0

0
0

文字

分享

0
0
0

讓水能「逆流而上」的黑科技--「拓撲流體二極管」是怎麼辦到的?

果殼網_96
・2018/01/17 ・4031字 ・閱讀時間約 8 分鐘 ・SR值 534 ・七年級

-----廣告,請繼續往下閱讀-----

文/陸遙|英國倫敦大學學院(UCL)化學系博士,現為 UCL 機械工程系博士後。研究超疏水多功能材料、固體潤濕性、流變學等。

如果能隨心所欲的控制液體的流動方向又不花費額外能量,將能帶來多大的益處呢?圖/Pixabay

 

電路中的二極管想必大家並不陌生,大名鼎鼎的 LED 就是其中的一種。在二極管中,電流只能朝單方向流動,反向則會被阻斷。但如果我告訴你,流體也有二極管,即液體在一根管子裡只能沿著一個方向定向流動、潤濕,反向則會被阻斷,你或許就要疑惑了,這是怎麼做到的呢?

近日,香港城市大學博士研究生李加乾和中國科學院上海微系統所周曉峰博士在香港城市大學王鑽開教授和美國理海大學(Lehigh University)Manoj K. Chaudhury 教授的指導下,聯合為大家展示了一種通過調整表面微觀形貌,控制液體流向的「拓撲流體二極管」(Topological liquid diode),並在《科學》雜誌的子刊《科學進展》(Science Advances)上發表了他們的研究成果[1]。

讓液體定向流動有什麼用?

「拓撲」一詞由英文 Topology 音譯而來,有研究特定地方地形、地貌的意思 [2]。王鑽開和同事們用拓撲一詞,意在表達通過對材料表面「地形地貌」(即材料表面微觀形貌)的控制,來實現流體的定向移動。

-----廣告,請繼續往下閱讀-----

你可能會問,液體定向移動有什麼用?我可以告訴你,如果沒有液體定向移動,地球上很多動植物就都要滅絕。比如沙漠甲蟲,利用背後親水的區域收集水,再利用親水和疏水區域形成的流體通道將收集的水自發定向地運輸到嘴裡[3]。再比如仙人掌,在沙漠中通過刺來收集水氣,收集的水沿著刺的外端自發定向地傳送到仙人掌的身上 [4]。當然,這種例子並不只在沙漠中才有。像豬籠草的「嘴唇」[5] 和蜥蜴的皮膚[6] 也具有類似功能。

自然界中這些自發、定向運輸液體的例子很多都是依靠其精妙的微觀形貌實現的,本文的主角「拓撲流體二極管」也不例外。接下來我就帶大家來揭開拓撲流體二極管這項黑科技神秘的面紗。

沙漠甲殼蟲和仙人掌。圖片來源:參考文獻 [3]

揭開拓樸流體二極管的作用機制

在拓撲流體二極管的製造中,研究團隊用一種特殊的凹槽構建了一個複雜的表面結構(旁白 : 誰能告訴我這麼複雜的結構是怎麼想到的?!)。這個表面的總體結構是一個U型島狀陣列(U-shaped island arrays)。構成陣列的每個U型島內都有一個U型槽,槽的頂端設計了一個凹角結構(re-entrant structures)。這凹角結構可不是為了好看,而是為了改變表面的潤濕性。

掃描電子顯微鏡下流體二極管表面的微觀形貌。總體結構是一個U型島狀陣列,用一個個長方形“柵欄” 圍著這些U型島狀結構(圖A)。構成陣列的U型島狀結構開口處較寬,向內寬度依次遞減,在每個U型島內都有一個U型槽(圖B)。U型槽的頂端還設計了一個凹角結構(圖C)。這凹角結構可不是為了好看​​,而是為了改變表面的潤濕性。圖片來源:參考文獻[1]

根據密西根大學 Anish Tuteja 教授早期的研究[7],這種凹角結構可以不借助任何化學修飾,讓一個親水表面變成疏水表面。那麼,以這種凹角結構可以不借助任何化學修飾,讓一個親水表面變成疏水表面。那麼,以這種凹角結構為基礎的這一系列設計,會達到什麼效果呢?當水滴滴在該表面上時,這滴水並不會像生活中常見的那樣向四處無序地舖展,而是會沿著單一方向鋪展開來。儘管在相反的方向上也會有較小程度的潤濕,但這種潤濕很快就被流體二極管截斷了。

