網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

鳥事:大鳥小鳥,還有牠們的羽毛

Gilver
・2014/08/24 ・5137字 ・閱讀時間約 10 分鐘 ・SR值 492 ・五年級

birdsKKTIX_large

鳥的眼神百般神韻,純真如雀、尖銳如鷹;鳥的身形人心嚮往,流線型的身體輕盈優雅,強壯的翅膀騰空而飛;鳥的鳴唱,是迴盪密林的餘音繞樑,也可以是敲響農忙的晨鐘。鳥如此迷人,也難怪梁實秋在《鳥》一文直白地以「我愛鳥」開門見山,絲毫不掩飾他對這群靈巧生物的熱愛。

雖然多數人都會欣賞鳥的各種姿態,卻難有餘韻去仔細凝視牠們、觀察牠們的行為。因此,本期微型點子對撞機(M.I.C.)邀請到「台灣猛禽研究會」成立發起人之一的林文宏先生,以及中研院生物多樣性研究中心的黃貞祥研究員,分別從台灣都市與異國森林兩個完全不同的生態界域,為我們揭示那些鳥類令人驚豔的秘密和驚奇。

林文宏:漫談鳥類的生存之道

林文宏先生參與過20個以上的鳥類調查研究計畫,鍾情於鷹類等猛禽,長年與同好一起關注猛禽的生態和保育,現任「台灣猛禽研究」會刊之主編。今天要來和大家分享他住在都市觀察到的「鳥」生百態,談談這些都市常見鳥類的生存之道。

看似普通的鳥,其實也不普通!

鳥是很特別的生物,飛翔不但是牠們的拿手,還飛出各種獨門絕活。許多賞鳥人喜愛的游隼,牠的瞬間俯衝速度可達時速三百公里;飛行高度最高的鳥類,能夠拔升一萬公尺、飛越喜馬拉雅山度冬;體型嬌小、動作靈巧的蜂鳥,可以在訪花的時候「定格」在空中;有些鳥是獵魚高手,能夠俯衝至水中捕魚而不弄濕自己。然而,這些精采的鳥事對於台灣的觀眾來說,卻好像都是操著外語的科學頻道播送的畫面。台灣的鳥,尤其是都市裏面的鳥,好像就沒有那麼厲害。真的嗎? 林文宏認為,台灣的鳥看起來很普通,但若是仔細觀察下來,你會發現有些常見鳥的生存之道其實是很有趣的。在這次演講中,林文宏介紹了十二種在台北市都看得到的鳥類,且聽他娓娓道來。

要活得不起眼,也沒那麼容易

14105621208_7fe40669bc_z

若要列一張都市裡最常見的鳥類清單,麻雀必然是榜上有名。林文宏形容牠們是「不起眼的遜咖,才是超級A咖。」這話怎麼說呢? 麻雀雖然無法飛得快,也不太能瞬間起飛到幾層樓高,卻是都市裡唯一能在人類腳邊啄食的鳥類。牠們的嘴喙使得牠們易於取食穀類,在農業時代即與人類共存,也比較不怕人。不過,在取食的同時,牠們也持續警戒著周遭環境的危險,如果你靠得太近,牠們就會靈巧的拔地而起,飛向四面八方─反正只要比你的頭頂高個兩公尺,你就抓不到啦!

14312454873_13058a832f_z

另一個和麻雀體型相仿的小型鳥類是綠繡眼,林文宏形容牠是「站在尖端的小精靈」。牠只吃小的東西,卻吃個不停。牠的嘴喙細小,只能取食一些比較小的食物,例如花蜜、花粉、小型昆蟲、小蜘蛛等,而環顧整個花園庭院,這些小食物通常都位在最尖端。正因為綠繡眼的輕巧,牠才能活躍於枝梢尖端,取食那些位在其他競爭者不敢踏足之地的小食物。另外,綠繡眼的巢也小小的織在樹枝之間,常在四、五月可以在枝頭末端或人類的陽台上看到。

