0

0
0

文字

分享

0
0
0

恆正的平均餘命,永遠活下去

賴 以威
・2014/10/01 ・3864字 ・閱讀時間約 8 分鐘 ・SR值 453 ・五年級

先前介紹完貝氏定理後,有讀者反應講太快,應該先解釋貝氏定律裡最重要的觀念——條件機率。機率量化了一件事情發生的可能性。而條件機率嘛,比如說,你家樓下住了一位每天慢跑10公里的爺爺,傍晚你們在樓梯間遇到

「爺爺明天70歲生日嗎,都看不出來哎~」

爺爺能順利切到70歲蛋糕的機率,鐵定比台灣人平均能活到70歲的機率大上許多,因為健康的他只要再活一天就可以了。

給定某個條件下某個事件發生的可能性,即稱為條件機率。如果還不清楚,請想像這樣的場景:

-----廣告,請繼續往下閱讀-----

Photo Credit:Matty Ring
Photo Credit:Matty Ring

星期五傍晚,珮穎獨自走在夕陽下。她晚上沒行程,只是單純不想加班。她討厭現在的公司文化,老闆總喜歡把員工綁在公司,綁越久越好。

又不是定存,放著也不會生利息。

她想起離開時,主管的視線越過隔板上方盯著她,心裡忍不住埋怨。

-----廣告,請繼續往下閱讀-----

從馬路轉入小巷子,單行道兩側停滿車子,前方路口有個攤販在準備營業。一位穿西裝的上班族經過攤販,彎進巷子裡。逆光的夕陽將男子剪成一片瘦高的黑影,走近點,他的臉孔從黑影中浮現,一對修長秀氣的眼睛,以男生來說算白的膚色,給人秀氣的感覺,但不是柔弱,是無論面對甚麼事情,彷彿都能從容不迫處理的氣質。

珮穎注意到他的識別證還掛在身上,正想偷瞥一眼,男子突然加快腳步閃進路旁兩台車的縫隙間,對珮穎招手。

嗯?

還沒反應過來,珮穎聽見身後引擎聲響。回頭一看,一台老舊發財車要通過。男子還在對自己招手,遲疑一會兒,珮穎也縮進兩台車的縫隙間。

-----廣告,請繼續往下閱讀-----

「我跟妳換位子吧。」

他高舉包包,與珮穎擦身而過,一陣清新的木香調香水氣味傳來。發財車捲起灰塵離去,男子揮揮手咳了幾聲。珮穎這下看清楚他的識別證了。

那年珮穎25歲,子威29歲。距離台灣男女平均壽命,各自還有57年與47年。

-----廣告,請繼續往下閱讀-----

星期五傍晚,珮穎在夕陽下踱步,落日的餘溫被玻璃隔絕在外,窗戶這側只剩冰冷的空調,醫療儀器的聲響替時間畫下一道道刻度。珮穎坐回病床旁,病房裡總是充滿消毒水的氣味,但一靠近子威,還是可以聞到那股木香調的香水氣味。

子威伸過手來握住珮穎,兩人相視微笑。只要看見夕陽,珮穎就會想起他們第一次見面的畫面,這點子威比誰都清楚。

「50年了,這一切過得真快。」

這一年,珮穎75歲,距離台灣女性平均壽命還有7年;子威79歲,超過男性平均壽命3年。

-----廣告,請繼續往下閱讀-----

巷子裡邂逅後,他們陷入熱戀。2年後的婚禮上,子威開頭第一句話是

「我要謝謝一位發財車司機——」

他們擁有標準的平凡的幸福的生活。生兒育女,儘管偶爾免不了吵架,但只要一到傍晚,總有一方會提議去散步,然後在夕陽下言歸於好。幾十年過去,小孩成家。雖然退休了,他們還得幫忙帶孫子。又過了幾年,孩子總算將孫子接回去自己帶。

