0

1
1

文字

分享

0
1
1

科技人才看過來!三門獨家課程 YouTube 免費看!工研院「ITRI lab on-line」特色技術系列數位課程現正放送中

鳥苷三磷酸 (PanSci Promo)_96
・2023/12/14 ・2829字 ・閱讀時間約 5 分鐘

本文由 工研院 委託,泛科學企劃執行。

Hey,未來的千萬年薪人才!來一起深入了解那些正在改變我們生活的科技吧!工研院為你精心準備了三堂超有趣的線上課程:從探索醫學界的 PLGA 微米球技術,到揭秘半導體測試的幕後英雄 ATE,再到讓塑膠也能有身分證的創新方法。這不只是學習,更是一場與科技親密接觸的旅程!

第一門 材料檢測與模擬設計之原理與應用系列學習

精選課程:塑膠也有指紋?如何給塑膠「身分證」來驅動循環經濟,減緩地球暖化?你要知道的光譜分選技術-材料光譜分選技術

這堂課將探討如何透過光譜智慧分選技術,為塑膠材料賦予「身分證」,進而推動循環經濟並減緩地球暖化。塑膠標籤的設置主要是為了方便辨識材質,這對於廢塑膠的回收和再利用至關重要。不同號數的塑膠因其分子組成、結構和排列的差異而有不同的特性和應用領域。

在光譜智慧分選技術中,首先要理解電磁波的概念。電磁波是一種電場和磁場交互變化的波動現象,其不同波長可以用於不同的應用,如手機訊號、微波爐、家用遙控器、X 光攝影等。在塑膠分選中,光譜技術常用的波長範圍落在近紅外到遠紅外光的區域,即 1 微米到 300 微米。這些波段的電磁波能誘發塑膠分子振動,並吸收散射或入射的電磁波能量,從而造成光譜的變化。科學家利用這種振動光譜的變化來獲得塑膠分子的特徵光譜,從而開發出能辨識不同塑膠分子的技術。

舉例來說,最簡單的雙原子分子,如 C-H、O-H 等,會有特定的振動頻率。當結構更複雜的分子(如水分子)被電磁波誘發振動時,會產生更多的振動模式,每種模式對應不同的特徵光譜。塑膠由多種原子組成,因此其特徵振動光譜相當複雜,但這也使得每種塑膠具有獨特的光譜特徵,類似於條碼或指紋,可用於辨識不同類型的塑膠。

本集介紹的光譜技術主要聚焦於紅外線頻譜區段,其波長範圍在 900-2500 納米。在這一範圍內的紅外光能量正好能引起塑膠分子的振動,並在不同波長上產生吸收。透過紅外線感測裝置掃描塑膠分子,可以快速獲得塑膠的材質信息,這不僅有助於塑膠的分類和回收,也對環境保護和資源再利用具有重要意義。


第二門 半導體IC設計與檢測技術系列學習

精選課程:好的良率就是好的利率!考試交卷前都會再檢查、確認了,IC 生產才不會忘記你-半導體測試簡介

在這堂課中,我們將探討自動化測試機台(ATE)在半導體測試領域中的關鍵作用。自動化測試機台是一種專為測試集成電路(IC)而設計的設備,它可以大幅降低手動測試的人力需求,並減少測試成本。每種IC根據其規格,都需要特定的測試項目。針對這些項目,專門編寫的測試程式被用於自動化測試機台,以自動檢測和篩選出不合格的 IC。

不同種類的 IC 需要不同的測試機台。例如,數位 IC 需要使用專門的數位測試機台,而記憶體 IC 則需要使用演算法來進行測試。類比 IC 和混合訊號 IC 則涉及電性測試,因為它們不是像數位IC那樣僅依賴固定的 0 和 1。

隨著系統晶片(SoC)的出現,測試機台的複雜性也隨之增加。SoC 整合了數位、記憶體、混合訊號甚至 RF IC 於一個晶片中,因此其測試機台必須同時具備上述所有種類機台的功能。這種SoC測試系統非常昂貴,每台造價可能高達數千萬。

