0

0
0

文字

分享

0
0
0

樂透:一定會中獎,但機率小到不行!-《不大可能法則》

PanSci_96
・2015/01/12 ・2227字 ・閱讀時間約 4 分鐘 ・SR值 485 ・五年級

有一件事深受必然法則影響,只是我們或許沒有察覺,那就是樂透。

根據我手上的《新牛津英語字典》(New Oxford Dictionary of English),樂透的定義為「藉由販售編號票券並發獎金給持有某一隨機選中之號碼的票券者來集資的方式」。這套作法由來已久,同樣的原理也早就被人用來挑選陪審團成員和理事會代表。一七六三年,西班牙國王卡洛斯三世(Carlos III)推出樂透來募款,以資助西班牙部隊參與拿破崙戰爭。然而,樂透經常會讓發行者和道德上反對樂透的人彼此對立。的確,由於樂透中獎率極低(還記得那一株草嗎?),不少人認為這只是一種從窮人和最買不起樂透的人身上榨取金錢的手段。

目前的樂透彩券上,通常會有一小組從一大群數字中選出的號碼。例如英國國家彩券上有六組號碼,購買者可以挑選從一到四十九的整數;芬蘭樂透彩從三十九個數字中選出七個;美國賓州凱許五號彩券,從四十三個數字中挑出五個;佛州新范特西五號彩券則從三十六個號碼挑選五個。有時為了方便起見,這類樂透稱為r╲s彩券,其中s是可挑選的號碼總數,r是應挑的號碼數,例如英國國家彩券的s是49,r是6。你手上的彩券要對中由電腦隨機選出的r組號碼,其機率由r和s的數值共同決定。兩者數值愈大,單張彩券的中獎率就愈低,因為從s組號碼中選出r組號碼的可能組合也愈多。購買一張英國國家彩券,中獎(分得彩金)的機率為1/13,983,816,約為一千四百萬分之一。國家彩券的宣傳說得沒錯,你也可能中獎!只是它沒有告訴你,那機率小到不行。[1]

有些樂透彩券會要求購買者挑選兩套號碼,例如歐洲百萬樂透彩券除了必須從前五十個整數中挑出五個數字,還要從前十一個整數中再挑兩個,因此是5╲50+2╲11彩券。美國威力球樂透必須從前五十九個整數挑選五個,再從前三十五個數字挑選一個,是5╲59+1╲35彩券(不過這些數字以往曾經更改過)。隨機選號的威力球彩券,中獎機率是1/175,223,510。

假設你買了一張威力球彩券,也就是從一到五十九中選了五個數字,又從一到三十五中選了一個數字,結果中了頭獎,你可能會覺得自己很幸運。你在挑選號碼時也許有什麼邏輯,如出生年月日,這時就可能用第二章提到的某個因素來解釋。但你也可能是用電腦快選機制挑的號碼(大多數樂透彩都有這種隨機選號服務),這時你或許會說頭獎開出同樣的號碼只是巧合。

然而,要是有175,223,510個人買了威力彩,而且號碼都不相同,那麼絕對可以保證會有一個人中頭獎。因為彩券只有175,223,510個號碼可選,全都被購買者買下了。

這讓你有辦法必中頭獎—只要你錢夠多,買下所有的號碼,一定會有一張中獎。這麼一來,顯然需要強大的動員能力和雄厚的財產,才能買下這上億張的彩券,但不是不可能。事實上還真有人做了。

一九九○年代,美國維吉尼亞州立彩券是從一到四十四中選出六個號碼,頭獎機率是1/7,059,052。這個中獎機率比威力球高多了,只要花費約七百萬美元就能保證買到頭獎彩券,因為所有彩券都在你手上。

一九九二年二月十五日,由於連續數週沒有人中獎,維吉尼亞州立彩券的頭獎彩金飆漲到兩千七百萬美元,創下驚人的新紀錄。其他小獎(部分號碼跟頭獎號碼相同)的總獎金也有九十萬美元,因此總額超過兩千七百萬美元。你可以自己計算:只要花七百萬美元,就能贏得兩千七百多萬美元—不過事情沒這麼簡單,我們晚點再談。

