0

2
1

文字

分享

0
2
1

天氣預報到底是不是在騙人?我整個就不爽了!從生活案例看條件機率——《跟著網紅老師玩科學》

時報出版_96
・2019/08/23 ・1984字 ・閱讀時間約 4 分鐘 ・SR值 438 ・四年級

許多人說,現在科學這麼發達,為什麼天氣預報總是不準呢?

這裡涉及一個數學問題,稱為「條件機率」。

什麼是條件機率呢?例如我們要確定 6 月 15 日是不是下雨,根據往年資料,下雨的機率有 40% ,不下雨的機率為 60% ,這就稱為「機率」。如果在前一天,天氣預報說 6月15 日下雨,這就稱為「條件」, 在這種條件下, 6 月 15 日真正下雨的機率就稱為「條件概率」。

圖/《跟著網紅老師玩科學》提供

你哭著對我說,天氣預報裡都是騙人的

天氣預報根據一定的氣象參數推測是否會下雨,由於天氣捉摸不定,即便預報下雨,也有可能是晴天。假設天氣預報的準確率為 90% ,即在預報下雨的情況下,有 90% 的機率下雨,有 10% 的機率不下雨;同樣,在預報不下雨的情況下,有 10% 的機率下雨,有 90% 的機率不下雨。

這樣一來, 6 月 15 日的預報和天氣就有四種可能:預報下雨且真的下雨,預報不下雨但是下雨,預報下雨但是不下雨,預報不下雨且真的不下雨。

我們把四種情況列在下面的表格中,並計算相應的機率。

下雨 不下雨
預報下雨 40% × 90% = 36% 60% × 10% = 6%
預報不下雨 40% × 10% = 4% 60% × 90% = 54%

計算方法就是兩個機率的乘積。例如下雨機率為 40% ,下雨時預報下雨的機率為 90% ,因此預報下雨且下雨這種情況出現的機率為 36% 。同理,我們可以計算出天氣預報下雨但是不下雨的機率為 6% ,二者之和為 42% ,這就是天氣預報下雨的機率。

在這 42% 的可能性中,真正下雨占 36% 的可能,比例為\( 36 \div 42=85.7 \)%,而不下雨的機率為 6% ,占 \( 6 \div 42=14.3 \) %。

也就是說,假設天氣預報的準確率為 90% ,預報下雨的條件下,真正下雨的機率只有 85.7% 。

我們會發現:

預報下雨時是否真的下雨,不光與預報的準確度有關,同時也與這個地區平時下雨的機率有關

圖/《跟著網紅老師玩科學》提供

檢查報告說我中獎了,我就真的生病了嗎?

與這個問題類似的是在醫院進行重大疾病檢查時,如果醫生發現異常,一般不會直接斷定生病了,而會建議到大醫院再檢查一次,雖然這兩次檢查可能完全相同。為什麼會這樣呢?

假設有一種重大疾病,患病人群占總人群的比例為\(\frac{1}{7000} \) 。也就是說, 隨機選取一個人,有\(\frac{1}{7000} \) 的機率患有這種疾病,有\(\frac{6999}{7000} \) 的機率沒有患這種疾病。

有一種先進的檢測方法,誤診率只有萬分之一,也就是說,患病的人有\(\frac{1}{10000} \) 的可能性被誤診為健康人,健康人也有\(\frac{1}{10000} \) 的可能性被誤診為患病。

我們要問:在一次檢查得到患病結果的前提下,這個人真正患病的機率有多大?

患病 健康
檢測患病 \(\frac{1}{7000} \times \frac{9999}{10000}\)\(= \frac{9999}{70000000}\)  \(\frac{6999}{7000} \times \frac{1}{10000}\)\(= \frac{6999}{70000000}\)
檢測健康 \(\frac{1}{7000} \times \frac{1}{10000}\)\(= \frac{1}{70000000}\)  \(\frac{6999}{7000} \times \frac{9999}{10000}\)\(= \frac{69983001}{70000000}\)

我們仿照剛才的計算方法,檢測出患病的總機率為:\(\frac{9999}{70000000}+\frac{6999}{70000000} \) \(=\frac{16998}{70000000}\)
患病且檢測出患病的機率為:\(\frac{9999}{70000000}\)

所以在檢測患病的條件下,真正患病的機率為:\( \frac{9999}{70000000} \div  \frac{16998}{70000000}\) \(=\frac{9999}{16998}\) \( \approx 58.8 \)%

顯而易見,即便是萬分之一誤診的情況,一次檢測也不能完全確定這個人是否患病。

圖/《跟著網紅老師玩科學》提供

那麼,兩次檢測都是患病的情況又如何呢?