-----廣告,請繼續往下閱讀-----

那年子威72歲,珮穎68歲。

正準備好好享受生活,子威卻突然診斷出罹患癌症。美好的生活像紙糊似的,輕易地被命運撞出一個大洞。

Photo Credit:skippyjon
Photo Credit:skippyjon

剛知道病情時,子威很消沉,一度想放棄治療。

「李子威,你滿腦子想死就去死好了!我告訴你,台灣男人平均壽命是76歲,你才72歲,最好你打算這麼丟臉,讓你老婆比別人多守4年寡!」

-----廣告,請繼續往下閱讀-----

說到最後,珮穎分不清自己是在罵人還是在哭泣。子威坐在客廳沙發,一整晚沒回話。隔天傍晚他們去散步,子威給珮穎看了他今天去醫院的診斷報告。一小時後,他住院接受癌症療程。

當晚,珮穎靠在病床上的子威替他削水果。

「第一次見面時,我不是走到前面幫妳擋灰塵嗎?」

珮穎點點頭。子威繼續說

「其實啊,我一直都沒講,當時我有刻意從妳的左側走過去噢。」

「啊?」

「因為心臟在左側,人通常是右撇子,身子會無意識往左傾斜。走在妳左側,妳會錯以為,怎麼自己一直往我身上靠,是不是喜歡我。」

「聽你亂說。」

珮穎嗤嗤地笑著,子威露出認真的表情

「真的,不然為什麼我們跑步都逆時針呢?就是逆時針跑時,靠左傾斜會自動產生向心力,跑起來比較順。」

珮穎半信半疑,卻看到子威似笑非笑地盯著自己,珮穎這才發現自己左半邊靠在子威身上。

「那麼老了還開這種玩笑。」

珮穎作勢打他,但她心底明白,子威是故作若無其事,想讓她安心。儘管受到影響,但他已經恢復成原本那位替她著想,總是把她擺在比自己更重要地位的男人。

Photo Credit:Free Grunge Textures
Photo Credit:Free Grunge Textures

「這幾年辛苦妳了。」

子威拿下氧氣罩,氣若游絲,距離診斷出癌症的那天到現在過了7年,前天他才剛從加護病房出來。醫生覺得子威能活到現在已經是奇蹟了。

珮穎知道這才不是奇蹟,是子威堅強意志力的展現。

「你才辛苦,已經超過平均壽命3年了,你做的很棒。」

珮穎開玩笑地說。子威搖搖頭,眼神望向床頭櫃上的筆記本,珮穎替他拿過來,裡面滿滿的數學式子

「還沒,我還沒贏過我這年紀的預期平均壽命。」

「你這年紀的平均壽命?」

子威休息了一下,一個字一個字慢慢說

「我後來才知道,平常說的是平均壽命是指『剛出生時所預期的平均壽命』,是最短的預期平均壽命。隨著年紀,我們預期能夠活的平均壽命就會慢慢變長。」

「為什麼?」

珮穎不懂,平均壽命就是平均壽命,怎麼會隨著年齡改變呢?

「舉個例子來說,4個同時出生的人,各自活到4歲、10歲、60歲、70歲。這樣平均壽命是幾歲?」

「36歲。」

「5歲時,剩下3個人,這3人的平均壽命是46.7歲。」

子威停下來喘口氣,現在他的光說話就得費上很大的力氣。

「換句話說,給定活到5歲時,平均壽命從剛出生的36歲,提升到46.7歲。增加了10.7年。」

「聽起來有點像條件機率?」

珮穎回答,他們夫妻的數學都不錯。

「年紀越大,樣本空間裡年輕早逝的人被排除在外,我們預期他們能夠活的平均壽命就會越來越長。假設y是表示壽命的隨機變數,則x歲時的壽命期望值為,」

筆記本上寫著

永遠恆正的平均餘命_Eq1

「其中,P(y|x)是指給定x歲的人,壽命為y歲的條件機率。只要活到40歲,能活到70歲的機率就會比20歲時能活到70歲的機率更大。用數學式子表示是P(y=70|x=40) > P(y=70|x=20)。」