於是,同年二月,一群自稱是國際樂透基金的成員召集了兩千五百位小額投資民眾,湊足了買下所有號碼組合的七百多萬美元。這些投資者多數來自澳洲,但也有來自美國、歐洲和紐西蘭的民眾。

這項工程最困難的或許是動員與調度,因為這些人必須在一週之內買到總價值七百萬美元的所有彩券。國際樂透基金派了二十人小組到維吉尼亞州,從八家連鎖商店旗下的一百二十五家超商及雜貨店蒐購彩券。事實上,由於工程實在太過浩大,他們最後只買到總額五百萬美元的彩券。這真是非常不妙,因為你不難想像他們的焦慮:中頭獎的機率只剩七分之五,不再是百分之百,而且錯過頭獎的機會更超過四分之一。

然而,集資撈獎還有一個更嚴重的風險,並且就算順利達成計畫,買下總值七百萬美元的所有彩券,風險依然存在。那就是可能會有其他人也選中頭獎的號碼。只要有另一人中獎,集資者拿到的彩金就會少一半。事實上,州立彩券過去一百七十次開出頭獎,有十次得主不只一人。雖然只多一人中獎,集資民眾分得的獎金依然可觀,但風險實在不容小覷。

二月那天的頭獎號碼是8、11、13、15、19和20。集資者拿著價值五百萬美元的彩券焦急對獎,結果真的被他們買到了。

然而,如釋重負的感覺沒有持續太久。維吉尼亞州法律為了防止有人買入彩券後高價轉售,規定每張彩券均須在購買的端點當場付款。但集資者有價值三百萬的彩券是直接向新鮮農場超市總部購買,再去端點領取的。集資者坦承不諱,但強調他們也在切薩比克那家開出頭獎的彩券行直接購買了彩券,因此無法判斷那張中獎彩券是在那家彩券行或是向新鮮農場超市買的。

最後,彩券發行商認為證明非常困難,追究只會陷入冗長的訴訟,而且不一定會有明確的結果,因此決定將彩金發給集資者。

不大可能法則書封本文選自《不大可能法則》,大塊文化出版

參考資料:

  1. 樂透彩的宣傳標語通常自成一格。美國麻薩諸塞州樂透彩的標語只偏離了事實一點點:買了就會中(但忘了提中獎彩券可能沒有半個人買到)。奧勒岡州彩券的標語就有一點遊走道德邊緣了:「買樂透做好事。」科羅拉多州彩券的標語非常簡單:「記得買一張。」北卡羅來納州樂透彩則是不說廢話:「有買才會中。」
文章難易度
PanSci_96
1209 篇文章 ・ 1910 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

2

2
2

文字

分享

2
2
2
買樂透真的可以賺錢?大數法則揭示了賭博的真相!——《統計,讓數字說話》
天下文化_96
・2023/03/05 ・2394字 ・閱讀時間約 4 分鐘

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是大數法則?

期望值的定義是:它是可能結果的一種平均,但在計算平均時,機率大的結果占的比重較高。我們認為期望值也是另一種意義的平均結果,它代表了如果我們重複賭很多次,或者隨機選出很多家戶,實際上會看到的長期平均。這並不只是直覺而已。數學家只要用機率的基本規則就可以證明,用機率模型算出來的期望值,真的就是「長期平均」。這個有名的事實叫做大數法則。

大數法則
大數法則(law of large numbers)是指,如果結果為數值的隨機現象,獨立重複執行許多次,實際觀察到的結果的平均值,會趨近期望值。

大數法則和機率的概念密切相關。在許多次獨立的重複當中,每個可能結果的發生比例會接近它的機率,而所得到的平均結果就會接近期望值。這些事實表達了機遇事件的長期規律性。正如我們在第 17 章提過的,它們是真正的「平均數定律」。

大數法則解釋了:為什麼對個人來說是消遣甚至是會上癮的賭博,對賭場來說卻是生意。經營賭場根本就不是在賭博。大量的賭客贏錢的平均金額會很接近期望值。賭場經營者事先就算好了期望值,並且知道長期下來收入會是多少,所以並不需要在骰子裡灌鉛或者做牌來保證利潤。