大家要注意,在第一次檢測結果為患病的前提下,此人患病的機率已經不再是所有人群的 \(\frac{1}{7000}\) ,而變為自己的 58.8% ,健康的機率只有 41.2% 。

此處的機率就是條件機率,所以第二次檢測的表格變為:

患病 健康
檢測患病 58.8% × \(\frac{9999}{10000}\)= 58.794%  41.2% × \(\frac{1}{10000}\)= 0.004%
檢測健康  58.8% × \(\frac{1}{10000}\)= 0.006%  41.2% × \(\frac{9999}{10000}\)= 41.196%

兩次檢測都是患病的條件下,此人真正患病的機率為:\(\frac{58.794}{58.794+0.004}\)\(=99.99 \) % 基本確診了。

日常生活超有感──貝式定理

對這個問題進行詳細討論的人是英國數學家貝葉斯

圖/《跟著網紅老師玩科學》提供

貝葉斯指出:如果 A 和 B 是兩個相關的事件, A 有發生和不發生兩種可能, B 有 B1 、 B2 、……、 Bn 共 n 種可能。

那麼在 A 發生的前提下, Bi 發生的機率稱為:條件機率 \( P(B_i|A) \)

要計算這個機率,首先要計算在 Bi 發生的條件下 ,A 發生的機率,公式為:\( P(B_i)P(A|B_i) \)

然後,需要計算事件A發生的總機率

方法是用每種Bi情況發生的機率與相應情況下A發生的機率相乘,再將乘積相加。
\( P(B_1)P(A_1|B_1)+P(B_2)P(A_2|B_2)+\cdots+P(B_n)P(A_n|B_n) \)

最後,用上述兩個機率相除,完整的貝式定理公式就是:

\( P(B_i|A) \) \(=\frac{P(B_i)P(A|B_i)}{P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+\cdots+P(B_n)P(A|B_n)} \)

貝式定理在社會學、統計學、醫學等領域,都發揮著巨大作用。

下次遇到天氣誤報、醫院誤診,不要完全怪氣象臺和醫院啦!有時候這是個數學問題。

——本文摘自《跟著網紅老師玩科學》,2019 年 4 月,時報出版

文章難易度
時報出版_96
174 篇文章 ・ 34 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

1
0

文字

分享

0
1
0
說好的颱風呢?!氣象預報不準?要準確預測天氣有多難?
PanSci_96
・2023/09/12 ・4646字 ・閱讀時間約 9 分鐘

小心啊,打雷囉,下雨收衣服啊!

氣象報告說好是晴天的,怎麼一踏出門就開始下雨了?

昨天都說要直撲的颱風,怎麼又彎出去了?

多麼希望天氣預報能做到百分之百正確,只要出門前問一下手機,就能確定今天是出大太陽還是午後雷陣雨,是幾點幾分在哪裡?又或是最重要的,颱風到底會不會來?

但你知道,現在的氣象預報,已經動用全球最強的超級電腦們了嗎?既然如此,我們現在的氣象預報能力到底有多準?我們什麼時候能徹底掌握這顆蔚藍星球上發生的所有天氣現象?

天氣預報有多困難?

雖然我們常常嫌說氣象預報不準、颱風路徑不準、預測失靈等等。但我們現在的實力如何呢?

目前美國國家海洋暨大氣總署的數據分析,對西太平洋颱風的 24 小時預測,誤差平均值約 50 英哩,也就是一天內的路徑誤差,大約是 80 公里。其他國家的氣象局,24 小時的誤差也約在 50 到 120 公里之間。台灣呢?根據中央氣象局到 2010 年的統計,誤差大約在 100 公里內。也就是臺灣對颱風的預測,沒有落後其他先進單位。

現在只要打開手機隨便開個 APP,就能問到今天的天氣概況,甚至是小區域或是短時間區間內的天氣預報。但在過去沒有電腦的時代,要預測天氣根本可以不可能(諸葛孔明:哪泥?)。

近代且稱得上科學的天氣預測可追溯回 1854 年,那個只能靠人工觀測的年代,英國氣象學家為了保護漁民出海的安危,利用電報傳遞來蒐集各地居民的觀察,並進行風暴預報。後來演變成天氣預報後,卻因為有時預報不準,預報員承受了輿論與國會批判的巨大壓力,最後甚至鬱鬱離世。