子威接過筆記本,翻頁又是一大堆算式。

永遠恆正的平均餘命_Eq2

「我們再來定義一個『x歲的平均餘命』,意思是x歲的人平均還能再活幾年。它的數學式子是,」

他指著第二個加總符號說

「取k’=k+1,可以得到結果為,」

永遠恆正的平均餘命_Eq3

「換句話說,x歲的平均餘命,就是把『給定x歲後,還會活k年的機率』,從k=1到k=∞累加起來。」

子威笑了,那笑容像在草地裏撿到彈珠的小男孩,跑回來跟朋友炫耀的表情。

「我查過了台灣官方的國民生命表。在我這年紀的男性……竟然平均餘命還有8.3年。照你的標準來要求…我還有8年要努力呢……做你的老公……真辛苦。」

子威突然一陣咳嗽,笑容還沒褪去,痛苦的表情湧上混雜在一起。珮穎眼前一陣模糊,她知道子威又在安慰她了。她吸了吸鼻子,試圖讓聲音平穩

「那就辛苦你了,請再為了我多活幾年。」

當晚半夜,子威緊急被送回加護病房。凌晨,珮穎簽下放棄急救同意書。

Photo Credit:Beverly & Pack
Photo Credit:Beverly & Pack

星期五傍晚,珮穎站在夕陽下。紙蓮花被包覆在更大的、火焰形成的蓮花中。已經過了好幾次夕陽,她卻還沒跟子威說到話。這次的冷戰好久。

應該不可能習慣身邊沒有子威吧。不,不是不可能習慣,是我不希望習慣。

「奶奶妳還好嗎?」

孫女打斷了珮穎的思緒。

「爺爺還在的。只是我們看不到而已。」

孫女安慰她。珮穎想起她們相遇時,她正是孫女這個年紀吧。

「奶奶妳搬過來跟我們住好了,這樣爺爺也不用跑太多地方,可以更常回來。」

孫女試探性地問。珮穎知道孫女擔心獨居的自己觸景生情。有很多案例,感情深厚的夫妻一個先離開,另一個走不出來,也很快離開了。

「妳放心,奶奶很堅強,可以照顧好自己,還能活很多年的。妳爺爺教過我一套觀念……」

珮穎向孫女解釋起應用到條件機率的平均餘命。

「照你爺爺的說法,我還有11年好活。太早去鐵定會挨妳爺爺罵的。」

一旁還在念高中的小孫子插嘴說道

「可是奶奶,這觀念有點奇怪,因為機率恆正,不管到幾歲,平均餘命永遠是正的,表示當下的預期平均壽命永遠會大於當下的年紀,那不就是說,人類可以永遠活下去——」

「你閉嘴啦!」

孫女出言制止她那搞不清楚狀況的弟弟。

的確,這聽起來有點像芝諾悖論:烏龜跟阿基里斯賽跑,每當阿基里斯快要追上烏龜,烏龜都會趁著阿基里斯追趕所花的時間,再往前移動一點,阿基里斯又得再追趕。不論靠多近,烏龜永遠有一小段時間可以再前進,阿基里斯永遠追不上烏龜。

小孫子沒說錯,給定現在的年齡,只要沒破人瑞紀錄,永遠有人活得更久。平均餘命永遠大於零,永遠可以活下去。

但跟芝諾悖論不一樣,芝諾悖論有數學上的問題;餘命的觀念儘管看起來不合理,但在數學上完全正確,沒有漏洞。餘命永遠恆正,但那終究只是期望值,還是會有很多人在沒活到那年紀之前就先離開。

這是體貼的子威留給她最後的禮物,一道用完美數學構成的甜言蜜語。

他的意思是,他將永遠陪在她身邊。就像第一次見面一樣,他告訴她車來了,體貼地閃到前方幫她擋灰塵。

「奶奶自己住沒關係,」

珮穎打斷了孫女與孫子的爭執

「這樣爺爺如果回家了,才有人幫他開門啊。」

她朝左望去,夕陽在腳下拉出一道長長的影子,她閉上眼睛,彷彿聞到了子威身上那股淡淡的木香調香水氣味。

註: 更多賴以威的數學故事,請參考《超展開數學教室

Photo Credit:Ruth and Dave
Photo Credit:Ruth and Dave

註:更多賴以威的數學故事,請參考《超展開數學教室》。

-----廣告,請繼續往下閱讀-----
文章難易度
賴 以威
32 篇文章 ・ 10 位粉絲
數學作家、譯者,作品散見於聯合報、未來少年、國語日報,與各家網路媒體。師大附中,台大電機畢業。 我深信數學大師約翰·馮·諾伊曼的名言「If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is」。為了讓各位跟我一樣相信這句話,我們得先從數學有多簡單來說起,聊聊數學,也用數學說故事。 歡迎加入我與太太廖珮妤一起創辦的: 數感實驗室