-----廣告,請繼續往下閱讀-----

不止是水,作者還嘗試了乙醇、甘醇(乙二醇)等其他表面張力、密度、潤濕性各不相同的液體,發現這些液體在流體二極管上也有類似現象。這證明,流體二極管具有普遍適用性。

水滴在流體二極管結構上的單向潤濕現象。圖片來源:參考文獻[1]
水滴在流體二極管結構上的單向潤濕現象。動圖來源:參考文獻[1]

不但是科技的躍進,也解開物理學十多年的謎題

可別小看流體二極管的設計,它解決了一個物理學中十多年來都很難解釋的現象。早在2005年,Manoj K. Chaudhury和 Ankur Chaudhury 教授發現,在一個有水滴線性排列的疏水表面上,油在初始狀態時擴展的很慢。但當油逐漸積累、連在一起並覆蓋水滴的時候,油就擴展的很快[8]。這就好比在一個僅一人能通過的胡同(疏水表面)裡,橫著幾座矮牆(水滴),想要過胡同必須要翻牆。最先爬牆的人(油)比較費力,但是當爬過去的人多了,有一部分人就會留在牆根底下幫助其他人,這樣後來的人爬牆就比較容易了。

儘管此後有一些研究試圖解釋這個現象,但對於油如何突破、克服初始階段緩慢擴展的屏障,並沒有人能給出答案,因此這也成了一個懸而未決的謎,直到最近這份研究的問世。

-----廣告,請繼續往下閱讀-----
油在水滴線性陣列中的慢跑與快跑現象。圖片來源:參考文獻[8]

在研究流體二極管中液體的定向流動時,作者發現一個前驅的液體膜起著關鍵性的作用——後續的液體更願意沿著「前人」的足跡前進,先鋒部隊拉動大部隊前進。那麼這個前驅液體膜又是怎麼來的呢?這要歸結於一種叫角流動的現象(corner flow)[9]。用太空人喝咖啡——準確來說是吸咖啡——舉個例子。在太空中失重的條件下,液體的流動是自由無序的。但由於角流動效應的存在,液體更加傾向於沿著杯壁走。

太空人在失重條件下吸咖啡,由於角流動效應,水沿著杯壁流動而非無序飄散。圖片來源:NASA

在拓撲流體二極管中,會有一部分液體優先沿著柵欄的側壁流動,這部分液體抄小路鋪展,因此跑的較快,成為「先鋒部隊」。

拓撲流體二極管的潤濕過程。首先,先鋒部隊超兩邊小路進發,然後,大部隊趕到,與先鋒部隊匯合。緊接著,先鋒部隊再優先潤濕下一個U型島狀結構。動圖來源:參考文獻[1]

這些「先鋒部隊」會優先「抄小路」從兩邊進入到流體二極管的 U 型槽中,形成前驅液體膜,但並不會超過凹角結構的高度。隨後而來的「大部隊」會被凹角結構所阻隔,堆積在 U 型槽裡。當被阻隔的「大部隊」液體積累到一定量時,會突破凹角結構的束縛,並與前驅液匯合,然後,就會發生「水躍現象」(hydraulic jump),「跳過」U 型島障礙,向前流動。所以從整體來看,液體在拓撲流體二極管裡的流動過程並不是連續的,而是像跨欄一樣「一跳一跳」地前進。

高速攝像機下的水躍現象。拓撲流體二極管的正向潤濕依次經過阻隔、合併和水躍過程。動圖來源:參考文獻[1]
流體二極管的側面剖視圖。前驅液膜在流體二極管中對後續液體的正向引導機理。前驅液體(淺藍色)會優先進入到U型槽裡,在前驅液膜的引導下,水的流動依次經過阻隔(pinning),合併(coalescence)和水躍的過程,使水得以快速地向前流動。圖片來源:參考文獻[1]
 

