0

0
0

文字

分享

0
0
0

恆正的平均餘命,永遠活下去

賴 以威
・2014/10/01 ・3864字 ・閱讀時間約 8 分鐘 ・SR值 453 ・五年級

-----廣告,請繼續往下閱讀-----

先前介紹完貝氏定理後,有讀者反應講太快,應該先解釋貝氏定律裡最重要的觀念——條件機率。機率量化了一件事情發生的可能性。而條件機率嘛,比如說,你家樓下住了一位每天慢跑10公里的爺爺,傍晚你們在樓梯間遇到

「爺爺明天70歲生日嗎,都看不出來哎~」

爺爺能順利切到70歲蛋糕的機率,鐵定比台灣人平均能活到70歲的機率大上許多,因為健康的他只要再活一天就可以了。

給定某個條件下某個事件發生的可能性,即稱為條件機率。如果還不清楚,請想像這樣的場景:

-----廣告,請繼續往下閱讀-----

Photo Credit:Matty Ring
Photo Credit:Matty Ring

星期五傍晚,珮穎獨自走在夕陽下。她晚上沒行程,只是單純不想加班。她討厭現在的公司文化,老闆總喜歡把員工綁在公司,綁越久越好。

又不是定存,放著也不會生利息。

她想起離開時,主管的視線越過隔板上方盯著她,心裡忍不住埋怨。

-----廣告,請繼續往下閱讀-----

從馬路轉入小巷子,單行道兩側停滿車子,前方路口有個攤販在準備營業。一位穿西裝的上班族經過攤販,彎進巷子裡。逆光的夕陽將男子剪成一片瘦高的黑影,走近點,他的臉孔從黑影中浮現,一對修長秀氣的眼睛,以男生來說算白的膚色,給人秀氣的感覺,但不是柔弱,是無論面對甚麼事情,彷彿都能從容不迫處理的氣質。

珮穎注意到他的識別證還掛在身上,正想偷瞥一眼,男子突然加快腳步閃進路旁兩台車的縫隙間,對珮穎招手。

嗯?

還沒反應過來,珮穎聽見身後引擎聲響。回頭一看,一台老舊發財車要通過。男子還在對自己招手,遲疑一會兒,珮穎也縮進兩台車的縫隙間。

-----廣告,請繼續往下閱讀-----

「我跟妳換位子吧。」

他高舉包包,與珮穎擦身而過,一陣清新的木香調香水氣味傳來。發財車捲起灰塵離去,男子揮揮手咳了幾聲。珮穎這下看清楚他的識別證了。

那年珮穎25歲,子威29歲。距離台灣男女平均壽命,各自還有57年與47年。

-----廣告,請繼續往下閱讀-----

星期五傍晚,珮穎在夕陽下踱步,落日的餘溫被玻璃隔絕在外,窗戶這側只剩冰冷的空調,醫療儀器的聲響替時間畫下一道道刻度。珮穎坐回病床旁,病房裡總是充滿消毒水的氣味,但一靠近子威,還是可以聞到那股木香調的香水氣味。

子威伸過手來握住珮穎,兩人相視微笑。只要看見夕陽,珮穎就會想起他們第一次見面的畫面,這點子威比誰都清楚。

「50年了,這一切過得真快。」

這一年,珮穎75歲,距離台灣女性平均壽命還有7年;子威79歲,超過男性平均壽命3年。

-----廣告,請繼續往下閱讀-----

巷子裡邂逅後,他們陷入熱戀。2年後的婚禮上,子威開頭第一句話是

「我要謝謝一位發財車司機——」

他們擁有標準的平凡的幸福的生活。生兒育女,儘管偶爾免不了吵架,但只要一到傍晚,總有一方會提議去散步,然後在夕陽下言歸於好。幾十年過去,小孩成家。雖然退休了,他們還得幫忙帶孫子。又過了幾年,孩子總算將孫子接回去自己帶。