19 世紀的氣象學家為了保護漁民出海的安危,會利用電報蒐集各地居民的觀察進行風暴預報。圖/Giphy

在電腦還在用打洞卡進行運算的年代,一台電腦比一個房間還大。氣象局要預測天氣,甚至判斷颱風動向,得要依賴專家對天氣系統、氣候型態的認知。因此在模擬預測非主流的年代,我們可以看到氣象局在進行預測時,會拿著一個圓盤,依據量測到的大氣壓力、風速等氣象值,進行專家分析。

當時全球的氣象系統,則是透過全球約一千個氣象站,共同在 UTC 時間(舊稱格林威治時間)的零零時施放高空探測氣球,透過聯合國的「World Weather Watch」計畫來共享天氣資料,用以分析。關於氣象氣球,我們之前也介紹過,歡迎看看這集喔。

也就是說,以前的颱風預測就是專家依靠自身的學理與經驗,來預測颱風的動向,但是,大氣系統極其複雜,先不說大氣系統受到擾動就會有所變化,行星風系、科氏力、地形、氣壓系統這些系統間互相影響,都會造成預測上的失準,更遑論模擬整個大氣系統需要的電腦資源,是非常巨大的。

那麼,有了現代電腦科技加持的我們,又距離全知還有多遠呢?是不是只要有夠強的超級電腦,我們就能無所不知呢?

有了電腦科技加持,我們的預報更準了嗎?

當然,有更強的電腦,我們就能算得更快。才不會出現花了三天計算,卻只能算出一個小時後天氣預報的窘況。但除了更強悍的超級電腦,也要更先進的預測模型與方法。現在的氣候氣象模擬,會先給一個初始值,像是溫度、壓力、初始風場等等,接著就讓這個數學模型開始跑。

接著我們會得到一個答案,這還不是我們真正要的解,而是一種逼近真實的解,我們還必須告訴模型,我容許的誤差值是多少。什麼意思呢?因為複雜模型算出來的數值不會是整數,而是拖著一堆小數點的複雜數字。我們則要選擇取用數值小數點後 8 位還是後 12 位等等,端看我們的電腦能處理到多少位,以及我們想算多快。時間久了,誤差的累積也越多,預測就有可能失準。沒錯,這就是著名的蝴蝶效應,美國數學暨氣象學家 Edward Norton Lorenz 過去的演講題目「蝴蝶在巴西揮動了翅膀,會不會在德州造成了龍捲風?」就是在講這件事。

回到颱風預報,大家有沒有發現,我們看到的颱風路徑圖,颱風的圈怎麼一定會越變越大,難道颱風就像戶愚呂一樣會從 30% 變成 100% 力量狀態嗎?

輕颱鴛鴦的颱風路徑潛勢圖。圖/中央氣象局

其實那不是颱風的暴風圈大小,而是颱風的路徑預測範圍,也就是常聽到的颱風路徑潛勢圖,​是未來 1 至 3 天的颱風可能位置,颱風中心可能走的區域​顯示為潛勢圖中的紅圈,機率為 70%,所以圈圈越大,代表不確定性越大。​

1990 年後,中央氣象局開始使用高速電腦,並且使用美國國家大氣研究中心 (NCAR) 為首開發的 Weather Research and Forecasting 模型做數值運算,利用系集式方法,藉由不同的物理模式或參數改變,模擬出如同「蝴蝶效應」的結果,運算出多種颱風的可能行進路線。預測時間拉長後,誤差累積也更多,行進路徑的可能性當然也會越廣。

「真鍋模型」用物理建模模擬更真實的地球氣候!

大氣模擬不是只要有電腦就能做,其背後的物理複雜度,也是一大考驗。因此,發展與地球物理相關的研究變得非常重要。

2021 年的諾貝爾物理學獎,就是頒給發展氣候模型的真鍋淑郎。他所開發的地表模式,在這六十年間,從一個沒考慮地表植物的簡單模型,經各家發展,變成現在更為複雜、更為真實的模型。其中的參數涵蓋過去沒有的植物反應、地下水流動、氮碳化合反應等等,增強了氣候氣象模型的真實性。

2021 年的諾貝爾物理學獎得主真鍋淑郎。圖/wikimedia

當然,越複雜的模型、越短的時間區間、越高的空間精細度,需要更強大的超級電腦,還有更精準的觀測數據,才能預測接下來半日至五日的氣象情況。

世界上前百大的超級電腦,都已被用來做大氣科學模擬。各大氣象中心通常也配有自己的超級電腦,才能做出每日預測。那麼,除了等待更加強大的超級電腦問世,我們還有什麼辦法可以提升預報的準度呢?