-----廣告,請繼續往下閱讀-----

流體二極管的正向始終處於「導通」狀態,那麼它反向的「阻斷」狀態又是怎麼來的呢?原因還要從表面結構上找。當液體嘗試在流體二極管中反向流動的時候,被凹角結構攔住的液體「大部隊」會從上方潤濕凹角結構,凹角結構擋住了下方的「前驅液膜」,形成凹角阻隔(re-entrant pinning),這樣,後續的液體「大部隊」沒法跟前驅液膜合併,也就不能順利前進了。

流體二極管中微觀結構對後續液體的反向阻斷機理。凹角結構擋住了液體“大部隊”與前驅液膜的合併,阻止了液體的流動。圖片來源:參考文獻[1]

控制液體的單向流動,甚至能克服重力!

儘管壓力大到一定程度的時候,液體仍然會突破凹角結構,但由於流體二極管正向「導通」狀態非常好,使得液體都願意往正向跑,因此反向的壓力很難增加到突破凹角結構的程度,就這樣,反向的「生意」就都被正向搶跑了,這就促成了液體在流體二極管上的單向流動。

研究人員還將流體二極管擺成圓形和螺旋形向大家展示宏觀上,液體自發的、長距離的定向流動現象。更逆天的一點就是,這個傳輸甚至可以克服重力!

液體在圓形和螺旋形流體二極管上的定向流動。動圖來源:參考文獻[1]

那麼流體二極管在實際中會有什麼樣的應用呢?

首先,談到二極管,第一個想到的應該就是邏輯電路了吧。流體二極管可以構建一個個流體的邏輯門,乃至邏輯門陣列——一個流體的「邏輯電路」。這樣的「流體邏輯電路」應用在微流體控制領域,會大大加快製藥、電子冷卻等行業的發展。其次,流體控製或許也可用於散熱。設想一下,如果能讓冷卻液自發地返回到蒸發端,那可以節省多少成本和能量?

-----廣告,請繼續往下閱讀-----

再者,這種液體自發運輸或許還可用於航空航天領域。在微重力的條件下,控制流體運動的方嚮往往需要更多的能量輸入,連喝杯咖啡都要“吸”著喝。拓撲流體二極管可以讓太空人在太空中喝到不用「吸」的咖啡!最後,我們來大膽設想一下,由於流體二極管對多種液體/流體的普遍適用性,不妨假設引進其他形式的流體,如磁流體–流體二極管/邏輯門,控制磁流體定向移動,說不定未來又會玩出什麼樣的黑科技!讓我們共同期待這項前沿技術的發展吧!

參考文獻

  • Jiaqian Li, Xiaofeng Zhou, Jing Li, Lufeng Che, Jun Yao, Glen McHale, Manoj K. Chaudhury, Zuankai Wang, Topological liquid diode, Science Advances 2017, DOI: 10.1126/sciadv.aao3530.
  • Topology, Merriam-Webster Dictionary, origin: International Scientific Vocabulary
  • Andrew R. Parker, Chris R. Lawrence, Water capture by a desert beetle,  Nature 2001, 414, 33.
  • Jie Ju, Hao Bai, Yongmei Zheng, Tianyi Zhao, Ruochen Fang, Lei Jiang, Nature Communications 2012, 3, Article number: 1247.
  • Huawei Chen, Pengfei Zhang, Liwen Zhang, Hongliang Liu, Ying Jiang, Deyuan Zhang, Zhiwu Han, Lei Jiang, Continuous directional water transport on the peristome surface of Nepenthes alata, Nature 2016, 532, 85.
  • Philipp Comanns, Gerda Buchberger, Andreas Buchsbaum, Richard Baumgartner, Alexander Kogler, Siegfried Bauer, Werner Baumgartner, Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic ‘liquid diode’, Journal of The Royal Society Interface 2015, 12, 20150415.
  • Anish Tuteja, Wonjae Choi, Minglin Ma, Joseph M. Mabry, Sarah A. Mazzella, Gregory C. Rutledge, Gareth H. McKinley, Robert E. Cohen, Designing Superoleophobic Surfaces, Science 2007, 318, 1618.
  • Manoj K. Chaudhury, Ankur Chaudhury, Super spreading of oil by condensed water drops, Soft Matter 2005, 1, 431.
  • Mark M. Weislogel, Seth Lichter, Capillary flow in an interior corner, Journal of Fluid Mechanics 1998, 373, 349.