-----廣告,請繼續往下閱讀-----

那年子威72歲,珮穎68歲。

正準備好好享受生活,子威卻突然診斷出罹患癌症。美好的生活像紙糊似的,輕易地被命運撞出一個大洞。

Photo Credit:skippyjon
Photo Credit:skippyjon

剛知道病情時,子威很消沉,一度想放棄治療。

「李子威,你滿腦子想死就去死好了!我告訴你,台灣男人平均壽命是76歲,你才72歲,最好你打算這麼丟臉,讓你老婆比別人多守4年寡!」

-----廣告,請繼續往下閱讀-----

說到最後,珮穎分不清自己是在罵人還是在哭泣。子威坐在客廳沙發,一整晚沒回話。隔天傍晚他們去散步,子威給珮穎看了他今天去醫院的診斷報告。一小時後,他住院接受癌症療程。

當晚,珮穎靠在病床上的子威替他削水果。

「第一次見面時,我不是走到前面幫妳擋灰塵嗎?」

珮穎點點頭。子威繼續說

「其實啊,我一直都沒講,當時我有刻意從妳的左側走過去噢。」

「啊?」

「因為心臟在左側,人通常是右撇子,身子會無意識往左傾斜。走在妳左側,妳會錯以為,怎麼自己一直往我身上靠,是不是喜歡我。」

「聽你亂說。」

珮穎嗤嗤地笑著,子威露出認真的表情

「真的,不然為什麼我們跑步都逆時針呢?就是逆時針跑時,靠左傾斜會自動產生向心力,跑起來比較順。」

珮穎半信半疑,卻看到子威似笑非笑地盯著自己,珮穎這才發現自己左半邊靠在子威身上。

「那麼老了還開這種玩笑。」

珮穎作勢打他,但她心底明白,子威是故作若無其事,想讓她安心。儘管受到影響,但他已經恢復成原本那位替她著想,總是把她擺在比自己更重要地位的男人。

Photo Credit:Free Grunge Textures
Photo Credit:Free Grunge Textures

「這幾年辛苦妳了。」

子威拿下氧氣罩,氣若游絲,距離診斷出癌症的那天到現在過了7年,前天他才剛從加護病房出來。醫生覺得子威能活到現在已經是奇蹟了。

珮穎知道這才不是奇蹟,是子威堅強意志力的展現。

「你才辛苦,已經超過平均壽命3年了,你做的很棒。」

珮穎開玩笑地說。子威搖搖頭,眼神望向床頭櫃上的筆記本,珮穎替他拿過來,裡面滿滿的數學式子

「還沒,我還沒贏過我這年紀的預期平均壽命。」

「你這年紀的平均壽命?」

子威休息了一下,一個字一個字慢慢說

「我後來才知道,平常說的是平均壽命是指『剛出生時所預期的平均壽命』,是最短的預期平均壽命。隨著年紀,我們預期能夠活的平均壽命就會慢慢變長。」

「為什麼?」

珮穎不懂,平均壽命就是平均壽命,怎麼會隨著年齡改變呢?

「舉個例子來說,4個同時出生的人,各自活到4歲、10歲、60歲、70歲。這樣平均壽命是幾歲?」

「36歲。」

「5歲時,剩下3個人,這3人的平均壽命是46.7歲。」

子威停下來喘口氣,現在他的光說話就得費上很大的力氣。

「換句話說,給定活到5歲時,平均壽命從剛出生的36歲,提升到46.7歲。增加了10.7年。」

「聽起來有點像條件機率?」

珮穎回答,他們夫妻的數學都不錯。

「年紀越大,樣本空間裡年輕早逝的人被排除在外,我們預期他們能夠活的平均壽命就會越來越長。假設y是表示壽命的隨機變數,則x歲時的壽命期望值為,」

筆記本上寫著

永遠恆正的平均餘命_Eq1

「其中,P(y|x)是指給定x歲的人,壽命為y歲的條件機率。只要活到40歲,能活到70歲的機率就會比20歲時能活到70歲的機率更大。用數學式子表示是P(y=70|x=40) > P(y=70|x=20)。」