目中無人的中型鳥類

14105585829_911ac26d09_z

俗稱大卷尾的烏秋,體型不大不小,卻連貓狗、甚至天上飛的老鷹都敢修理,有時意外的會成為其他小鳥的守護者。牠的嘴和爪都十分銳利,主要取食昆蟲,也會吃老鼠或其他小鳥。烏秋喜歡把巢築在一些採光良好、視野開闊、沒什麼遮擋的地方,例如電纜或電線桿上明顯的位置。牠不怕迎面而來的挑戰書,反倒比較擔心其他生物的偷襲,例如巢可能會被蛇趁虛而入。

14105653120_faa2e97266_z

在都市的河濱常見的鳥類中,喜鵲是體型較大的鳥類,牠沒什麼天敵,喜歡在河濱活動。牠是都市鳥界的豪宅主人,林文宏就曾在內湖拍攝到一個高達1公尺的誇張大巢,好像在宣示地盤一樣。另一種鳥類黑領椋鳥則像是蓋違章建築的怪客,由於都市裡的河濱地區適合築巢的樹較少,競爭激烈,因此牠的築巢地點較為隨便、巢形較為凌亂,甚至曾把巢築在工程車臂上。

時代變了,習慣改了,競爭來了

在農田裡,常見的鳥類之一是牛背鷺。過去農民仍用水牛犁田時,牠們喜歡停在牛背上,吃那些從被牛踩踏的植物間隙遁逃出來的昆蟲。如今進入農機時代,牠們轉而逐「鐵牛」覓食,林文宏說,反正牠們「有牛就是娘」。另一群水鳥像是小白鷺夜鷺等,也隨著都市開發和人為活動改變捕魚的方式,過去牠們都是在水邊和魚塭自己捕魚,但最近牠們開始會尾隨釣客,現場撿食釣客不要的魚,比如朱文錦或吳郭魚之類的。 在台北的河口地區散步,常可以見到在爛泥上優雅漫步的埃及聖鹮。牠們在古埃及文明中是神聖的鳥,被認為可以驅魔;然而在二十幾年前開始出現於台灣各地河口地區,疑似是從動物園裡脫逃,並在野外繁殖、成為外來種。牠們在深深的爛泥地上適應得很好,和本土的河口鳥種(例如白鷺鷥) 競爭棲位和資源。

14288953201_7648b4c265_z

同樣類似外來種競爭在地種在都市的案例,便是本土八哥鳥 vs. 外來的三種八哥。本土八哥需要天然的洞穴來繁殖,但外來種喙利用的洞卻很都市化、多樣化,像是紅綠燈上的支撐管中,這種高強的適應能力使得本土的八哥反而敗下陣來,在都市中不易見到。這些外來種八哥包括家八哥爪哇八哥輝椋鳥

城市裡的遠眺者

在人造城市裡,聳立的水泥建築製造了許多制高點,有些猛禽因此遷入都市,成為君臨水泥叢林的城市之鷹。蛇鵰充分利用人造建築的制高優勢,拓寬了牠的獵場;鳳頭蒼鷹獵鳥功夫十分了得,原本住在樹林裡的牠,現在常以公園裡的鴿子、老鼠和松鼠為食。而全世界打獵飛行最快的鳥游隼,是懸崖上的閃電殺手,喜歡以摩天大樓的縫隙作為根據地,並俯衝出去獵食鴿子。 無論是兇猛如鷹、或是平凡如麻雀,其實光是在都市裡找到自己適合的位置、發揮適合自己的生存策略,就是件不容易的事了。林文宏以這句話作結:「對自然界的萬物而言,只要能活著,就是人生勝利組。」

黃貞祥:鳥羽之美

黃貞祥研究員(Gene Ng)目前任職於中研院生物多樣性研究中心,長期經營公眾科學議題部落格 The Sky of Gene,也是泛科學的專欄作者之一 ( 發表文章請按此 )。他在中研院李文雄院士的實驗中研究鳥羽多樣性的遺傳基礎,今天帶來的講題則是「鳥羽之美」。

所謂鳥樣,該是什麼樣?