賭場只要花精神提供不貴的娛樂和便宜的交通工具,讓顧客川流不息進場就行了。只要賭注夠多,大數法則就能保證賭場賺錢。保險公司的運作也很像賭場,他們賭買了保險的人不會死亡。當然有些人確實會死亡,但是保險公司知道機率,並且依賴大數法則來預測必須給付的平均金額。然後保險公司就把保費訂得夠高,來保證有利潤。

  • 在樂透彩上做手腳

我們都在電視上看過樂透開獎的實況轉播,看到號碼球上下亂跳,然後由於空氣壓力而隨機彈跳出來。我們可以怎麼樣對開出的號碼做手腳呢? 1980 年的時候,賓州樂透就曾被面帶微笑的主持人以及幾個舞台工作人員動了手腳。

他們把 10 個號碼球中的 8 顆注入油漆,這樣做會把球變重,因此可保證開出中獎號碼的 3 個球必定有那 2 個沒被注入油漆的號碼。然後這些傢伙就下注買該 2 個號碼的所有組合。當 6-6-6 跳出來的時候,他們贏了 120 萬美元。是的,他們後來全被逮到。

歷史上曾有主持人在樂透上做手腳,後來賺了 120 萬美元隨後被逮捕。圖/envatoelements

深入探討期望值

跟機率一樣,期望值和大數法則都值得再花些時間,探討相關的細節問題。

  • 多大的數才算是「大數」?

大數法則是說,當試驗的次數愈來愈多,許多次試驗的實際平均結果會愈來愈接近期望值。可是大數法則並沒有說,究竟需要多少次試驗,才能保證平均結果會接近期望值。這點是要看機結果的變異性決定。

結果的變異愈大,就需要愈多次的試驗,來確保平均結果接近期望值。機遇遊戲一定要變化大,才能保住賭客的興趣。即使在賭場待上好幾個鐘頭,結果也是無法預測的。結果變異性極大的賭博,例如累積彩金數額極大但極不可能中獎的州彩券,需要極多次的試驗,幾乎要多到不可能的次數,才能保證平均結果會接近期望值。

(州政府可不需要依賴大數法則,因為樂透彩金不像賭場的遊戲,樂透彩用的是同注分彩系統。在同注分彩系統裡面,彩金和賠率是由實際下注金額決定的。舉例來說,各州所辦的樂透彩金,是由全部賭金扣除州政府所得部分之後的剩餘金額來決定的。賭馬的賠率則是決定於賭客對不同馬匹的下注金額。)

雖然大部分的賭博遊戲不及樂透彩這樣多變化,但要回答大數法則的適用範圍,較實際的答案就是:賭場的贏錢金額期望值是正的,而賭場玩的次數夠多,所以可以靠著這個期望值贏錢。你的問題則是,你贏錢金額的期望值是負的。全體賭客玩的次數合起來算的話,當然和賭場一樣多,但因為期望值是負的,所以以賭客整體來看,長期下來一定輸錢。

然而輸的金額並不是由賭客均攤。有些人贏很多錢,有些人輸很多,而有些人沒什麼輸贏。賭博帶給人的誘惑,大部分是來自賭博結果的無法預測。而賭博這門生意仰賴的則是:對賭場來說,結果並非不可測的。

對賭場來說,贏錢金額期望值為正。圖/envatoelements
  • 有沒有保證贏錢的賭法?

把賭博很當回事的賭客常常遵循某種賭法,這種賭法每次下注的金額,是看前幾次的結果而定。比如說,在賭輪盤時,你可以每次把賭注加倍,直到你贏為止—或者,當然,直到你輸光為止。即使輪盤並沒有記憶,這種玩法仍想利用你有記憶這件事來贏。

你可以用一套賭法來戰勝機率嗎?不行,數學家建立的另一種大數法則說:如果你沒有無窮盡的賭本,那麼只要遊戲的各次試驗(比如輪盤的各次轉動)之間是獨立的,你的平均獲利(期望值)就會是一樣的。抱歉啦!