最近,模組化測試系統成為了一種趨勢。這種系統的主要特點是其靈活性,能夠根據不同類型的IC進行不同模組的組裝,以進行測試。例如,對於數位IC,可以使用數位模組;對於類比或混合訊號IC,則可以使用相應的類比測試模組,如示波器或任意波型產生器。對於RFIC,則可以插入RF模組,如VNA等網路分析儀。模組化測試系統通常基於PXIE或LXI這樣的系統,其中PXIE是基於PCIE的擴展,加入了與儀器相關的電路;而LXI則是在LAN基礎上加入儀器相關電路。

總結來說,自動化測試機台在提高半導體製造過程中的良率和效率方面發揮著不可或缺的作用。無論是傳統的ATE還是新興的模組化測試系統,它們都在確保IC品質和性能方面扮演著關鍵角色。


第三門:解密醫材醫藥產品開發攻略系列學習

精選課程:藥不💊隨便你~但少了「它」,藥就不能發揮最大功效!製劑的分類與開發

在這堂課中,我們將深入探討 PLGA 微米球技術及其在長效針劑開發中的重要性。PLGA,全稱為聚乳酸甘醇酸,是一種被廣泛應用於藥物釋放系統的生物相容性高分子材料。自 1989 年日本武田藥廠開發出第一款使用 PLGA 的產品 Lupron Depot® 以來,這種技術已被用於多種藥物的開發,涵蓋了小分子藥物和胜肽類藥物。

PLGA 的關鍵特性,包括乳酸與甘醇酸的比例、分子量及高分子末端基團,對藥物的釋放速率和持續時間有著顯著影響。在製程技術方面,溶劑揮發法和溶劑萃取法是兩種主要的製備方法,它們對於親水性和疏水性藥物的包覆都至關重要。這些製程不僅決定了微米球的形成,也影響著藥物在微米球內的分布和最終的藥物釋放行為。

此外,微米球製程的工藝還包括乳化、coacervation 過程、溫度、攪拌速度、微米球固化和乾燥速度等因素,這些都對藥物包覆效率、微米球的粒徑大小分佈及藥物在微米球中的分佈位置產生影響。而不同的製程設計往往會導致藥物釋放行為的顯著差異,這對從實驗室到試量產階段的轉換是一大挑戰。

在台灣,工研院在經濟部的支持下建立了一個無菌製劑試製工廠,該工廠配備了微米球製程設備、高壓均質機、in-line均質機、噴霧乾燥機等關鍵製程設備。這些設備不僅能夠支持微米球的生產,還包括了關鍵的分析儀器,如液相層析儀、氣相層析儀、微米/奈米粒徑分析儀等。工研院的團隊擁有豐富的特殊製劑開發經驗,能夠提供從製劑配方研發、分析方法開發、放大製程開發到客製化產線設計的全方位服務。這些資源和專業知識使得工研院能夠有效地支持新藥的臨床前開發和商業化進程。

總的來說,PLGA 微米球技術在藥物釋放系統的開發中扮演著關鍵角色。透過精確的材料選擇和製程控制,這項技術有望為醫藥界帶來更多創新和有效的長效針劑產品。


還想看更多?不用掏出信用卡,三門線上課都在 ITRI Lab on-line 的 YouTube 頻道獨家放送中,手機打開就能看。但……雖然不用急,但是科技進步也是不等人的,快跟上吧!