天氣預報到底要怎樣才能做得準?

有了電腦,人類可以紀錄一切得到的數據;有了衛星,人類則可以觀察整個地球,對地球科學領域的人來說,可以拿這些現實資訊來校正模擬或預測時的誤差,利用數學方法將觀測到的單點資料,乃至衛星資料,融合至一整個數值模型之中,將各種資料加以比對,進一步提升精準度,這種方法叫做「資料同化 (Data Assimilation)」。例如日本曾使用當時日本最強的超級電腦「京」,做過空間解析度 100 公尺的水平距離「局部」超高解析氣象預測,除了用上最強的電腦,也利用了衛星資料做資料同化。除了日本以外,歐洲中程氣象預測中心 (ECMWF),或是美國大氣暨海洋研究中心 (NOAA),也都早在使用這些技術。

臺灣這幾年升空的福衛系列衛星,和將要升空的獵風者等氣象衛星,也將在未來幫助氣象學家取得更精準的資料,藉由「資料同化」來協助模擬,達到更精準的預測分析。

如果想要進一步提升預報準度呢?不用擔心,我們還有好幾個招式。

人海戰術!用更多的天氣模型來統計出機率的「概率性模擬」

首先,如果覺得一個模型不夠準,那就來 100 個吧!這是什麼意思?當我們只用一種物理模型來做預測時,我們總是會追求「準」,這種「準確」模型做的模擬預測,稱為「決定性模擬」,需要的是精確的參數、公式,與數值方法。就跟遇上完美的夢中情人共度完美的約會一樣,雖然值得追求,但你可能會先變成控制狂,而且失敗機率極高。

「準確」的模型就跟遇上完美情人共度完美約會一樣,雖然值得追求,但失敗機率極高。圖/Giphy

不如換個角度,改做「概率性模擬」,利用系集模擬,模擬出一大堆可能的交往對象,啊不對,是天氣模型,再根據一定數量的模擬結果,我們就可以統計出一個概率,來分析颱風路徑或是降雨機率,讓成功配對成功預測的機率更高。

製造一個虛擬地球模擬氣象?

再來,在物理層面上,目前各國正摩拳擦掌準備進行等同「數位攣生 (Digital Twin) 」的高階模擬,簡單來說,就是造出一個數位虛擬地球,來進行 1 公里水平長度網格的全球「超高」解析度模擬計算。等等,前面不是說日本可以算到 100 公尺的水平距離,為什麼 1 公里叫做超高解析度?

因為 500 公尺到 1 公里的網格大小也是地表模式的物理適用最小單位,在這樣的解析度下,科學家相信,可以減少數值模型中被簡化的地方,產生更真實的模擬結果。

電腦要怎麼負荷這麼大的計算量?交給電腦科學家!

當然,這樣的計算非常挑戰,除了需要大量的電腦資源,還需要有穩定的超級電腦,以及幾個 Petabyte,也就是 10 的 15 次方個位元組的儲存設備來存放產出的資料。

不用為了天氣捐贈你的 D 槽,就交給電腦科學家接棒上場吧。從 CPU、GPU 間的通訊、使用 GPU 來做計算加速或是作為主要運算元件、到改寫符合新架構的軟體程式、以及資料壓縮與讀寫 (I/O)。同時還要加上「資料同化」時所需的衛星或是全球量測資料。明明是做氣象預報,卻需要等同發展 AI 的電腦科技做輔助,任務十分龐大。對這部分有興趣的朋友可以參考我們之前的這一集喔!