  • 高科技賭博

全美國有超過 700,000 台吃角子老虎(拉霸)。從前,你丟硬幣進去再拉下把手,轉動三個輪子,每個輪子有 20 個圖案。但早就不是這樣了。現在的機器是電動遊戲,會閃出許多很炫的畫面,而結果是由隨機數字產生器決定的。

機器可以同時接受許多硬幣,有各種讓你眼花撩亂的中獎結果,還可以多台連線,共同累積成連線大獎。賭徒仍在尋找可以贏錢的賭法,但是長期下來,隨機數字產生器會保證賭場有 5% 的利潤。

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

所有討論 2
天下文化_96
132 篇文章 ・ 616 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

9
1

文字

分享

0
9
1
鑑識故事系列:Lucia de Berk 值班死幾人?荷蘭護理冤案
胡中行_96
・2023/02/27 ・2983字 ・閱讀時間約 6 分鐘

前言:本文為鑑識系列中,罕見提及統計學的故事。不過,繁複的計算過程全部省略,僅討論統計概念和辦案原理。請害怕數學的讀者放心。

護理人員 Lucia de Berk。圖/Carole Edrich on Wikimedia Commons(CC BY-SA 3.0)

荷蘭護理人員 Lucia de Berk,長年於海牙茱莉安娜兒童醫院(Juliana Kinderziekenhuis)的 1 個病房,與紅十字醫院(Rode Kruis Ziekenhuis)的 2 個病房工作。2001 年 12 月,她因謀殺罪嫌被捕。[1]

超幾何分佈

警方起先偵辦 2 名住院病患的死因,發現是中毒身亡;後來連帶調查 1997 至 2001 年間,幾家醫院可能的謀殺案件,於是找上了她。[2]在法庭上,司法心理學家 Henk Elffers 用機率的概念,證明 Lucia de Berk 有罪。簡單來說,就是計算嫌犯現身出事班次的機率。他採取的統計方法,叫做超幾何分佈(又稱「超幾何分配」;hypergeometric distribution)。[1]

超幾何分佈適合用在從一個母數中,隨機抽取樣本,不再放回的情形。例如:袋子裝有 N 顆球,其中 L 顆為紅球。一把抓出 n 顆球,不特別挑選的話,紅球碰巧被抓到的機率為 X。[3, 4]以此類推,在此案被調查的時間範圍內,病房總共有 N 個班次,其中 Lucia de Berk 值了 L 班,而有醫療事故的班次共 n 個。如果不刻意安排,則她正好出現在事故班次的機率為 X。[1]公式介紹。[4]

此處實際帶入數據後得到的答案,說明 Lucia de Berk 理論上應該只有 3 億 4 千 2 百萬分之一(X = 1 / 3.42 x 108)的機率,會剛好在醫療事故發生的班次值班。因此,法庭認定她的頻繁出現(> 1 / 3.42 x 108),絕非巧合。[1, 2, 5, 6]2003 年,Lucia de Berk因 7 起謀殺和 3 次殺人未遂,[2]被判終身監禁。[5]

茱利安納兒童醫院(Juliana Kinderziekenhuis)外觀。圖/Joris on Wikimedia Commons(CC BY-SA 3.0)
紅十字醫院(Rode Kruis Ziekenhuis)已於 2021 年關閉。圖/1Veertje on Wikimedia Commons(CC BY-SA 4.0)。

統計謬誤

當時有位醫師任職於 Lucia de Berk 待過的一家醫院。他的女性姻親 Metta de Noo-Derksen 醫師,以及 Metta 的兄弟 Ton Derksen 教授,都覺得事有蹊蹺。[7]Metta 和 Ton 檢視死者的病歷紀錄,並指出部份醫療事故的類型和事發時間,與判決所用的數據對不起來因為後者大半仰賴記憶,他們甚至發現有些遭指控的班次,Lucia de Berk 其實不在現場。然而,光是這些校正,還不足以推翻判決。[1, 7]

所幸出生於英國的荷蘭萊頓大學(Universiteit Leiden)統計學榮譽教授 Richard Gill,也伸出援手。[2]在協助此案的多年後,他的團隊發表了一篇論文,解釋不該使用超幾何分佈的理由,例如:[1]