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
最硬核線上課程來了!工研院不藏私開課的原因是?
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/14 ・1114字 ・閱讀時間約 2 分鐘

本文由 工研院 委託,泛科學企劃執行。

「ITRI Lab on-line」線上學習平台,讓複雜的科技原理簡單學! 圖/envato

你有沒有想過,是什麼驅動著今日產業的創新與變革?答案就在工研院的「ITRI lab on-line」特色技術系列數位課程中!這是一個與眾不同的學習機會,讓你深入了解並參與到台灣產業創新的核心。

首先,來說說「環構計畫」的緣起。這個計畫是為了配合國家創新產業政策而生,它的目標是建置和維護創新技術與服務平台。這不僅幫助企業開發新產品和服務,推動新興產業和新創公司,還能加速創新技術的產業化,促進企業的轉型升級。為此,工研院不斷擴建新研發場域,涉及各主要技術領域,實驗室分為檢測/認驗證、試量產/試營運、軟體與硬體設施服務等類別。

工研院的目標是推動台灣產業的創新優化與轉型,幫助業界把握新契機,布局自主創新和產業韌性所需的基礎設施。為此,工研院提供「ITRI lab on-line」特色技術系列數位課程,這些免費的線上學習資源將幫助你快速掌握產業新趨勢,增強企業技術升級與轉型的意願。

對於晶片生產來說,必須借助科技力量除錯。 圖/envato

這系列課程包括三大主題:「永續高值材化」、「智能晶片」和「精準健康」。每個主題都有專門的課程,總共22支數位課程影片,涵蓋從技術原理到應用範圍的各方面知識。這些課程不僅介紹了工研院實驗室的專業技術,也為企業提供了學習和轉型的寶貴資源。想先試看嗎?點這裡看看我們推薦的三堂課吧

無論你有興趣的是材料檢測與模擬設計、半導體IC設計與檢測技術,還是醫材醫藥產品開發,這些課程都會給你全新的視角和知識。每個課程都是精心設計,旨在幫助企業和個人掌握關鍵技術,並在低碳化與智慧化的時代中保持領先。

現在,只需點擊下方的連結,就能免費加入這個精彩的學習旅程。快來發掘和學習那些塑造當代產業未來的關鍵技術吧!

材料檢測與模擬設計之原理與應用系列學習
半導體IC設計與檢測技術系列學習
解密醫材醫藥產品開發攻略系列學習

【ITRI Lab on-line】系列影片可在工研院產業學院YouTube頻道觀看:點我前往

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

4
2

文字

分享

1
4
2
宇宙文明演化史(下):文明蘊含的資訊量與精細結構的掌握
Castaly Fan (范欽淨)_96
・2023/06/27 ・4854字 ・閱讀時間約 10 分鐘

編按:說到星際文明的發展程度,科幻愛好者必定會提到「卡爾達肖夫指數」,以使用的能源多寡,來區分文明發達程度。然而,除了從能源來評斷文明進程,其實還有其他的評判方式。

「宇宙文明演化史」系列,將在上篇回顧「卡爾達肖夫指數」,下篇介紹較少討論的「資訊量」與「微觀尺度」的評斷觀點。

資訊量的掌握層級

卡爾達肖夫指數是以「能量」作為文明分級的依據。同時,薩根(Carl Sagan)也有提出不同的分類法。他將文明所擁有的「資訊含量」作為依據,將文明分出「A — Z 級」。這些資訊量的定義很廣泛,語言、文字、影像都屬於資訊量的一部分。

在薩根的分類法中,「A 級」文明能掌握 106 位元的資訊,但目前人類史上的任何一個文明所掌握的資訊量都比這個數目還多。要超越一個 A 級文明相當簡單,比如:你只需要用「二分法」試探,例如判斷這個文明「是存在還是消亡的」。探問過二十次這樣的問題後,相當於掌握了 220 種可能性,這個數字剛好略大於 106

也就是說,這已然囊括了一個 A 級文明的所有資訊,一旦通過了這個二分法測試,就可以被判定為 B 級文明。以此類推,當人類所擁有的資訊量每增加十倍、便對應到不同的字母分級,因此,在這個分類中最為先進的是「Z 級」文明、相當於能掌握 1031 位元的資訊量。