本文版權屬於果殼網(微信公眾號:Guokr42),原文為〈这个黑科技,终于解决了物理学10多年来悬而未解的迷〉,禁止轉載。如有需要,請聯繫 sns@guokr.com

文章難易度
果殼網_96
108 篇文章 ・ 8 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

1
1

文字

分享

0
1
1
科技人才看過來!三門獨家課程 YouTube 免費看!工研院「ITRI lab on-line」特色技術系列數位課程現正放送中
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/14 ・2829字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 工研院 委託,泛科學企劃執行。

Hey,未來的千萬年薪人才!來一起深入了解那些正在改變我們生活的科技吧!工研院為你精心準備了三堂超有趣的線上課程:從探索醫學界的 PLGA 微米球技術,到揭秘半導體測試的幕後英雄 ATE,再到讓塑膠也能有身分證的創新方法。這不只是學習,更是一場與科技親密接觸的旅程!

第一門 材料檢測與模擬設計之原理與應用系列學習

精選課程:塑膠也有指紋?如何給塑膠「身分證」來驅動循環經濟,減緩地球暖化?你要知道的光譜分選技術-材料光譜分選技術

這堂課將探討如何透過光譜智慧分選技術,為塑膠材料賦予「身分證」,進而推動循環經濟並減緩地球暖化。塑膠標籤的設置主要是為了方便辨識材質,這對於廢塑膠的回收和再利用至關重要。不同號數的塑膠因其分子組成、結構和排列的差異而有不同的特性和應用領域。

-----廣告,請繼續往下閱讀-----

在光譜智慧分選技術中,首先要理解電磁波的概念。電磁波是一種電場和磁場交互變化的波動現象,其不同波長可以用於不同的應用,如手機訊號、微波爐、家用遙控器、X 光攝影等。在塑膠分選中,光譜技術常用的波長範圍落在近紅外到遠紅外光的區域,即 1 微米到 300 微米。這些波段的電磁波能誘發塑膠分子振動,並吸收散射或入射的電磁波能量,從而造成光譜的變化。科學家利用這種振動光譜的變化來獲得塑膠分子的特徵光譜,從而開發出能辨識不同塑膠分子的技術。

舉例來說,最簡單的雙原子分子,如 C-H、O-H 等,會有特定的振動頻率。當結構更複雜的分子(如水分子)被電磁波誘發振動時,會產生更多的振動模式,每種模式對應不同的特徵光譜。塑膠由多種原子組成,因此其特徵振動光譜相當複雜,但這也使得每種塑膠具有獨特的光譜特徵,類似於條碼或指紋,可用於辨識不同類型的塑膠。

本集介紹的光譜技術主要聚焦於紅外線頻譜區段,其波長範圍在 900-2500 納米。在這一範圍內的紅外光能量正好能引起塑膠分子的振動,並在不同波長上產生吸收。透過紅外線感測裝置掃描塑膠分子,可以快速獲得塑膠的材質信息,這不僅有助於塑膠的分類和回收,也對環境保護和資源再利用具有重要意義。


第二門 半導體IC設計與檢測技術系列學習

精選課程:好的良率就是好的利率!考試交卷前都會再檢查、確認了,IC 生產才不會忘記你-半導體測試簡介

-----廣告,請繼續往下閱讀-----

在這堂課中,我們將探討自動化測試機台(ATE)在半導體測試領域中的關鍵作用。自動化測試機台是一種專為測試集成電路(IC)而設計的設備,它可以大幅降低手動測試的人力需求,並減少測試成本。每種IC根據其規格,都需要特定的測試項目。針對這些項目,專門編寫的測試程式被用於自動化測試機台,以自動檢測和篩選出不合格的 IC。

不同種類的 IC 需要不同的測試機台。例如,數位 IC 需要使用專門的數位測試機台,而記憶體 IC 則需要使用演算法來進行測試。類比 IC 和混合訊號 IC 則涉及電性測試,因為它們不是像數位IC那樣僅依賴固定的 0 和 1。