子威接過筆記本,翻頁又是一大堆算式。

永遠恆正的平均餘命_Eq2

「我們再來定義一個『x歲的平均餘命』,意思是x歲的人平均還能再活幾年。它的數學式子是,」

他指著第二個加總符號說

「取k’=k+1,可以得到結果為,」

永遠恆正的平均餘命_Eq3

「換句話說,x歲的平均餘命,就是把『給定x歲後,還會活k年的機率』,從k=1到k=∞累加起來。」

子威笑了,那笑容像在草地裏撿到彈珠的小男孩,跑回來跟朋友炫耀的表情。

「我查過了台灣官方的國民生命表。在我這年紀的男性……竟然平均餘命還有8.3年。照你的標準來要求…我還有8年要努力呢……做你的老公……真辛苦。」

子威突然一陣咳嗽,笑容還沒褪去,痛苦的表情湧上混雜在一起。珮穎眼前一陣模糊,她知道子威又在安慰她了。她吸了吸鼻子,試圖讓聲音平穩

「那就辛苦你了,請再為了我多活幾年。」

當晚半夜,子威緊急被送回加護病房。凌晨,珮穎簽下放棄急救同意書。

Photo Credit:Beverly & Pack
Photo Credit:Beverly & Pack

星期五傍晚,珮穎站在夕陽下。紙蓮花被包覆在更大的、火焰形成的蓮花中。已經過了好幾次夕陽,她卻還沒跟子威說到話。這次的冷戰好久。

應該不可能習慣身邊沒有子威吧。不,不是不可能習慣,是我不希望習慣。

「奶奶妳還好嗎?」

孫女打斷了珮穎的思緒。

「爺爺還在的。只是我們看不到而已。」

孫女安慰她。珮穎想起她們相遇時,她正是孫女這個年紀吧。

「奶奶妳搬過來跟我們住好了,這樣爺爺也不用跑太多地方,可以更常回來。」

孫女試探性地問。珮穎知道孫女擔心獨居的自己觸景生情。有很多案例,感情深厚的夫妻一個先離開,另一個走不出來,也很快離開了。

「妳放心,奶奶很堅強,可以照顧好自己,還能活很多年的。妳爺爺教過我一套觀念……」

珮穎向孫女解釋起應用到條件機率的平均餘命。

「照你爺爺的說法,我還有11年好活。太早去鐵定會挨妳爺爺罵的。」

一旁還在念高中的小孫子插嘴說道

「可是奶奶,這觀念有點奇怪,因為機率恆正,不管到幾歲,平均餘命永遠是正的,表示當下的預期平均壽命永遠會大於當下的年紀,那不就是說,人類可以永遠活下去——」

「你閉嘴啦!」

孫女出言制止她那搞不清楚狀況的弟弟。

的確,這聽起來有點像芝諾悖論:烏龜跟阿基里斯賽跑,每當阿基里斯快要追上烏龜,烏龜都會趁著阿基里斯追趕所花的時間,再往前移動一點,阿基里斯又得再追趕。不論靠多近,烏龜永遠有一小段時間可以再前進,阿基里斯永遠追不上烏龜。

小孫子沒說錯,給定現在的年齡,只要沒破人瑞紀錄,永遠有人活得更久。平均餘命永遠大於零,永遠可以活下去。

但跟芝諾悖論不一樣,芝諾悖論有數學上的問題;餘命的觀念儘管看起來不合理,但在數學上完全正確,沒有漏洞。餘命永遠恆正,但那終究只是期望值,還是會有很多人在沒活到那年紀之前就先離開。