  1. 護理人員不可互換:所有受訪醫師都說,護理人員可以相互替換;但是護理人員覺得,他們無法取代彼此。由於各別的個性與行事風格迥異,他們對病患的影響也不同。[1]
  2. 醫療事故通報機率:既然每個護理人員都有自己的個性,他們判定某事件為醫療事故,並且通報醫師的機率也不一樣。[1]畢竟醫院的通報規定是一回事;符合標準與否,都由護理人員判斷。比方說,有個病患每次緊張,血壓就破表。那就讓他坐著冷靜會兒,再登記第二次測量的正常結果即可。不過,難免會有菜鳥護士量一次就嚇到通報,分明給病房添亂。
  3. 班次與季節事故率:夜間與週末只剩護理人員和少數待命的醫師;季節性的特定病例增減;以及病患的生理時鐘等,都會影響出事的機率。[1]
  4. 護理排班並不平均:護理人員的班次安排,理想上會有帶狀的規律。可能連續幾天都是白班,接著是幾個小夜班之類的,[1]比較方便調整作息。此外,護理人員的資歷和個性,通常也會被納入考量。[1]以免某個班次全是資深人員;但另個班次緊急事故發生時,卻只剩不會臨機應變的新手。在這樣的排班原則下,如果單看某個時期的班表,每個人所輪到的各類班次總數,應該不會完全相同。
  5. 出院政策曾經改變:茱莉安娜兒童醫院在案發期間,曾經針對確定救不活的小病患,是否該在家中或病房離世,做過政策上的調整。帳面上來說,算在病房裡的事故量絕對會有變化。[1]

總之,太多因素會影響護理排班,或是干擾醫療事故的通報率,因此不能過度簡化成抽取紅球那樣的隨機概念。更嚴重的是,Henk Elffers 在計算過程中,分開處理 3 個病房的機率,然後再相乘。Richard Gill 的團隊強調,這樣會造成在多處上班的護理人員,比只為一處服務者,看起來有較高的嫌疑。[1]

帕松分佈

因應這種情境,Richard Gill 教授建議採用帕松分佈(又譯「布阿松分配」;Poisson distribution),[1]一種描述特定時間內,事件發生率的統計模型。[8]有別於先前的計算方法,在這裡事故傾向(accident proneness),以及整體排班狀況等變因,都納入了考量。前者採計護理人員通報醫療事故的意願強度;後者則為輪班的總次數。這個模型通常是拿來推估非尖峰時段的來電、大城市的火災等,也適用於 Lucia de Berk 的案子。[1](深入瞭解公式計算(p. 4 – 6)。[1, 8]

雖然此模型的細節複雜,統計學家得大費周章解釋給法官聽,但是考慮的條件比較趨近真實。倘若套用原始判決的數據,這個計算最後的答案是 0.0206161,意即醫療事故本來就有 49 分之 1 的機率,會與 Lucia de Berk 的班次重疊。如果帶入 Mettade Noo-Derksen 和 Ton Derksen 校正過的數據,機率更高達 9 分之 1。[1, 9]換句話說,她單純是倒楣出現在那裡,就被當作連續殺人犯。[6]

其他證據與翻案

大相逕庭的計算結果,顯示出選擇正確統計模型的重要性。然而,最不合理的,是以機率作為判決的主要根據。就謀殺案件來說,怎能不忠於病歷或驗屍報告?Richard Gill 教授接受美國犯罪學講師 Jon Robins 的訪問時,表示後來由醫師和毒物學家組成的獨立團隊,被允許瀏覽當初沒送上法庭的關鍵資料。[2]他們發現原本被視為受害者的病患,根本都喪命於自然死因。[2, 6]

在各方人士的協助下,Lucia de Berk 還是歷經兩次上訴失敗。[6]她曾於 2008 年,被允許在家等候重審結果。[1]但直到 2010 年 4 月,司法才還她清白。[7]Ton Derksen 認為,在荷蘭像這樣誤判的案件,約佔總判決數的 4 至 11%,也就是每年 1,000 人左右。不過,2006 到 2016 年間被判刑的 2 萬 3 千人裡,只有 5 個上訴到最高法院,而且僅 Lucia de Berk 的案子得以平反。[10]

Lucia de Berk 冤案改編電影的海報。圖/電影《Lucia de B.》(2014) on IMDB

  

