----廣告,請繼續往下閱讀-----
ntucase_96
30 篇文章 ・ 1482 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

3

16
2

文字

分享

3
16
2
鋪馬路的「瀝青」是液體?放置 94 年只滴下整整 9 滴:千變萬化的流體(一)
ntucase_96
・2021/12/04 ・2242字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/劉詠鯤

本文轉載自 CASE 報科學 《千變萬化的流體(一):一個做了90年的實驗

從躺在沙灘上,吹拂身體而過的微風,到吃果醬吐司時,苦苦等待滴落的黏稠果醬;光滑如鏡的湖水到構成平整路面的柏油(瀝青)。這些東西之間具有什麼共通性?又是什麼因素造成它們表現出來的性質,具有如此大的差異?

海水與海風都具有流體的特性。圖/Pixabay

流體,泛指任何可以流動的物體,在我們的經驗中,主要包含了氣體和液體。例如充斥我們四周的空氣,以及隨處可見的水。但實際上,有些我們看似為固體的東西,其實也屬於流體,例如堅硬的玻璃。以上這些物質都落在流體的範疇。很顯然地,它們之間應該有某種決定性的差異,那便是它們的「黏滯性」。

流體的黏滯性

從微觀的角度來看,黏滯性可以被看成是流體分子之間的吸引力強弱。我們可以想像眼前有一杯水和一坨麻糬。當我們對著它們吹一口氣時,從微觀的角度來說,便是在對它們表層的分子施力。水分子之間的吸引力比較弱,因此表層的水在受力後能夠自由移動,形成波紋;但麻糬分子之間的作用力較強,表層分子被其他分子緊緊抓住,因此不會形成明顯的運動。

麻糬看起來已經很黏了,但在黏滯性排行榜中,它可能還排不太進去。在生活中存在著一種黏滯係數非常大的流體,雖然可能大家都沒把他當成流體過,那便是:瀝青。為了量測瀝青的黏滯係數,物理學家進行了一個「持續時間最長」的實驗:「瀝青滴漏實驗」。到目前(2021 年)為止,已經持續了 90 幾年。有興趣的讀者可以透過以下連結參與這個實驗的直播:http://www.thetenthwatch.com/feed/

-----廣告,請繼續往下閱讀-----
圖一、瀝青滴落實驗。筆者於 2021/8/17 截圖自上述實驗直播。

若是讀者們沒有看出瀝青正在滴落,不用懷疑播放鍵是不是壞了。畢竟,根據實驗記錄,上一次滴落花了 13 年時間!這個實驗從 1927 年架設完畢,到目前為止,一共只有 9 滴瀝青滴下。以此估計,瀝青的黏滯係數會是水的千億倍。因此,瀝青大概會是黏滯係數排行榜榜首的候選人之一。

那若是我們看向另一端,黏滯係數很小的部分,可以想像當這樣的流體一旦受到外力,會非常容易流動。也許讀者們會好奇,有沒有可能黏滯係數為零呢?有,這種流體被稱作「超流體」。打個比喻,若是咖啡是種超流體,當我們加入奶精、糖攪拌完後,過半個小時來看,會發現它還在不停的旋轉,完全沒有停下來的跡象!這種流體具有非常獨特的性質,但由於其背後物理原理較為複雜(有數個諾貝爾物理獎都與此題目有關),筆者將此題目留至下一篇文章,再進行完整的介紹。接下來,我們先介紹如何描述流體的運動,也就是流體流動的類型:層流與紊流。

層流與紊流

當我們想要描述流體時,可以將某一個特定時刻,流體中每一個點的瞬間速度以箭頭的方式標出,箭頭的方向指向該點的運動方向,箭頭長度則為運動速度大小。例如在一根細管中,若有水流過,可以預期水流會和管壁大致平行。此外,由於管壁的摩擦力,靠近管壁的流體速度會最慢,正中間的流體則最快,形成如圖二般的速度分布。

圖二、管內流體速度分布示意圖。

這種情形下,流體可以被看作一層一層、彼此不會互相混合且穩定的流動,稱為「層流」。雖然表面上看起來流體分子之間如排隊般,以非常整齊的隊伍前進,但是實際上,流體中存在各種各樣的不穩定性(流體中的不穩定性遍布日常生活中,我們會在超流體之後的文章和各位讀者介紹此現象。),會使得流體發生微小的擾動。若是流體的黏滯性夠大,這些微小的擾動便會被摩擦力消耗掉,使得整體看起來依舊穩定流動;但若是擾動足夠克服摩擦力,則不同層之間的流體會開始混合,形成如漩渦般的複雜結構,這種情況被稱為紊流。由以上描述可知,流體的運動會是哪種情況,會和擾動大小與流體黏滯性有關。在科學上,會透過流體的「雷諾數」來加以描述一個流體運動屬於哪種類型。

-----廣告,請繼續往下閱讀-----

層流與紊流的現象在日常生活中其實非常普遍,我們不需要去計算雷諾數,也能夠從流體的外觀來大致分辨它是處於層流還是紊流。例如在欣賞壯麗的瀑布時(如圖三),會發現在水流落下之前,水的流動是相對平穩,顏色呈現深藍色;但當水開始下落形成瀑布時,水的流動變的不穩定,形成白色的水花。讀者們看到這裡,想必已經可以判斷它們分別對應的流體運動種類為何了。

圖三、尼加拉瀑布風景圖。可看到水流在落下前流動較穩定,接近層流;落下後則轉為紊流,充滿白色的泡沫。圖片來源:Kevin Payravi

流體在日常中無處不在,流體性質的研究並非僅僅只是純科學的探索,它們早以走進每個人的生活中。例如飛機機翼如何設計增加浮力、高鐵車頭什麼形狀可以降低風阻、甚至容器瓶口要如何設計,才不會倒水時沿著瓶身留下…等等,這些都和流體的特性密切相關。流體,值得我們更深入的認識它!

2021.12.12 PM 0:45 更新:圖三敘述原寫「尼加拉瓜瀑布」。感謝 codocodo2009 提醒,已修改成「尼加拉瀑布」。

-----廣告,請繼續往下閱讀-----
所有討論 3
ntucase_96
30 篇文章 ・ 1482 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。