結語

這一切的挑戰,是為了追求更精確的計算結果,也是為了推估大魔王:氣候變遷所造成的影響必須獲得的實力。想要計算幾年,甚至百年後的氣候狀態,氣象與氣候學家就非得克服上面所提到的問題才行。

一百年來,氣候氣象預測已從專家推估,變成了利用龐大電腦系統,耗費百萬瓦的能量來進行運算。所有更強大、更精準的氣象運算,都是為了減少人類的經濟與生命損失。

對於伴隨氣候變遷到來的極端天氣,人類對於這些變化的認知還是有所不足。2021 年的德國洪水,帶走了數十條人命,但是身為歐洲氣象中心的 ECMWF,當時也只能用叢集式系統算出 1% 的豪大雨概率,甚至這個模擬出的豪大雨也並沒有達到實際量測值。

我們期待我們對氣候了解和應對的速度,能追上氣候變遷的腳步,也由衷希望,有更多人才投入地球科學領域,幫助大家更了解我們所處的這顆藍色星球。

也想問問大家,你覺得目前的氣象預報表現得如何?你覺得它夠準嗎?

  1. 夭壽準,我出門都會看預報,說下雨就是會下雨。
  2. 有待加強,預報當參考,自己的經驗才是最準的。
  3. 等科學家開發出天候棒吧,那才是我要的準。更多想法,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1207 篇文章 ・ 1879 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

8
1

文字

分享

0
8
1
鑑識故事系列:Lucia de Berk 值班死幾人?荷蘭護理冤案
胡中行_96
・2023/02/27 ・2983字 ・閱讀時間約 6 分鐘

前言:本文為鑑識系列中,罕見提及統計學的故事。不過,繁複的計算過程全部省略,僅討論統計概念和辦案原理。請害怕數學的讀者放心。

護理人員 Lucia de Berk。圖/Carole Edrich on Wikimedia Commons(CC BY-SA 3.0)

荷蘭護理人員 Lucia de Berk,長年於海牙茱莉安娜兒童醫院(Juliana Kinderziekenhuis)的 1 個病房,與紅十字醫院(Rode Kruis Ziekenhuis)的 2 個病房工作。2001 年 12 月,她因謀殺罪嫌被捕。[1]

超幾何分佈

警方起先偵辦 2 名住院病患的死因,發現是中毒身亡;後來連帶調查 1997 至 2001 年間,幾家醫院可能的謀殺案件,於是找上了她。[2]在法庭上,司法心理學家 Henk Elffers 用機率的概念,證明 Lucia de Berk 有罪。簡單來說,就是計算嫌犯現身出事班次的機率。他採取的統計方法,叫做超幾何分佈(又稱「超幾何分配」;hypergeometric distribution)。[1]

超幾何分佈適合用在從一個母數中,隨機抽取樣本,不再放回的情形。例如:袋子裝有 N 顆球,其中 L 顆為紅球。一把抓出 n 顆球,不特別挑選的話,紅球碰巧被抓到的機率為 X。[3, 4]以此類推,在此案被調查的時間範圍內,病房總共有 N 個班次,其中 Lucia de Berk 值了 L 班,而有醫療事故的班次共 n 個。如果不刻意安排,則她正好出現在事故班次的機率為 X。[1]公式介紹。[4]

此處實際帶入數據後得到的答案,說明 Lucia de Berk 理論上應該只有 3 億 4 千 2 百萬分之一(X = 1 / 3.42 x 108)的機率,會剛好在醫療事故發生的班次值班。因此,法庭認定她的頻繁出現(> 1 / 3.42 x 108),絕非巧合。[1, 2, 5, 6]2003 年,Lucia de Berk因 7 起謀殺和 3 次殺人未遂,[2]被判終身監禁。[5]

茱利安納兒童醫院(Juliana Kinderziekenhuis)外觀。圖/Joris on Wikimedia Commons(CC BY-SA 3.0)
紅十字醫院(Rode Kruis Ziekenhuis)已於 2021 年關閉。圖/1Veertje on Wikimedia Commons(CC BY-SA 4.0)。

統計謬誤

當時有位醫師任職於 Lucia de Berk 待過的一家醫院。他的女性姻親 Metta de Noo-Derksen 醫師,以及 Metta 的兄弟 Ton Derksen 教授,都覺得事有蹊蹺。[7]Metta 和 Ton 檢視死者的病歷紀錄,並指出部份醫療事故的類型和事發時間,與判決所用的數據對不起來因為後者大半仰賴記憶,他們甚至發現有些遭指控的班次,Lucia de Berk 其實不在現場。然而,光是這些校正,還不足以推翻判決。[1, 7]

所幸出生於英國的荷蘭萊頓大學(Universiteit Leiden)統計學榮譽教授 Richard Gill,也伸出援手。[2]在協助此案的多年後,他的團隊發表了一篇論文,解釋不該使用超幾何分佈的理由,例如:[1]