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
2

文字

分享

0
2
2
天氣預報到底是不是在騙人?我整個就不爽了!從生活案例看條件機率——《跟著網紅老師玩科學》
時報出版_96
・2019/08/23 ・1984字 ・閱讀時間約 4 分鐘 ・SR值 438 ・四年級

-----廣告,請繼續往下閱讀-----

許多人說,現在科學這麼發達,為什麼天氣預報總是不準呢?

這裡涉及一個數學問題,稱為「條件機率」。

什麼是條件機率呢?例如我們要確定 6 月 15 日是不是下雨,根據往年資料,下雨的機率有 40% ,不下雨的機率為 60% ,這就稱為「機率」。如果在前一天,天氣預報說 6月15 日下雨,這就稱為「條件」, 在這種條件下, 6 月 15 日真正下雨的機率就稱為「條件概率」。

圖/《跟著網紅老師玩科學》提供

你哭著對我說,天氣預報裡都是騙人的

天氣預報根據一定的氣象參數推測是否會下雨,由於天氣捉摸不定,即便預報下雨,也有可能是晴天。假設天氣預報的準確率為 90% ,即在預報下雨的情況下,有 90% 的機率下雨,有 10% 的機率不下雨;同樣,在預報不下雨的情況下,有 10% 的機率下雨,有 90% 的機率不下雨。

-----廣告,請繼續往下閱讀-----

這樣一來, 6 月 15 日的預報和天氣就有四種可能:預報下雨且真的下雨,預報不下雨但是下雨,預報下雨但是不下雨,預報不下雨且真的不下雨。

我們把四種情況列在下面的表格中,並計算相應的機率。

下雨 不下雨
預報下雨 40% × 90% = 36% 60% × 10% = 6%
預報不下雨 40% × 10% = 4% 60% × 90% = 54%

計算方法就是兩個機率的乘積。例如下雨機率為 40% ,下雨時預報下雨的機率為 90% ,因此預報下雨且下雨這種情況出現的機率為 36% 。同理,我們可以計算出天氣預報下雨但是不下雨的機率為 6% ,二者之和為 42% ,這就是天氣預報下雨的機率。

在這 42% 的可能性中,真正下雨占 36% 的可能,比例為\( 36 \div 42=85.7 \)%,而不下雨的機率為 6% ,占 \( 6 \div 42=14.3 \) %。

也就是說,假設天氣預報的準確率為 90% ,預報下雨的條件下,真正下雨的機率只有 85.7% 。

我們會發現:

-----廣告,請繼續往下閱讀-----

預報下雨時是否真的下雨,不光與預報的準確度有關,同時也與這個地區平時下雨的機率有關

圖/《跟著網紅老師玩科學》提供

檢查報告說我中獎了,我就真的生病了嗎?

與這個問題類似的是在醫院進行重大疾病檢查時,如果醫生發現異常,一般不會直接斷定生病了,而會建議到大醫院再檢查一次,雖然這兩次檢查可能完全相同。為什麼會這樣呢?

假設有一種重大疾病,患病人群占總人群的比例為\(\frac{1}{7000} \) 。也就是說, 隨機選取一個人,有\(\frac{1}{7000} \) 的機率患有這種疾病,有\(\frac{6999}{7000} \) 的機率沒有患這種疾病。

有一種先進的檢測方法,誤診率只有萬分之一,也就是說,患病的人有\(\frac{1}{10000} \) 的可能性被誤診為健康人,健康人也有\(\frac{1}{10000} \) 的可能性被誤診為患病。

-----廣告,請繼續往下閱讀-----

我們要問:在一次檢查得到患病結果的前提下,這個人真正患病的機率有多大?