這是體貼的子威留給她最後的禮物,一道用完美數學構成的甜言蜜語。

他的意思是,他將永遠陪在她身邊。就像第一次見面一樣,他告訴她車來了,體貼地閃到前方幫她擋灰塵。

「奶奶自己住沒關係,」

珮穎打斷了孫女與孫子的爭執

「這樣爺爺如果回家了,才有人幫他開門啊。」

她朝左望去,夕陽在腳下拉出一道長長的影子,她閉上眼睛,彷彿聞到了子威身上那股淡淡的木香調香水氣味。

註: 更多賴以威的數學故事,請參考《超展開數學教室

Photo Credit:Ruth and Dave
Photo Credit:Ruth and Dave

註:更多賴以威的數學故事,請參考《超展開數學教室》。

-----廣告,請繼續往下閱讀-----
文章難易度
賴 以威
32 篇文章 ・ 9 位粉絲
數學作家、譯者,作品散見於聯合報、未來少年、國語日報,與各家網路媒體。師大附中,台大電機畢業。 我深信數學大師約翰·馮·諾伊曼的名言「If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is」。為了讓各位跟我一樣相信這句話,我們得先從數學有多簡單來說起,聊聊數學,也用數學說故事。 歡迎加入我與太太廖珮妤一起創辦的: 數感實驗室

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
天氣預報到底是不是在騙人?我整個就不爽了!從生活案例看條件機率——《跟著網紅老師玩科學》
時報出版_96
・2019/08/23 ・1984字 ・閱讀時間約 4 分鐘 ・SR值 438 ・四年級

許多人說,現在科學這麼發達,為什麼天氣預報總是不準呢?

這裡涉及一個數學問題,稱為「條件機率」。

什麼是條件機率呢?例如我們要確定 6 月 15 日是不是下雨,根據往年資料,下雨的機率有 40% ,不下雨的機率為 60% ,這就稱為「機率」。如果在前一天,天氣預報說 6月15 日下雨,這就稱為「條件」, 在這種條件下, 6 月 15 日真正下雨的機率就稱為「條件概率」。

圖/《跟著網紅老師玩科學》提供

你哭著對我說,天氣預報裡都是騙人的

天氣預報根據一定的氣象參數推測是否會下雨,由於天氣捉摸不定,即便預報下雨,也有可能是晴天。假設天氣預報的準確率為 90% ,即在預報下雨的情況下,有 90% 的機率下雨,有 10% 的機率不下雨;同樣,在預報不下雨的情況下,有 10% 的機率下雨,有 90% 的機率不下雨。

-----廣告,請繼續往下閱讀-----

這樣一來, 6 月 15 日的預報和天氣就有四種可能:預報下雨且真的下雨,預報不下雨但是下雨,預報下雨但是不下雨,預報不下雨且真的不下雨。

我們把四種情況列在下面的表格中,並計算相應的機率。

下雨 不下雨
預報下雨 40% × 90% = 36% 60% × 10% = 6%
預報不下雨 40% × 10% = 4% 60% × 90% = 54%

計算方法就是兩個機率的乘積。例如下雨機率為 40% ,下雨時預報下雨的機率為 90% ,因此預報下雨且下雨這種情況出現的機率為 36% 。同理,我們可以計算出天氣預報下雨但是不下雨的機率為 6% ,二者之和為 42% ,這就是天氣預報下雨的機率。

在這 42% 的可能性中,真正下雨占 36% 的可能,比例為\( 36 \div 42=85.7 \)%,而不下雨的機率為 6% ,占 \( 6 \div 42=14.3 \) %。

也就是說,假設天氣預報的準確率為 90% ,預報下雨的條件下,真正下雨的機率只有 85.7% 。

我們會發現:

-----廣告,請繼續往下閱讀-----

預報下雨時是否真的下雨,不光與預報的準確度有關,同時也與這個地區平時下雨的機率有關

圖/《跟著網紅老師玩科學》提供

檢查報告說我中獎了,我就真的生病了嗎?

與這個問題類似的是在醫院進行重大疾病檢查時,如果醫生發現異常,一般不會直接斷定生病了,而會建議到大醫院再檢查一次,雖然這兩次檢查可能完全相同。為什麼會這樣呢?

假設有一種重大疾病,患病人群占總人群的比例為\(\frac{1}{7000} \) 。也就是說, 隨機選取一個人,有\(\frac{1}{7000} \) 的機率患有這種疾病,有\(\frac{6999}{7000} \) 的機率沒有患這種疾病。

有一種先進的檢測方法,誤診率只有萬分之一,也就是說,患病的人有\(\frac{1}{10000} \) 的可能性被誤診為健康人,健康人也有\(\frac{1}{10000} \) 的可能性被誤診為患病。

-----廣告,請繼續往下閱讀-----

我們要問:在一次檢查得到患病結果的前提下,這個人真正患病的機率有多大?