鳥,就長得一臉鳥樣,但鳥該是個什麼樣呢?牠們披羽,有翅膀,有喙、沒有牙齒。在生物學上最嚴謹的定義上,鳥屬於爬蟲類。牠們最近的近親是鱷魚,和其他現生爬蟲類有共同的祖先。

鳥的祖先可能就是披有羽毛的恐龍,像是電影《侏儸紀公園》裡大名鼎鼎的迅猛龍,若和化石證據比對,會發現牠們其實是披著羽毛的。因此,羽毛其實不是鳥類獨有的特徵。

 

14105667920_282cb9887f_z

現今,沒有任何一隻鳥長得像迅猛龍或鱷魚。鳥的祖先經歷了幾場驚奇大演化,讓牠們出現許多有趣的特徵。有些讓牠們變得漂亮,有些讓牠們找到新的生存之道。牠們是地球上分布最廣的脊椎動物,從熱帶雨林到酷寒的南極,都可以是「鳥地方」。 黃貞祥說,公鳥的羽毛通常比母鳥的漂亮。面對登門造訪的眾多求愛者,母鳥的審美標準很高,不需要教育部來教她們何謂美感 (笑)。鳥類多樣性所造就的羽毛能有多華麗?除了我們能想像得到的各種華美斑紋,甚至還能出現3D立體感的驚奇圖案。就算不談及不同種鳥類的鳥羽多樣性,光是同一隻鳥身上羽種之多就夠叫人嘖嘖稱奇,且各具有不同的功能。 黃貞祥說:鳥是藝術家。接下來,他就要帶領聽眾看看幾種鳥類,牠們的羽毛和行為保證讓你瞠目結舌。

華麗至極的鳥羽絕活,都是為了求偶

14105669840_5214be2436_z

馬來西亞、婆羅洲一帶的冠青鸞 (Great argus),在亞洲地區有人叫牠鳳凰。公鳥在求偶時,會把所有華麗的飛羽張開。飛羽上,密布著大大小小如珠的斑紋,更誇張的是它們竟然還有立體感,在光線透射下簡直具有3D效果!但畫面上這隻母鳥似乎有點無動於衷 (笑)。

新幾內亞有42種的天堂鳥,又稱為極樂鳥,牠會以「變身」來博得異性的芳心。新幾內亞的食物豐富,使得雄鳥們有餘韻去布置一個華麗的巢,把心思都花在求偶上。在站上舞台之前,還得先把雜亂的樹枝和碎屑清掉,才能開始展示牠的行為藝術。有的雄鳥比較聰明,會先鳴叫吸引母鳥的注意再開始跳舞,像是影片中這隻華美極樂鳥(Lophorina superba),牠用尾巴開出一個屏幕,好像變形金剛一樣。 華美極樂鳥是新幾內亞所有天堂鳥裡競爭最激烈的,研究發現一隻母鳥必須要從15-20隻公鳥的舞蹈中挑選牠的最佳伴侶。

14269183666_3f894bd8bb_z

另外,有些求偶色,其實存在人眼所能看見的範圍之外。鳥的視覺感官比人類厲害太多,能看見的波長範圍極廣,其中就包括UV光 (紫外線)。Arnold等人於2002年發表的研究中指出,若是在鸚鵡的羽毛上塗上抗紫外光的防曬乳,母鳥的興致就會大為降低,影響交配的機率!

以羽為弦的鳴響

棲息於南美洲的梅花翅嬌鶲(club-winged manakin)求偶的招數是音樂表演。牠的移動速度非常快,需要用高速攝影機捕捉其身影,要快到1秒500幅攝影才抓得到。康乃爾大學的研究團隊發現,牠所發出的求偶之歌,竟然是來自於飛行羽,震驚了整個學界!梅花翅嬌鶲的聲音是從第五根翅羽撥動第六根,其振動頻率高達每秒100次,類似於小提琴發出弦音的原理。另外,還有一種求偶行為非常酷炫的紅頂嬌鶲(red-capped manakin),甚至還會表演月球漫步