資訊量的爆炸最早可以追溯至文字發明開始,書面文字使得人類得以記載當下、乃至於過去發生的一切歷史。古希臘時代所有的書面文物加總起來大概對應於 109 位元的資訊量,相當於薩根筆下的 C 級文明。1970、80 年代,薩根從全世界所有藏書館數以千萬計的藏書總量、頁數進行統計,我們人類從歷史上至當代所擁有的文字、語言、圖像等資訊含量總計大約是 10¹⁵ 位元,因此被歸類為「0.7 H」類文明。

而資訊量的第二次大爆炸莫過於網際網路的誕生。當網路普及後,無論是科學、經濟、政治、醫療、娛樂、藝術等包羅萬象的事物,都裝載在網際網路之中。2016 年,全球網路所涵括的總資訊量大概是 1.3 ZB (zettabytes),大約相當於 1022 位元,對應於 Q 級文明。根據國際資訊公司(IDC)預測,人類所擁有的數據庫資訊總量在 2025 年可以達到 175 ZB,相當於 1024 位元——也就是說,當前人類正在往「S 級文明」邁進。

有趣的是,薩根推測人類初次接觸到的外星文明應當是 1.5 J 到 1.8 K 類的文明,通常他們已然克服恆星際旅行的瓶頸。至於卡爾達肖夫的第 II 型文明,大約對應於 Q 類文明;而得以掌控可觀測宇宙大部分星系的 III 型文明,則可以達到 Z 類文明的水平。畢竟掌握時空旅行需要相當複雜的計算與模擬,需要遠超越當今的人類設備所擁有的一切運算能力。

然而,從目前的角度來看,顯而易見地——我們早已超越了他所預測的第 II 型文明等級。這是因為薩根在當時提出這個分類法時,尚未預測到數十年後的今天資訊量會隨著網路的出現而劇增。即使在薩根指數定義的資訊量必須是「單一而不重複的」(比如 A 網站的圖片是從B網站引用來的、同時 C 網站也使用了該圖片,我們只能將該影像視為一組位元、而非三組),但這些資訊在枝繁葉茂的網路時代已然是幾乎不可能被估算的。

因此,薩根的這個分級法在網際網路出現後便可能無法作為合適的指標,但卡爾達肖夫指數目前依然能適用;換言之,資訊量急速暴增似乎也側面反映了「能量」對於人類而言比「資訊量」更難駕馭的事實。

2000 年代之後,網際網路的發軔造就了資訊量呈指數成長。圖/Statista

微觀尺度的操作層級

另一個有關文明的分級是由英國宇宙學家約翰.巴羅(John D. Barrow)所提出的,是基於人類對於「微觀尺度」的「操作程度」。他發現,科學史上人類似乎不斷朝著微小尺度的事物進行探索,從生活中隨處可見的宏觀機械裝置、顯微鏡下的分析、到分子原子尺度的研究,某種程度上,「探測尺度」似乎與文明發達程度成正比。他將文明發達程度區分為下列等級:

  1. 負 I 型文明(機械文明)
    該文明能操控與個體同等尺度的一切物件,比如採礦、建築樓房、使用機械裝置等等。
  2. 負 II 型文明(生物工程文明)
    該文明能操控基因序列,或者藉由移植組織、器官來改變生命體的特性。
  3. 負 III 型文明(化學工程文明)
    該文明能操控分子,比如透過改變分子鍵結創造新物質。
  4. 負 IV 型文明(奈米文明)
    該文明得以操控個別原子,實現奈米科技在原子尺度的應用,並可能透過科技創造出複雜的人造生命體。
  5. 負 V 型文明(核子文明)
    該文明得以操控原子核,並能自由改造組成原子核的質子、中子。
  6. 負 VI 型文明(粒子文明)
    該文明將能操控夸克、輕子等組成萬物的基本粒子,並且能隨心所欲聚集粒子、駕馭高能量。
  7. 負 Ω 型文明(時空文明)
    該文明將能操控普朗克尺度(10-35 公尺)下的事物,比如量子泡沫(quantum foam)等微觀時空結構;他們將有能力透過負能量或者奇異物質控制、放大隨機漲落的蟲洞,從而具備實現時空旅行的能力。