患病 健康
檢測患病 \(\frac{1}{7000} \times \frac{9999}{10000}\)\(= \frac{9999}{70000000}\)  \(\frac{6999}{7000} \times \frac{1}{10000}\)\(= \frac{6999}{70000000}\)
檢測健康 \(\frac{1}{7000} \times \frac{1}{10000}\)\(= \frac{1}{70000000}\)  \(\frac{6999}{7000} \times \frac{9999}{10000}\)\(= \frac{69983001}{70000000}\)

我們仿照剛才的計算方法,檢測出患病的總機率為:\(\frac{9999}{70000000}+\frac{6999}{70000000} \) \(=\frac{16998}{70000000}\)
患病且檢測出患病的機率為:\(\frac{9999}{70000000}\)

所以在檢測患病的條件下,真正患病的機率為:\( \frac{9999}{70000000} \div  \frac{16998}{70000000}\) \(=\frac{9999}{16998}\) \( \approx 58.8 \)%

顯而易見,即便是萬分之一誤診的情況,一次檢測也不能完全確定這個人是否患病。

-----廣告,請繼續往下閱讀-----

圖/《跟著網紅老師玩科學》提供

那麼,兩次檢測都是患病的情況又如何呢?

大家要注意,在第一次檢測結果為患病的前提下,此人患病的機率已經不再是所有人群的 \(\frac{1}{7000}\) ,而變為自己的 58.8% ,健康的機率只有 41.2% 。

此處的機率就是條件機率,所以第二次檢測的表格變為:

-----廣告,請繼續往下閱讀-----
患病 健康
檢測患病 58.8% × \(\frac{9999}{10000}\)= 58.794%  41.2% × \(\frac{1}{10000}\)= 0.004%
檢測健康  58.8% × \(\frac{1}{10000}\)= 0.006%  41.2% × \(\frac{9999}{10000}\)= 41.196%

兩次檢測都是患病的條件下,此人真正患病的機率為:\(\frac{58.794}{58.794+0.004}\)\(=99.99 \) % 基本確診了。

日常生活超有感──貝式定理

對這個問題進行詳細討論的人是英國數學家貝葉斯

圖/《跟著網紅老師玩科學》提供

貝葉斯指出:如果 A 和 B 是兩個相關的事件, A 有發生和不發生兩種可能, B 有 B1 、 B2 、……、 Bn 共 n 種可能。

-----廣告,請繼續往下閱讀-----

那麼在 A 發生的前提下, Bi 發生的機率稱為:條件機率 \( P(B_i|A) \)

要計算這個機率,首先要計算在 Bi 發生的條件下 ,A 發生的機率,公式為:\( P(B_i)P(A|B_i) \)

然後,需要計算事件A發生的總機率

方法是用每種Bi情況發生的機率與相應情況下A發生的機率相乘,再將乘積相加。
\( P(B_1)P(A_1|B_1)+P(B_2)P(A_2|B_2)+\cdots+P(B_n)P(A_n|B_n) \)

最後,用上述兩個機率相除,完整的貝式定理公式就是:

\( P(B_i|A) \) \(=\frac{P(B_i)P(A|B_i)}{P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+\cdots+P(B_n)P(A|B_n)} \)

貝式定理在社會學、統計學、醫學等領域,都發揮著巨大作用。

-----廣告,請繼續往下閱讀-----

下次遇到天氣誤報、醫院誤診,不要完全怪氣象臺和醫院啦!有時候這是個數學問題。

——本文摘自《跟著網紅老師玩科學》,2019 年 4 月,時報出版

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

0
2

文字

分享

0
0
2
用我大數學的語言傳授幸運法則!? ── 《幸運的科學》書評
賴 以威
・2019/02/15 ・3128字 ・閱讀時間約 6 分鐘 ・SR值 512 ・六年級