參考資料

  1. Gill RD, Groeneboom P, de Jong P. (2018) ‘Elementary Statistics on Trial—The Case of Lucia de Berk’. Chance 31, 4, pp. 9-15.
  2. Robins J. (10 APR 2020) ‘Ben Geen: Statisticians back former nurse’s in last chance to clear name’. The Justice Gap.
  3. 超幾何分佈」國立高雄大學統計學研究所(Accessed on 03 FEB 2023)
  4. 李柏堅(06 FEB 2015)「超幾何分配CUSTCourses on YouTube.
  5. Sims J. (24 FEB 2022) ‘Are We in the Midst of a Data Illiteracy Epidemic?’. Inside Hook.
  6. Schneps L, Colmez C. (26 MAR 2013) ‘Justice Flunks Math’. The New York Times.
  7. Alexander R. (28 APR 2013) ‘Amanda Knox and bad maths in court’. BBC News.
  8. 李伯堅(04 FEB 2015)「布阿松分配」CUSTCourses on YouTube.
  9. Wilson D. (13 DEC 2022) ‘Red flag to be wary of when hunting a killer nurse’. The Herald, Scotland.
  10. One in nine criminals may have been wrongly convicted – research’. (21 NOV 2016) Dutch News.
胡中行_96
169 篇文章 ・ 60 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

4
2

文字

分享

0
4
2
你能想像棒球穿牆嗎?突破物理世界的常識:量子穿隧——《阿宅聯盟:量子危機》
未來親子學習平台
・2023/01/20 ・1226字 ・閱讀時間約 2 分鐘

想像一個全壘打王,面對前方的來球,大棒一揮,球越過了全壘打牆,到了牆的另外一邊。

Home~~~Run!圖/GIPHY

但假如,那個全壘打牆變成了兩層樓高呢?也許,他更大力地擊球(給球更多的能量),那顆球還是能夠飛越過全壘打牆,到牆的另外一邊。但如果,那全壘打牆變成了三十層樓高呢?我想會認為,除非靠機器,否則再厲害的全壘打王,不管用了多少力氣,他應該都無法讓球飛過三十層樓那麼高。

上述的例子,正顯示了我們日常生活中的物理原則:只要物體(球)的能量不足以跨越障礙物(牆),那麼它永遠不可能到達障礙物的另一側——但是,在量子的世界,卻不是這樣。

粒子是怎麼跨越各種障礙的?

量子力學裡,一個粒子具備的能量即使不足以跨越障礙,它仍然有小機率會出現在障礙的另一邊;而且,若粒子的能量跟跨越障礙所需要的能量愈接近、或是說只少一點,那麼這個粒子出現在障礙另一邊的機率就愈大。

這樣神奇的現象,彷彿就像是粒子挖了隧道穿過障礙一般(儘管並沒有真的隧道),所以稱為「量子穿隧」效應。

不過,在丟球的例子裡,我們可以想像,若是牆愈高或愈厚,那麼球就愈難飛過牆壁。同樣地,在量子力學的情形下,雖然粒子有可能在能量不足的狀況下穿過障礙,但要是障礙無限高或無限厚的話,那麼粒子就還是過不去的

儘管在量子力學的情況下,障礙無限高或無限厚,粒子還是過不去的。圖/Envato Elements

事實上,量子穿隧效應跟我們先前提到的「物質具有波的特性」非常有關係。想像水池中間有一顆大石頭,池中的水波在遇到石頭這個障礙物時,會從旁邊繞道而過;但如果是一般物質,一旦遇到障礙物就直接被擋住了,沒辦法繞道而行。

就是因為在量子世界,物質也具有波的特性,我們才會看到粒子的穿隧效應。儘管量子效應感覺很奇特,但它在很多方面都有實際的影響。

例如,我們知道太陽核心是依賴核融合反應來產生能量;在過程中,會將兩個氫原子核,融合成更重的原子核。但因為氫原子核都帶正電,要抵抗正電荷間的排斥力,將它們融合在一起,其實非常困難。也幸虧有量子穿隧效應,太陽內部的氫原子核才能克服電荷排斥力的阻礙,順利融合在一起,並製造能量。

所以,在地球的我們,能夠享受到太陽的光和熱,說起來也要感謝量子穿隧效應呢!

——本文摘自《阿宅聯盟:量子危機》,2022 年 11 月,未來出版,未經同意請勿轉載

未來親子學習平台
3 篇文章 ・ 3 位粉絲