顯而易見地,人類距離負 Ω 型文明依然來日方長。目前,人類能夠自由操控與我們相同尺度的機械物件,可以建築、採礦,也可以完成一些簡單的基因工程;在近一個世紀內,我們掌握了相對論、發明了人造衛星與 GPS,同時也因為量子力學的發跡,打造出各式各樣的電子產品。但我們尚未能夠自由改變分子鍵結、發明新物質的能力也是侷限的、更無法隨心所欲操控並改變原子結構,因此目前人類大概落在負 I 型文明與負 II 型文明之間。

尺度的數量級:愈先進的文明可能可以探測到愈微觀的結構。圖/筆者繪製

從物理學的角度來看,「探測尺度」和卡爾達肖夫指數的「能量」其實也是可以呼應的。由於相對論告訴我們宇宙中萬物都有一個速限,也就是光速,這意味著無論是能量、溫度、尺度、甚至時間單位都有一個極限值,也就是「普朗克單位」。在歷史上各種對撞機實驗告訴我們一個事實:當對撞機的能量愈高,人類所能探測的尺度就愈小。

事實上,普朗克能量(約 1.96x10^9 焦耳,相當於一輛車中 16 加侖汽油槽所提供的能量——貌似普通,然而這個值在微觀尺度下是相當大的,「焦耳」這單位在微觀世界大概相當於用「光年」換算人類尺度的距離)對應於一個普朗克質量黑洞的史瓦西半徑(約 10^(-35) 公尺,亦即普朗克尺度);用通俗的語言來說就是:一旦對撞機能量值大於普朗克能量,相當於把對應的質量壓縮到了小於史瓦西半徑的尺度,從而產生「黑洞」——即使是微型黑洞,也意味著我們的探測將被黑洞視界所設限。

換句話說,普朗克能量相當於我們能探測普朗克尺度的所需能量;一旦超越了這個值,我們的探測將因為黑洞的產生而不再精確。因此,即使是一個無限發達的文明,普朗克長度將會成為探測尺度的最終極限,小於普朗克尺度的事物便不再具有物理意義——要注意的是,這些事實是基於目前「已知的物理理論」,假設未來文明已經掌握了結合量子場論與廣義相對論的萬有理論,這些極限值並不是沒有被推翻的可能性。

對於未來文明的展望

從最基本有機分子、形成碳基生命體、再演化成為人類這樣的智慧生命,這樣的機率可以說是趨近於零,也因為如此,才有「地球殊異假說」、甚至是「創造論」這些爭辯。我們必須剛好躲過演化史上的大滅絕事件,並且在安穩的自然環境下演化為智人。這段過程還要大概經過一、兩百萬年後,才開始有文明的誕生;而縱觀整個人類史,科學正式發跡至今其實也就只有幾百年。

把地球 46 億年的歷史濃縮在一份年曆上,人類進入舊石器時代大概對應於 12 月 31 號晚上 11 點,大概跨年前 25 秒才進入新石器時代,而從文藝復興、大航海時代、科學革命至今,在這年曆的尺度下其實根本還不到一秒鐘。這還僅僅只是地球史的尺度——如果考量到 137 億年的宇宙史尺度,科技文明的興起根本是連一瞬間都還不到的事,可見人類的科技目前還算是相當稚嫩的。

科幻作品中那些搭乘星艦、遨遊星際空間的劇情,大多數便是 II 型文明;至於可以利用曲速引擎穿越時空的,或許是 III 型文明才能實現的。對於 II 型文明而言,他們或許能夠透過「戴森球」(Dyson sphere)控制恆星能量的輸出。當一個文明的工業發達到一個程度,便能夠駕馭恆星能量,搭建一系列能源板或人造衛星,從而環繞著恆星本體、調控能量的輸出,這種大規模的人造結構便稱為「戴森球」。