隨著系統晶片(SoC)的出現,測試機台的複雜性也隨之增加。SoC 整合了數位、記憶體、混合訊號甚至 RF IC 於一個晶片中,因此其測試機台必須同時具備上述所有種類機台的功能。這種SoC測試系統非常昂貴,每台造價可能高達數千萬。

最近,模組化測試系統成為了一種趨勢。這種系統的主要特點是其靈活性,能夠根據不同類型的IC進行不同模組的組裝,以進行測試。例如,對於數位IC,可以使用數位模組;對於類比或混合訊號IC,則可以使用相應的類比測試模組,如示波器或任意波型產生器。對於RFIC,則可以插入RF模組,如VNA等網路分析儀。模組化測試系統通常基於PXIE或LXI這樣的系統,其中PXIE是基於PCIE的擴展,加入了與儀器相關的電路;而LXI則是在LAN基礎上加入儀器相關電路。

-----廣告,請繼續往下閱讀-----

總結來說,自動化測試機台在提高半導體製造過程中的良率和效率方面發揮著不可或缺的作用。無論是傳統的ATE還是新興的模組化測試系統,它們都在確保IC品質和性能方面扮演著關鍵角色。


第三門:解密醫材醫藥產品開發攻略系列學習

精選課程:藥不💊隨便你~但少了「它」,藥就不能發揮最大功效!製劑的分類與開發

在這堂課中,我們將深入探討 PLGA 微米球技術及其在長效針劑開發中的重要性。PLGA,全稱為聚乳酸甘醇酸,是一種被廣泛應用於藥物釋放系統的生物相容性高分子材料。自 1989 年日本武田藥廠開發出第一款使用 PLGA 的產品 Lupron Depot® 以來,這種技術已被用於多種藥物的開發,涵蓋了小分子藥物和胜肽類藥物。

PLGA 的關鍵特性,包括乳酸與甘醇酸的比例、分子量及高分子末端基團,對藥物的釋放速率和持續時間有著顯著影響。在製程技術方面,溶劑揮發法和溶劑萃取法是兩種主要的製備方法,它們對於親水性和疏水性藥物的包覆都至關重要。這些製程不僅決定了微米球的形成,也影響著藥物在微米球內的分布和最終的藥物釋放行為。

-----廣告,請繼續往下閱讀-----

此外,微米球製程的工藝還包括乳化、coacervation 過程、溫度、攪拌速度、微米球固化和乾燥速度等因素,這些都對藥物包覆效率、微米球的粒徑大小分佈及藥物在微米球中的分佈位置產生影響。而不同的製程設計往往會導致藥物釋放行為的顯著差異,這對從實驗室到試量產階段的轉換是一大挑戰。

在台灣,工研院在經濟部的支持下建立了一個無菌製劑試製工廠,該工廠配備了微米球製程設備、高壓均質機、in-line均質機、噴霧乾燥機等關鍵製程設備。這些設備不僅能夠支持微米球的生產,還包括了關鍵的分析儀器,如液相層析儀、氣相層析儀、微米/奈米粒徑分析儀等。工研院的團隊擁有豐富的特殊製劑開發經驗,能夠提供從製劑配方研發、分析方法開發、放大製程開發到客製化產線設計的全方位服務。這些資源和專業知識使得工研院能夠有效地支持新藥的臨床前開發和商業化進程。

總的來說,PLGA 微米球技術在藥物釋放系統的開發中扮演著關鍵角色。透過精確的材料選擇和製程控制,這項技術有望為醫藥界帶來更多創新和有效的長效針劑產品。


還想看更多?不用掏出信用卡,三門線上課都在 ITRI Lab on-line 的 YouTube 頻道獨家放送中,手機打開就能看。但……雖然不用急,但是科技進步也是不等人的,快跟上吧!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
最硬核線上課程來了!工研院不藏私開課的原因是?
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/14 ・1114字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 工研院 委託,泛科學企劃執行。

「ITRI Lab on-line」線上學習平台,讓複雜的科技原理簡單學! 圖/envato

你有沒有想過,是什麼驅動著今日產業的創新與變革?答案就在工研院的「ITRI lab on-line」特色技術系列數位課程中!這是一個與眾不同的學習機會,讓你深入了解並參與到台灣產業創新的核心。