患病 健康
檢測患病 \(\frac{1}{7000} \times \frac{9999}{10000}\)\(= \frac{9999}{70000000}\)  \(\frac{6999}{7000} \times \frac{1}{10000}\)\(= \frac{6999}{70000000}\)
檢測健康 \(\frac{1}{7000} \times \frac{1}{10000}\)\(= \frac{1}{70000000}\)  \(\frac{6999}{7000} \times \frac{9999}{10000}\)\(= \frac{69983001}{70000000}\)

我們仿照剛才的計算方法,檢測出患病的總機率為:\(\frac{9999}{70000000}+\frac{6999}{70000000} \) \(=\frac{16998}{70000000}\)
患病且檢測出患病的機率為:\(\frac{9999}{70000000}\)

所以在檢測患病的條件下,真正患病的機率為:\( \frac{9999}{70000000} \div  \frac{16998}{70000000}\) \(=\frac{9999}{16998}\) \( \approx 58.8 \)%

顯而易見,即便是萬分之一誤診的情況,一次檢測也不能完全確定這個人是否患病。

-----廣告,請繼續往下閱讀-----

圖/《跟著網紅老師玩科學》提供

那麼,兩次檢測都是患病的情況又如何呢?

大家要注意,在第一次檢測結果為患病的前提下,此人患病的機率已經不再是所有人群的 \(\frac{1}{7000}\) ,而變為自己的 58.8% ,健康的機率只有 41.2% 。

此處的機率就是條件機率,所以第二次檢測的表格變為:

-----廣告,請繼續往下閱讀-----
患病 健康
檢測患病 58.8% × \(\frac{9999}{10000}\)= 58.794%  41.2% × \(\frac{1}{10000}\)= 0.004%
檢測健康  58.8% × \(\frac{1}{10000}\)= 0.006%  41.2% × \(\frac{9999}{10000}\)= 41.196%

兩次檢測都是患病的條件下,此人真正患病的機率為:\(\frac{58.794}{58.794+0.004}\)\(=99.99 \) % 基本確診了。

日常生活超有感──貝式定理

對這個問題進行詳細討論的人是英國數學家貝葉斯

圖/《跟著網紅老師玩科學》提供

貝葉斯指出:如果 A 和 B 是兩個相關的事件, A 有發生和不發生兩種可能, B 有 B1 、 B2 、……、 Bn 共 n 種可能。

-----廣告,請繼續往下閱讀-----

那麼在 A 發生的前提下, Bi 發生的機率稱為:條件機率 \( P(B_i|A) \)

要計算這個機率,首先要計算在 Bi 發生的條件下 ,A 發生的機率,公式為:\( P(B_i)P(A|B_i) \)

然後,需要計算事件A發生的總機率

方法是用每種Bi情況發生的機率與相應情況下A發生的機率相乘,再將乘積相加。
\( P(B_1)P(A_1|B_1)+P(B_2)P(A_2|B_2)+\cdots+P(B_n)P(A_n|B_n) \)

最後,用上述兩個機率相除,完整的貝式定理公式就是:

\( P(B_i|A) \) \(=\frac{P(B_i)P(A|B_i)}{P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+\cdots+P(B_n)P(A|B_n)} \)

貝式定理在社會學、統計學、醫學等領域,都發揮著巨大作用。

-----廣告,請繼續往下閱讀-----

下次遇到天氣誤報、醫院誤診,不要完全怪氣象臺和醫院啦!有時候這是個數學問題。

——本文摘自《跟著網紅老師玩科學》,2019 年 4 月,時報出版

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 38 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

0
2

文字

分享

0
0
2
用我大數學的語言傳授幸運法則!? ── 《幸運的科學》書評
賴 以威
・2019/02/15 ・3128字 ・閱讀時間約 6 分鐘 ・SR值 512 ・六年級