14291786964_82e2be8212_z

除了嬌鶲,利用聲音來吸引母鳥青睞的還有蜂鳥。美聲女神蜂鳥(calliope hummingbird)是北美洲體型最小的蜂鳥,身長只有11cm、體重僅有23公克。牠振翅時會發出聲響,在高速攝影機的捕捉下,能夠看到牠每拍幾次翅膀會暫停一次。值得注目的是,牠會飛高20-30公尺,並高速俯衝向下,一面張開尾羽展示,發出特別的聲音吸引母鳥的青睞。在北美洲,蜂鳥的尾羽演化得很快,出現各種特別的尾之鳴唱。不同的蜂鳥尾羽形狀不一,透過風洞實驗和高速攝影機,科學家發現蜂鳥尾羽的振動方式、羽毛構型、頻率、承風角度、羽毛數目都會影響發出的聲響。

貓頭鷹的無聲飛行

14291794684_64ab1feba6_z

有時候,飛行時會發出聲音是很糟糕的事情,例如說貓頭鷹捕食動物。貓頭鷹的飛羽在迎風面長得像梳子,使得通過飛行羽亂流極小化,頻率低到嚙齒類聽不見。而翅膀較內側部分的羽毛是很蓬鬆的,當作吸音板的功用。以「梳形」降低亂流,以「蓬鬆」吸收噪音,就是貓頭鷹無聲飛行的成功關鍵。 最後,黃貞祥也推薦商周出版的《鳥羽》給大家,在這本書中你將能看到如何見微知著,從鳥羽窺見鳥的生命。

Q&A (節錄)

14292327075_67590b16b9_z

Q:都市中是不是能有能讓鳥類棲息的結構? 林文宏:都市鳥類多以椋鳥科為主,例如八哥。除了演講中提到的紅綠燈,所有沒接好的結構都會變成他們的築巢洞。另外,我們偶爾會見到鐵絲、塑膠等材質變成鳥類築巢的素材。Q:鮮明的色彩和形狀會不會讓他增加被捕食的機率? 黃貞祥:「感官偏好」可能使得鳥的求偶色變得多樣化。至於被捕食的機率和求偶色鮮明之間的關係,可以從「好基因理論」(Good genes hypothesis)「不利條件原理」(handicap principle) 去做討論。

14105615329_0718d6c4d8_z 14312518883_e05efc3e96_z

Created with flickr slideshow.

 

【關於 M. I. C.】 M. I. C.(Micro Idea Collider,M. I. C.)微型點子對撞機是 PanSci 定期舉辦的小規模科學聚會,約一個月一場,為便於交流討論,人數設定於三十人上下,活動的主要形式是找兩位來自不同領域的講者,針對同一主題,各自在 14 分鐘內與大家分享相關科學知識或有趣的想法,並讓所有人都能參與討論,加速對撞激盪出好點子。請務必認知:參加者被(推入火坑)邀請成為之後場次講者的機率非常的高!

本場演講由科技部「科普資源整合運用推廣計畫」支持,PanSci泛科學與國家高速網路與計算中心共同舉辦。歡迎大家到科技大觀園閱讀更多科學內容。

文章難易度
Gilver
28 篇文章 ・ 2 位粉絲
畢業於人人唱衰的生科系,但堅信生命會自己找出路,走過的路都是養份,重要的是過程。


1

5
0

文字

分享

1
5
0

隱翅蟲的毒液生化武器,演化上如何組裝而成?

寒波_96
・2022/01/17 ・3910字 ・閱讀時間約 8 分鐘

隱翅蟲是一群小型甲蟲的總稱;牠們以毒聞名,卻不見得都具有毒性。有些隱翅蟲會生產毒液儲存在身體裡,需要時噴射攻擊。毒液不只是嚇唬人的工具,像是跟螞蟻搶地盤這類場合,生化武器能發揮實在的優勢。

本文沒有真實隱翅蟲的圖像,閱讀時不用擔心。

隱翅蟲毒液的用途之一:攻擊螞蟻。圖/參考資料 1

隱翅蟲的毒液包含毒素和溶劑兩部分,有意思的是,兩者是獨立生產;溶劑本身沒有毒,毒素單獨存在也沒多少毒性。兩者極為依賴彼此,生產線卻是獨立運作,此一狀況是怎麼形成的?一項新研究投入大筆資源,便探討其演化過程。