首先,來說說「環構計畫」的緣起。這個計畫是為了配合國家創新產業政策而生,它的目標是建置和維護創新技術與服務平台。這不僅幫助企業開發新產品和服務,推動新興產業和新創公司,還能加速創新技術的產業化,促進企業的轉型升級。為此,工研院不斷擴建新研發場域,涉及各主要技術領域,實驗室分為檢測/認驗證、試量產/試營運、軟體與硬體設施服務等類別。

工研院的目標是推動台灣產業的創新優化與轉型,幫助業界把握新契機,布局自主創新和產業韌性所需的基礎設施。為此,工研院提供「ITRI lab on-line」特色技術系列數位課程,這些免費的線上學習資源將幫助你快速掌握產業新趨勢,增強企業技術升級與轉型的意願。

-----廣告,請繼續往下閱讀-----
對於晶片生產來說,必須借助科技力量除錯。 圖/envato

這系列課程包括三大主題:「永續高值材化」、「智能晶片」和「精準健康」。每個主題都有專門的課程,總共22支數位課程影片,涵蓋從技術原理到應用範圍的各方面知識。這些課程不僅介紹了工研院實驗室的專業技術,也為企業提供了學習和轉型的寶貴資源。想先試看嗎?點這裡看看我們推薦的三堂課吧

無論你有興趣的是材料檢測與模擬設計、半導體IC設計與檢測技術,還是醫材醫藥產品開發,這些課程都會給你全新的視角和知識。每個課程都是精心設計,旨在幫助企業和個人掌握關鍵技術,並在低碳化與智慧化的時代中保持領先。

現在,只需點擊下方的連結,就能免費加入這個精彩的學習旅程。快來發掘和學習那些塑造當代產業未來的關鍵技術吧!

材料檢測與模擬設計之原理與應用系列學習
半導體IC設計與檢測技術系列學習
解密醫材醫藥產品開發攻略系列學習

-----廣告,請繼續往下閱讀-----

【ITRI Lab on-line】系列影片可在工研院產業學院YouTube頻道觀看:點我前往

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
3

文字

分享

0
2
3
第三類寬能隙半導體到底在紅什麼?
宜特科技_96
・2023/10/30 ・4510字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

寬能隙半導體晶片
圖/宜特科技

半導體產業崛起,我們常聽到「能隙」這個名詞,到底能隙是什麼?能隙越寬的材料又代表什麼意義呢?
近幾年 5G、電動車、AI 蓬勃發展,新聞常說要靠第三類的「寬能隙半導體」發展,到底寬能隙半導體在紅什麼?我們一起來了解吧!

本文轉載自宜特小學堂〈第三類寬能隙半導體到底在紅什麼?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

宜特科技 第三類寬能隙半導體到底在閎什麼 影片連結
點擊圖片收看影片版

什麼是能隙(Band Gap)?寬能隙又是「寬」在哪裡?

身為理組學生或是工程師,甚至是關心科技產業的一般人,對於「能隙」兩字一定不陌生,但你了解什麼是能隙嗎?

半導體能帶與能隙示意圖
半導體能帶與能隙示意圖。圖/宜特科技

能隙基本上要用量子物理的理論來跟大家說明,「能帶(Band)」的劃分主要為低能帶區的「價電能帶」(Valence Band,簡稱 VB),與高能帶區「導電能帶」(Conduction Band,簡稱 CB)的兩種,在 VB 與 CB 之間即是一個所謂的能帶間隙(Band Gap,簡稱 BG),簡稱「能隙」

能帶因電子流動產生導電特性
能帶因電子流動產生導電特性。圖/宜特科技

金屬材料能夠導電,主要是因為電子都位於高能的(CB)區域內,電子可自由流動;而半導體材料在常溫下,主要電子是位於低能的(VB)區域內而無法流動,當受熱或是獲得足夠大於能隙(BG)的能量時,價電能帶內電子就可克服此能障躍遷至導電能帶,就形成了導電特性。

-----廣告,請繼續往下閱讀-----

我們都知道功率等於電流與電壓加乘的正比關係,在高功率元件(Power device)的使用上如果半導體材料的能隙越寬,元件能承受的電壓、電流和溫度都會大幅提升。大眾所熟知的第一類半導體材料——矽(Si)能隙為 1.12 eV,具有成熟的技術與低成本優勢,廣泛應用於消費性電子產品;第二類半導體材料——砷化鎵(GaAs) 能隙為 1.43eV,相比第一類擁有高頻、抗輻射的特性,因此被廣泛應於在通訊領域。

為什麼需要用到第三類寬能隙半導體(Wide Band Gap,WBG)?