過年期間,我讀了這本《幸運的科學》。「裡面有提到貝氏定理(數學)。」朋友跟我說的時候,我還有點存疑,畢竟這書名怎麼看都有點像是那種、打著科學招牌,講一些科學「目前」還幫不上忙的領域。

讓我決定翻開的原因是作者之一 Barnaby Marsh 曾是哈佛大學、牛津大學的訪問學者,如今正在普林斯頓高等研究院訪問。前兩間是知名的大學,普林斯頓高等研究院更是當年匯集了馮·諾伊曼、愛因斯坦、奧本海默等留名青史學者的研究機構。

能訪問這些赫赫有名大學研究機構的學者所說的話,應該還蠻值得一看的吧?我的偏見這樣告訴我。

說到底,偏見也可以用機率來解釋:
如果今天只是一般人講幸運的科學,我們以為穿鑿附會的機率很高;但如果有像作者這樣的經歷,我們就下意識的認為可信度高一些,這是條件機率教我們的。

-----廣告,請繼續往下閱讀-----

沒想到我翻開書讀起來,還真的有貝氏定理!

貝式定理。圖/Flickr

天助自助者,怎麼讓隨機事件成功機率增加?

格雷茨基在一九八〇年代與一九九〇年代先後四次奪得斯坦利盃 (Stanley Cup) 冠軍,創下至今無人能超越的得分紀錄。當他被問到如何打進這麼多球時,他永遠只有一個答案:「我滑到冰球會到的地方。」

這是一本有趣的書,作者用了兩三百頁的分量來解釋「天助自助者」、「趨吉避凶」這些我們自以為熟知,卻不太清楚該如何徹底落實在生活中的概念。其中有些重點精準的運用了「數學語言」來描述,讓讀者(至少我)更了解他想傳遞的概念。

比方說,成功或多或少都參雜了些機運,因此作者把成功定義為一個「隨機事件」。沒有人能控制隨機事件,無法讓隨機變成確定。

但透過兩件事,能讓成功更容易發生:

-----廣告,請繼續往下閱讀-----

一、德蕾莎修女搭頭等艙事件 ── 增加成功機運

圖/wikipedia

「以照顧貧苦病痛之人為己任的修女,竟然也有想要追求享受的一面,是想在旅途中舒服些嗎?」書中提到德雷莎修女搭頭等艙這行為受到一些批評。

你可以想像,這件事如果在台灣鐵定會上報紙頭條,然後被媒體公審。我自己查了網路資料,有一說是德雷莎修女在搭飛機時,常會被航空公司自動升級到頭等艙。但其實德雷莎修女是為了尋求更多的募款機會,精準一點的說,是「尋求更多遇到有錢人的機會」。

沒人能保證一次募款能否成功,但修女利用搭頭等艙來增加遇見富人的機率,進而提升募款次數。用個熟悉的數學例子來說,就是你無法改變丟硬幣出現正面的機率,但你可以多丟幾次。

-----廣告,請繼續往下閱讀-----

只是生活中很多情境不像丟銅板那麼簡單,無法輕易的增加嘗試次數。有時候增加嘗試次數需要過高的成本,不一定值得去做,例如買彩券;或者,「嘗試增加次數」本身就是一個隨機事件,就像募款的例子。你沒辦法說「1 個富人沒用,那我就來遇 10 個富人吧!」。只是寫 10 封 E-mail 可能也只是徒勞的嘗試,因為這些信件通常都不會被認真看待,還是得要面對面的交流;搭頭等艙雖然不保證能遇到富人,但至少比起在便利商店遇到要來得機率高。

募款成功的機率不能被改變,但遇到富人的機率可以被改變,而這連帶會影響到募款成功的次數,所以這便是值得去做的一件事。

至於為什麼遇到富人的機率可以被改變,這就牽扯到書中的第二個重點 ── 條件機率

二、嬰兒該不該和父母同床事件 ── 條件機率

我發現,即使是那些斷言一切都是命中注定、我們不可能改變的人,他們過馬路時仍然會注意兩邊來車。

圖/pixabay

-----廣告,請繼續往下閱讀-----

書裡舉的例子是作者跟他太太在女兒出生時,曾經討論過要不要讓她跟她們一起睡。太太認為不妥,因為跟父母同睡的嬰兒發生意外的機率,是睡在嬰兒床上的 5 倍高,因為同床的嬰兒比較容易被悶住或被大人壓到 ── 但這是一般論的結果。