  1. 護理人員不可互換:所有受訪醫師都說,護理人員可以相互替換;但是護理人員覺得,他們無法取代彼此。由於各別的個性與行事風格迥異,他們對病患的影響也不同。[1]
  2. 醫療事故通報機率:既然每個護理人員都有自己的個性,他們判定某事件為醫療事故,並且通報醫師的機率也不一樣。[1]畢竟醫院的通報規定是一回事;符合標準與否,都由護理人員判斷。比方說,有個病患每次緊張,血壓就破表。那就讓他坐著冷靜會兒,再登記第二次測量的正常結果即可。不過,難免會有菜鳥護士量一次就嚇到通報,分明給病房添亂。
  3. 班次與季節事故率:夜間與週末只剩護理人員和少數待命的醫師;季節性的特定病例增減;以及病患的生理時鐘等,都會影響出事的機率。[1]
  4. 護理排班並不平均:護理人員的班次安排,理想上會有帶狀的規律。可能連續幾天都是白班,接著是幾個小夜班之類的,[1]比較方便調整作息。此外,護理人員的資歷和個性,通常也會被納入考量。[1]以免某個班次全是資深人員;但另個班次緊急事故發生時,卻只剩不會臨機應變的新手。在這樣的排班原則下,如果單看某個時期的班表,每個人所輪到的各類班次總數,應該不會完全相同。
  5. 出院政策曾經改變:茱莉安娜兒童醫院在案發期間,曾經針對確定救不活的小病患,是否該在家中或病房離世,做過政策上的調整。帳面上來說,算在病房裡的事故量絕對會有變化。[1]

總之,太多因素會影響護理排班,或是干擾醫療事故的通報率,因此不能過度簡化成抽取紅球那樣的隨機概念。更嚴重的是,Henk Elffers 在計算過程中,分開處理 3 個病房的機率,然後再相乘。Richard Gill 的團隊強調,這樣會造成在多處上班的護理人員,比只為一處服務者,看起來有較高的嫌疑。[1]

帕松分佈

因應這種情境,Richard Gill 教授建議採用帕松分佈(又譯「布阿松分配」;Poisson distribution),[1]一種描述特定時間內,事件發生率的統計模型。[8]有別於先前的計算方法,在這裡事故傾向(accident proneness),以及整體排班狀況等變因,都納入了考量。前者採計護理人員通報醫療事故的意願強度;後者則為輪班的總次數。這個模型通常是拿來推估非尖峰時段的來電、大城市的火災等,也適用於 Lucia de Berk 的案子。[1](深入瞭解公式計算(p. 4 – 6)。[1, 8]

雖然此模型的細節複雜,統計學家得大費周章解釋給法官聽,但是考慮的條件比較趨近真實。倘若套用原始判決的數據,這個計算最後的答案是 0.0206161,意即醫療事故本來就有 49 分之 1 的機率,會與 Lucia de Berk 的班次重疊。如果帶入 Mettade Noo-Derksen 和 Ton Derksen 校正過的數據,機率更高達 9 分之 1。[1, 9]換句話說,她單純是倒楣出現在那裡,就被當作連續殺人犯。[6]

其他證據與翻案

大相逕庭的計算結果,顯示出選擇正確統計模型的重要性。然而,最不合理的,是以機率作為判決的主要根據。就謀殺案件來說,怎能不忠於病歷或驗屍報告?Richard Gill 教授接受美國犯罪學講師 Jon Robins 的訪問時,表示後來由醫師和毒物學家組成的獨立團隊,被允許瀏覽當初沒送上法庭的關鍵資料。[2]他們發現原本被視為受害者的病患,根本都喪命於自然死因。[2, 6]

在各方人士的協助下,Lucia de Berk 還是歷經兩次上訴失敗。[6]她曾於 2008 年,被允許在家等候重審結果。[1]但直到 2010 年 4 月,司法才還她清白。[7]Ton Derksen 認為,在荷蘭像這樣誤判的案件,約佔總判決數的 4 至 11%,也就是每年 1,000 人左右。不過,2006 到 2016 年間被判刑的 2 萬 3 千人裡,只有 5 個上訴到最高法院,而且僅 Lucia de Berk 的案子得以平反。[10]

Lucia de Berk 冤案改編電影的海報。圖/電影《Lucia de B.》(2014) on IMDB

  