由於近年地球暖化與碳排放衍生的環保問題日益嚴重,世界各國都以節能減碳、綠色經濟為共同的首要發展方向,石化能源必須逐步減少並快速導入綠能節電的應用,因此不論是日常用品、交通運輸或軍事太空都逐步以高能效、低能耗為目標。

歐洲議會在 2023 年通過新法提高減碳目標,為 2030 年減碳 55% 的目標鋪路。國際能源署(IEA)也強建議各國企業在 2050 年前達到「淨零排放」,甚至有傳聞歐盟將通過燃油車禁售令,不論是考量環保或經濟,全球企業的綠色轉型勢在必行。因此在科技發展日新月異的同時,要兼顧大幅提升與改善現有的能源,已是大勢所趨。

目前半導體原料最大宗,是以第一類的矽(Si)晶圓的生產製造為主,但是以低能隙的半導體材料為基礎的產品,物理特性已到達極限,在溫度、頻率、功率皆無法突破,所以具備耐高溫高壓、高能效、低能耗的第三類寬能隙半導體(Wide Band Gap,WBG)就在此背景之下因應而生。

-----廣告,請繼續往下閱讀-----

現在有哪些的寬能隙(WBG)材料?

那麼有哪些更佳的寬能隙材料呢?目前市場所談的第三類半導體是指碳化矽(SiC)和氮化鎵(GaN),第三類寬能隙半導體可以提升更高的操作電壓,產生更大的功率並降低能損,相較矽元件的體積也能大幅縮小。
Si 與 C 的化合物碳化矽(SiC)材料能隙可大於 3.0eV;Ga 與 N 或 O 的化合物氮化鎵(GaN)或氧化鎵(Ga2O3)能隙也分別高達 3.4eV 與 4.9eV,大家可能沒想到的是鑽石的能隙更高達 5.4eV。

特性Si 矽SiC(4H)
碳化矽
GaN
氮化鎵
Ga2O3(β)
氧化鎵
Diamond
鑽石
能隙(eV)1.13.33.44.95.4
遷移率
(cm2/Vs)
1400100012003002000
擊穿電場強度
(MV/cm)
0.32.53.3810
導熱率
(W/cmK)
1.54.91.30.1420
半導體材料的物性比較。圖/宜特科技

氮化鎵(GaN)或氧化鎵(Ga2O3),雖然分別在 LED 照明或是紫外光的濾光光源,已經應用一段時間,但受限於這類半導體材料的特性,其實生產過程充滿了挑戰。例如:要製作 SiC 的單晶晶棒,相較 Si 晶棒的生產困難且時間緩慢很多,以及 GaN 與 Si 晶圓的晶格不匹配時,容易生成差排缺陷(Dislocation Defect)等問題必須克服,導致長久以來相關的製程開發困難及花費高昂,但第三類半導體市場潛力無窮,對於各國大廠來說仍是兵家必爭之地。

寬能隙半導體運用在那些產品上?

現在知名大廠如意法半導體、英飛凌、羅姆等,對寬能隙材料的實際運用均有相當大的突破,如氮化鎵(GaN)在以 Si 或 SiC 為基板的產品已陸續發表,而我們最常接觸到的產品,就是市售的快速充電器,採用的就是 GaN on Si 材料製作的高功率產品。

除了功率提升,因為溫度與熱效應可大幅降低,元件就可以大幅縮小,充電器體積也更加玲瓏小巧,除了已商品化的快充電源領域,第三類半導體在 AI、高效能運算、電動車等等領域的應用也是未來可期。

-----廣告,請繼續往下閱讀-----

(延伸閱讀:泛科學—快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限)