過年期間,我讀了這本《幸運的科學》。「裡面有提到貝氏定理(數學)。」朋友跟我說的時候,我還有點存疑,畢竟這書名怎麼看都有點像是那種、打著科學招牌,講一些科學「目前」還幫不上忙的領域。

讓我決定翻開的原因是作者之一 Barnaby Marsh 曾是哈佛大學、牛津大學的訪問學者,如今正在普林斯頓高等研究院訪問。前兩間是知名的大學,普林斯頓高等研究院更是當年匯集了馮·諾伊曼、愛因斯坦、奧本海默等留名青史學者的研究機構。

能訪問這些赫赫有名大學研究機構的學者所說的話,應該還蠻值得一看的吧?我的偏見這樣告訴我。

說到底,偏見也可以用機率來解釋:
如果今天只是一般人講幸運的科學,我們以為穿鑿附會的機率很高;但如果有像作者這樣的經歷,我們就下意識的認為可信度高一些,這是條件機率教我們的。

-----廣告,請繼續往下閱讀-----

沒想到我翻開書讀起來,還真的有貝氏定理!

貝式定理。圖/Flickr

天助自助者,怎麼讓隨機事件成功機率增加?

格雷茨基在一九八〇年代與一九九〇年代先後四次奪得斯坦利盃 (Stanley Cup) 冠軍,創下至今無人能超越的得分紀錄。當他被問到如何打進這麼多球時,他永遠只有一個答案:「我滑到冰球會到的地方。」

這是一本有趣的書,作者用了兩三百頁的分量來解釋「天助自助者」、「趨吉避凶」這些我們自以為熟知,卻不太清楚該如何徹底落實在生活中的概念。其中有些重點精準的運用了「數學語言」來描述,讓讀者(至少我)更了解他想傳遞的概念。

比方說,成功或多或少都參雜了些機運,因此作者把成功定義為一個「隨機事件」。沒有人能控制隨機事件,無法讓隨機變成確定。

但透過兩件事,能讓成功更容易發生:

-----廣告,請繼續往下閱讀-----

一、德蕾莎修女搭頭等艙事件 ── 增加成功機運

圖/wikipedia

「以照顧貧苦病痛之人為己任的修女,竟然也有想要追求享受的一面,是想在旅途中舒服些嗎?」書中提到德雷莎修女搭頭等艙這行為受到一些批評。

你可以想像,這件事如果在台灣鐵定會上報紙頭條,然後被媒體公審。我自己查了網路資料,有一說是德雷莎修女在搭飛機時,常會被航空公司自動升級到頭等艙。但其實德雷莎修女是為了尋求更多的募款機會,精準一點的說,是「尋求更多遇到有錢人的機會」。

沒人能保證一次募款能否成功,但修女利用搭頭等艙來增加遇見富人的機率,進而提升募款次數。用個熟悉的數學例子來說,就是你無法改變丟硬幣出現正面的機率,但你可以多丟幾次。

-----廣告,請繼續往下閱讀-----

只是生活中很多情境不像丟銅板那麼簡單,無法輕易的增加嘗試次數。有時候增加嘗試次數需要過高的成本,不一定值得去做,例如買彩券;或者,「嘗試增加次數」本身就是一個隨機事件,就像募款的例子。你沒辦法說「1 個富人沒用,那我就來遇 10 個富人吧!」。只是寫 10 封 E-mail 可能也只是徒勞的嘗試,因為這些信件通常都不會被認真看待,還是得要面對面的交流;搭頭等艙雖然不保證能遇到富人,但至少比起在便利商店遇到要來得機率高。

募款成功的機率不能被改變,但遇到富人的機率可以被改變,而這連帶會影響到募款成功的次數,所以這便是值得去做的一件事。

至於為什麼遇到富人的機率可以被改變,這就牽扯到書中的第二個重點 ── 條件機率

二、嬰兒該不該和父母同床事件 ── 條件機率

我發現,即使是那些斷言一切都是命中注定、我們不可能改變的人,他們過馬路時仍然會注意兩邊來車。

圖/pixabay

-----廣告,請繼續往下閱讀-----

書裡舉的例子是作者跟他太太在女兒出生時,曾經討論過要不要讓她跟她們一起睡。太太認為不妥,因為跟父母同睡的嬰兒發生意外的機率,是睡在嬰兒床上的 5 倍高,因為同床的嬰兒比較容易被悶住或被大人壓到 ── 但這是一般論的結果。