作者仔細研究後發現,許多意外是發生在父母喝醉、過度肥胖、教育程度不高的情況下(這邊作者沒有解釋清楚,但我想背後是指教育程度不高的父母,有相對高的比例會選擇不準備嬰兒床);另外,床鋪過軟、沙發、水床、過多的毛毯也都是問題。

作者根據自己家裡的情況考量後,發現他們與女兒同床的風險是低於千分之一的。

換句話說,以下兩種機率是相差很多的:

-----廣告,請繼續往下閱讀-----
  1.  嬰兒跟父母同床發生意外的機率。
  2.  給定 king size 床,且夫妻各用一條單人被的條件下,嬰兒跟父母同床發生意外的機率。

再用我們習慣的骰子做例子:丟骰子出現六點的機率是 1/6,但相信很多人小時候(或現在依然是)丟骰子時,會刻意把六點的那一面朝上或朝下,因為我們不知怎麼地,以為這樣比較容易出現六點 ── 這就是試圖以增加條件,把機率變成條件機率,進而趨吉避凶。不過六點這面朝上,這個方法事實上可能沒什麼效就是了。

我們會刻意把六點的那一面朝上或朝下,試圖把機率變成條件機率,不過這個方法事實上可能沒什麼效。
圖/pixabay

說說其他例子:以前有一位老師跟我說:「大家都說:『創業成功的機率只有 5%,所以創業很難。』這是錯的。舉個極端一點的例子:可能是有 99% 的人缺乏某些特質,注定失敗,有 1% 的人怎麼創業都成功。重點不在成功的機率,而在於你有沒有具備哪些條件。」

平均的機率或統計有一定的代表意義,但在套到自己身上時都必須根據自身的條件重新去思考。反過來說,我們可以不斷增加各種條件,讓自己想實現的事件,變成機率值越來越高的條件機率。

-----廣告,請繼續往下閱讀-----

作者對此有一個很漂亮的說法:有一個打敗機率的方法,就是將它們個人化。

再回到前面過馬路的例子來說,被車撞到是隨機事件,而過馬路前先左右張望,不也就是再增加條件,把它變成條件機率嗎?

要如何更幸運?

這本書有好幾個段落當讓我覺得很有趣:早就學過的機率知識,許多正面思考的書籍中常見的情境與道理,串在一起後卻讓人有種「原來還能從這個角度看啊」的新奇感,就好像看見老朋友不曾見過的那面一樣。

從這樣實用面來介紹條件機率,也比「給定出現的點數是奇數,求出現 3 點的機率是多少?」這樣的題目,更讓人有感、覺得數學好玩有用 …… 說到最後有點離題了。

本書的主旨是講如何更幸運,範圍非常廣泛,從工作、愛情、到育兒都講了。雖然這不是我的專長,但裡面的一些觀點卻讓我覺得有趣,或許也會放在心上,想找機會用用看(像是我個人很喜歡教養那邊,作者認為孩子需要的是「能辨認他們眼前所有可能導致快樂的途徑的能力」),雖然這都只是很個人主觀的看法而已。

-----廣告,請繼續往下閱讀-----

不過如果對機率有興趣,想看看專家怎麼把機率與幸運做結合,相信書中前面的幾章,你應該會讀得蠻開心的。

圖/pixabay

-----廣告,請繼續往下閱讀-----
賴 以威
32 篇文章 ・ 10 位粉絲
數學作家、譯者,作品散見於聯合報、未來少年、國語日報,與各家網路媒體。師大附中,台大電機畢業。 我深信數學大師約翰·馮·諾伊曼的名言「If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is」。為了讓各位跟我一樣相信這句話,我們得先從數學有多簡單來說起,聊聊數學,也用數學說故事。 歡迎加入我與太太廖珮妤一起創辦的: 數感實驗室