要建造這類型的結構,目前所知的方法大概就是藉由太空梭或者人造衛星在行星軌道上搭建一圈能源板,並可能需要碳纖維或者更堅韌且輕便的材料。

最基本的構造大概是建構一圈「戴森環」,再來是更多戴森環組裝成的「戴森雲」,或者可以透過光壓與重力的平衡打造出更完整的「戴森泡」;如果科技更發達,則有機會建造出完整且均勻的球殼包覆著恆星以及周圍的行星,也就是「戴森殼」,這類型結構基本上可以完全駕馭母恆星的能量、並且可以將球殼內層表面改建為太空殖民地——但這以目前人類科技水平、或者資金限制等各層面而言,數百年內是不太可能實現的。

先進文明所建造的「戴森球」想像圖。圖/space.com

2015 年,恆星 KIC 8462852 的光變曲線一度成為天文學界的謎團,因為當時天文學家們觀測到該恆星的光譜有異常,且這一異常用傳統模型(比如周邊小行星帶、彗星雲氣等理論)是無法解釋的,因此,有一部份天文學家猜測該恆星的光度變化可能源於「人造巨型結構」;也就是說,能造成光譜像觀測結果那樣異常變化的原因,唯一合理的可能性就是「戴森球」的環繞與掩蔽。

這項研究吸引了當時不少外星愛好者的興趣,畢竟這顆恆星很可能正被高等外星文明所搭建的一系列巨大人工建築圍繞著!然而,根據 2019 至 2021 年的最新研究,發現了這顆恆星其實有一顆「伴星」在外圍,而系外衛星的殘骸大規模地遮蔽了恆星、致使光度出現異常。因此,目前並沒有證據指出戴森球這種人工結構真實存在。

綜上所述,人類文明目前還算是新生兒,也或許,宇宙中還沒有更先進的文明出現。但在躍升為第 I 型文明之前,我們恐怕會經歷各種挑戰,而有些已經發生過、有些則或許正在醞釀,例如——宗教戰爭、糧食危機、核武威脅、氣候災難等等。

從目前看來,氣候變遷便是當務之急:人類過度排放溫室氣體,溫室效應導致了海平面上升、全球暖化,間接引發了各地氣候的異常、熱浪、饑荒,並一再落入惡性循環。此外,在二戰期間人類發明並使用了核子武器,其毀滅性更是不容輕忽的。我們尚不需考慮火山、地震這些自然災害,若無法擺脫上述這些境況,人類很有可能會在蛻變為 I 型文明前便自取滅亡。

人類文明雖然已有一定的科技水平,然而在卡爾達肖夫指數中,目前仍處於第 0.7 型文明。在躍升成為I型文明之前,有可能面臨生態危機、核子戰爭而自取滅亡。上圖為正在排放溫室氣體的工業煙囪。圖/Economist Intelligence Unit

因此,在未來數十年內,除了科技的提升以外,人類的當務之急是避免氣候災害與核武戰爭的發生。而人類對於星系文明的好奇與嚮往從未間斷,誠如 1977 年發射至太空的航海家金唱片中、美國總統吉米.卡特所提及的:

「我們正邁步度過我們的年月,好讓我們得以共生於你們的時代。我們期望有朝一日,能夠共同解決彼此所面臨的難題,並且聯合組成一個星系文明共同體。」

We are attempting to survive our time so we may live into yours. We hope someday, having solved the problems we face, to join a community of galactic civilizations.

參考文獻 / 延伸閱讀

  1. Kardashev, N.S. (1964). Transmission of information by extraterrestrial civilizations. articles.adsabs.harvard.edu.
  2. 加來道雄,《穿梭超時空》,台北:商周出版,2013
  3. 加來道雄,《平行宇宙》,台北:商周出版,2015
  4. 卡爾.薩根,《宇宙・宇宙》,台北:遠流出版事業股份有限公司,2010
  5. 史蒂芬.霍金,《胡桃裡的宇宙》,台北:大塊文化,2001
所有討論 1
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。