現行以矽基材料為主的高功率產品,多以絕緣閘雙極電晶體(IGBT)或金氧半場效電晶體(MOSFET)為主,下圖可以看到各種功率元件、模組與相關材料應用的範圍,傳統 IGBT 高功率模組大約能應用至一百千瓦(100Kw)以上,但速度卻無法提升至一百萬赫茲(1MHz)。而 GaN 材料雖然速度跟得上,但功率卻無法達到更高的一千瓦(1kW)以上,必須改用 SiC 的材料。

功率元件與相關材料的應用範圍
功率元件與相關材料的應用範圍。圖/英飛凌

SiC 具有比 Si 更好的三倍導熱率,使得元件體積又可以更小,這些特性使它更適合應用在電動車領域。特斯拉的 model3 也從原先的 IGBT ,改成使用意法半導體生產的 SiC 功率元件,應用在其牽引逆變器(Traction inverter)、直流電交互轉換器與充電器(DC-to-DC converter & on-board charger),能夠提高電能使用效率與降低能損。

特斯拉充電樁
多家車廠加入特斯拉充電網路。圖/特斯拉

在未來更高的電力能源需求下,車載裝置除了基本要具備高功率,還需要極高速的充電能力來因應電力補充,車用充電樁、5G 通訊基地台、交通運輸工具、甚至衛星太空站等更大的電力能源需求,相關的電流傳輸轉換,電傳速度的要求以及降低能損,就必須邁向更有效率的寬能隙材料著重進行開發,超高功率的 SiC 元件模組需求亦會水漲船高。

-----廣告,請繼續往下閱讀-----

寬能隙半導體在開發生產階段,需進行那些驗證分析?

根據宜特的觀察,晶圓代工廠與功率 IDM 廠商正持續努力研究與開發。不過,新半導體材料在開發初期,會有許多需要進行研發驗證的狀況,近年我們已協助多家寬能隙半導體(WBG)產業的開發與生產驗證。

比如磊晶製程相關的結構或缺陷分析,就可以藉由雙束聚焦離子束(Dual beam FIB)製備剖面樣品並進行尺寸量測或成分分析(EDS),亦可搭配穿透式電子顯微鏡(TEM)進行奈米級的缺陷觀察;擴散區域的分析可經由樣品研磨製備剖面後,進行掃描式電子顯微鏡(SEM)觀察以及掛載在原子力顯微鏡 (AFM) 上的偵測模組-掃描式電容顯微鏡(SCM)判別摻雜區域的型態與尺寸量測。

下圖為 SiC 的元件分析擴散區摻雜的型態,我們可以先用 SEM 觀察井區(Well)的分布位置,再經由 SCM 判斷上層分別有 N 與 P 型 Well 以及磊晶層(EPI) 為 N 型。

SEM及SCM分析的量測圖
使用 SEM 剖面觀察 SiC 元件的結構,搭配 SCM 分析 N/P 型與擴散區的量測。圖/宜特科技

另外在摻雜元素及濃度的分析,則可透過二次離子質譜分析儀(SIMS)的技術,下圖 GaN on Si 的元件,先用雙束聚焦離子束(Dual beam FIB)進行剖面成份分析(EDS)判斷磊晶區域的主要成份之後,提供 SIMS 參考再進行摻雜元素 Mg 定量分析濃度的結果,作為電性調整的依據。

-----廣告,請繼續往下閱讀-----
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度。圖/宜特科技

除了上述介紹 WBG 元件結構的解析之外,其它產品也都可以透過宜特實驗室專業材料分析及電性、物性故障分析來尋求解答,包括因應安全要求更高的產品可靠度測試與評估,藉由宜特可以提供更完整與全方位的驗證服務。

希望透過本文介紹,讓大家對第三類半導體有更進一步的了解,近期被稱為第四類半導體的氧化鎵(Ga2O3)也逐漸躍上檯面,它相較於第三類半導體碳化矽(SiC)與氮化鎵(GaN),基板製作更加容易,材料也能承受更高電壓的崩潰電壓與臨界電場,半導體材料的發展絕對是日新月異,也代表未來會有更多令人期待的新發現。

本文出自 www.istgroup.com。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室