參考資料

  1. Gill RD, Groeneboom P, de Jong P. (2018) ‘Elementary Statistics on Trial—The Case of Lucia de Berk’. Chance 31, 4, pp. 9-15.
  2. Robins J. (10 APR 2020) ‘Ben Geen: Statisticians back former nurse’s in last chance to clear name’. The Justice Gap.
  3. 超幾何分佈」國立高雄大學統計學研究所(Accessed on 03 FEB 2023)
  4. 李柏堅(06 FEB 2015)「超幾何分配CUSTCourses on YouTube.
  5. Sims J. (24 FEB 2022) ‘Are We in the Midst of a Data Illiteracy Epidemic?’. Inside Hook.
  6. Schneps L, Colmez C. (26 MAR 2013) ‘Justice Flunks Math’. The New York Times.
  7. Alexander R. (28 APR 2013) ‘Amanda Knox and bad maths in court’. BBC News.
  8. 李伯堅(04 FEB 2015)「布阿松分配」CUSTCourses on YouTube.
  9. Wilson D. (13 DEC 2022) ‘Red flag to be wary of when hunting a killer nurse’. The Herald, Scotland.
  10. One in nine criminals may have been wrongly convicted – research’. (21 NOV 2016) Dutch News.
胡中行_96
168 篇文章 ・ 59 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

4
2

文字

分享

0
4
2
你能想像棒球穿牆嗎?突破物理世界的常識:量子穿隧——《阿宅聯盟:量子危機》
未來親子學習平台
・2023/01/20 ・1226字 ・閱讀時間約 2 分鐘

想像一個全壘打王,面對前方的來球,大棒一揮,球越過了全壘打牆,到了牆的另外一邊。

Home~~~Run!圖/GIPHY

但假如,那個全壘打牆變成了兩層樓高呢?也許,他更大力地擊球(給球更多的能量),那顆球還是能夠飛越過全壘打牆,到牆的另外一邊。但如果,那全壘打牆變成了三十層樓高呢?我想會認為,除非靠機器,否則再厲害的全壘打王,不管用了多少力氣,他應該都無法讓球飛過三十層樓那麼高。

上述的例子,正顯示了我們日常生活中的物理原則:只要物體(球)的能量不足以跨越障礙物(牆),那麼它永遠不可能到達障礙物的另一側——但是,在量子的世界,卻不是這樣。

粒子是怎麼跨越各種障礙的?

量子力學裡,一個粒子具備的能量即使不足以跨越障礙,它仍然有小機率會出現在障礙的另一邊;而且,若粒子的能量跟跨越障礙所需要的能量愈接近、或是說只少一點,那麼這個粒子出現在障礙另一邊的機率就愈大。

這樣神奇的現象,彷彿就像是粒子挖了隧道穿過障礙一般(儘管並沒有真的隧道),所以稱為「量子穿隧」效應。

不過,在丟球的例子裡,我們可以想像,若是牆愈高或愈厚,那麼球就愈難飛過牆壁。同樣地,在量子力學的情形下,雖然粒子有可能在能量不足的狀況下穿過障礙,但要是障礙無限高或無限厚的話,那麼粒子就還是過不去的

儘管在量子力學的情況下,障礙無限高或無限厚,粒子還是過不去的。圖/Envato Elements

事實上,量子穿隧效應跟我們先前提到的「物質具有波的特性」非常有關係。想像水池中間有一顆大石頭,池中的水波在遇到石頭這個障礙物時,會從旁邊繞道而過;但如果是一般物質,一旦遇到障礙物就直接被擋住了,沒辦法繞道而行。

就是因為在量子世界,物質也具有波的特性,我們才會看到粒子的穿隧效應。儘管量子效應感覺很奇特,但它在很多方面都有實際的影響。

例如,我們知道太陽核心是依賴核融合反應來產生能量;在過程中,會將兩個氫原子核,融合成更重的原子核。但因為氫原子核都帶正電,要抵抗正電荷間的排斥力,將它們融合在一起,其實非常困難。也幸虧有量子穿隧效應,太陽內部的氫原子核才能克服電荷排斥力的阻礙,順利融合在一起,並製造能量。

所以,在地球的我們,能夠享受到太陽的光和熱,說起來也要感謝量子穿隧效應呢!

——本文摘自《阿宅聯盟:量子危機》,2022 年 11 月,未來出版,未經同意請勿轉載

未來親子學習平台
3 篇文章 ・ 3 位粉絲