作者仔細研究後發現,許多意外是發生在父母喝醉、過度肥胖、教育程度不高的情況下(這邊作者沒有解釋清楚,但我想背後是指教育程度不高的父母,有相對高的比例會選擇不準備嬰兒床);另外,床鋪過軟、沙發、水床、過多的毛毯也都是問題。

作者根據自己家裡的情況考量後,發現他們與女兒同床的風險是低於千分之一的。

換句話說,以下兩種機率是相差很多的:

-----廣告,請繼續往下閱讀-----
  1.  嬰兒跟父母同床發生意外的機率。
  2.  給定 king size 床,且夫妻各用一條單人被的條件下,嬰兒跟父母同床發生意外的機率。

再用我們習慣的骰子做例子:丟骰子出現六點的機率是 1/6,但相信很多人小時候(或現在依然是)丟骰子時,會刻意把六點的那一面朝上或朝下,因為我們不知怎麼地,以為這樣比較容易出現六點 ── 這就是試圖以增加條件,把機率變成條件機率,進而趨吉避凶。不過六點這面朝上,這個方法事實上可能沒什麼效就是了。

我們會刻意把六點的那一面朝上或朝下,試圖把機率變成條件機率,不過這個方法事實上可能沒什麼效。
圖/pixabay

說說其他例子:以前有一位老師跟我說:「大家都說:『創業成功的機率只有 5%,所以創業很難。』這是錯的。舉個極端一點的例子:可能是有 99% 的人缺乏某些特質,注定失敗,有 1% 的人怎麼創業都成功。重點不在成功的機率,而在於你有沒有具備哪些條件。」

平均的機率或統計有一定的代表意義,但在套到自己身上時都必須根據自身的條件重新去思考。反過來說,我們可以不斷增加各種條件,讓自己想實現的事件,變成機率值越來越高的條件機率。

-----廣告,請繼續往下閱讀-----

作者對此有一個很漂亮的說法:有一個打敗機率的方法,就是將它們個人化。

再回到前面過馬路的例子來說,被車撞到是隨機事件,而過馬路前先左右張望,不也就是再增加條件,把它變成條件機率嗎?

要如何更幸運?

這本書有好幾個段落當讓我覺得很有趣:早就學過的機率知識,許多正面思考的書籍中常見的情境與道理,串在一起後卻讓人有種「原來還能從這個角度看啊」的新奇感,就好像看見老朋友不曾見過的那面一樣。

從這樣實用面來介紹條件機率,也比「給定出現的點數是奇數,求出現 3 點的機率是多少?」這樣的題目,更讓人有感、覺得數學好玩有用 …… 說到最後有點離題了。

本書的主旨是講如何更幸運,範圍非常廣泛,從工作、愛情、到育兒都講了。雖然這不是我的專長,但裡面的一些觀點卻讓我覺得有趣,或許也會放在心上,想找機會用用看(像是我個人很喜歡教養那邊,作者認為孩子需要的是「能辨認他們眼前所有可能導致快樂的途徑的能力」),雖然這都只是很個人主觀的看法而已。

-----廣告,請繼續往下閱讀-----

不過如果對機率有興趣,想看看專家怎麼把機率與幸運做結合,相信書中前面的幾章,你應該會讀得蠻開心的。

圖/pixabay

-----廣告,請繼續往下閱讀-----
賴 以威
32 篇文章 ・ 9 位粉絲
數學作家、譯者,作品散見於聯合報、未來少年、國語日報,與各家網路媒體。師大附中,台大電機畢業。 我深信數學大師約翰·馮·諾伊曼的名言「If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is」。為了讓各位跟我一樣相信這句話,我們得先從數學有多簡單來說起,聊聊數學,也用數學說故事。 歡迎加入我與太太廖珮妤一起創辦的: 數感實驗室