「毒」加「液」才有毒液

這項研究探討的隱翅蟲叫作 Dalotia coriaria,為求簡化,本文之後稱之為「隱翅蟲」。它的毒素並非導致隱翅蟲皮膚炎的隱翅蟲素 (pederin) ,切莫混淆。

隱翅蟲的毒液發射器位於背上,體節的 A6、A7 之間,這兒有部分表皮細胞特化成儲存囊壁,並分泌脂肪酸衍生物作為溶劑。而毒素為配備苯環的化學物質 benzoquinone(苯醌),簡稱 BQ;另有一群細胞專門生產 BQ,再運送到儲存囊,和其中的脂肪酸衍生物混合後形成毒液。

生產毒素和溶劑的細胞,是兩類完全不一樣的細胞,各有不同的演化歷史。隱翅蟲的祖先,沒有毒素也沒有溶劑,兩者都可謂演化上的創新 (novelty) 。

一類細胞製毒,另一類細胞產液,兩者合作才有毒液。圖/參考資料 1

論文將生產溶劑的細胞稱為「溶劑細胞」;分析成分得知溶劑總共有 4 種,是碳數介於 10 到 12 的脂肪酸衍生物。合成脂肪酸,本來就是各種生物的必備技能,但是溶劑細胞製作的脂肪酸衍生物,原料並非一般常見的脂肪酸。

脂肪酸的合成,都是以 2 個碳的基礎材料開始,作為類似 PCR 中引子 (primer) 的角色,然後由 FAS(全名 fatty acid synthase)這類酵素一次加上 2 個碳,2、4、6、8 碳一直加上去。人類的 FAS 通常會製作長度為 16 碳的棕櫚酸,昆蟲則會造出 14、16、18 碳的最終產物。

隱翅蟲的溶劑細胞中,脂肪酸衍生物只有 10 到 12 個碳,比 FAS 一般的產物更短。奇妙的是,這兒的脂肪酸並非由 14 或 16 個碳縮短而來,而是溶劑細胞內 FAS 的最終產物直接就是 12 個碳。

隱翅蟲毒液的組成物,碳鏈長度介於 10 到 12 個碳,4 種脂肪酸加工而成的衍生物作為溶劑;3 種 BQ 作為毒素。圖/參考資料 1

改造脂肪酸合成線路,製作溶劑

要闡明其中奧妙,必需先稍微認識昆蟲的脂肪酸合成系統。昆蟲有一群特殊的脂肪酸衍生物,稱為「表皮碳氫化合物(cuticular hydrocarbon,簡稱 CHC)」,具有防止水分散失、費洛蒙等作用。

表皮碳氫化合物多半由 oenocyte 所製造(類似人類的肝細胞),在 FAS 酵素催化形成 14 到 18 個碳長的脂肪酸以後,繼續由延長酶 (elongase) 增加長度,去飽和酶 (desaturase) 加上雙鍵,最後經過兩道尾端的還原手續,分別由 FAR(全名 fatty acyl-CoA reductase)和 CYP4G(全名 cytochrome p450 family 4 subfamily G)兩類酵素執行,產生通常介於 20 到 40 個碳長的產物。

隱翅蟲溶劑細胞和 oenocyte 的脂肪酸生產線的比較,兩邊多數酵素種類是重複的,但是每一類酵素都有好幾個,兩邊各自使用的酵素不一樣。圖/參考資料 1

隱翅蟲和其他昆蟲一樣,oenocyte 細胞內有完整的表皮碳氫化合物生產線,每一步驟的酵素一應俱全。比對可知,溶劑細胞內也有一條脂肪酸衍生物的產線,顯然是由表皮碳氫化合物的生產線改版而成。

隱翅蟲至少有 4 個 FAS 基因,3 個負責製作一般的脂肪酸和表皮碳氫化合物,只有一個特定的 FAS 參與溶劑生產,專職在溶劑細胞中大量表現,製造 12 碳的脂肪酸,最後也由 FAR 和 CYP4G 收尾形成衍生物。值得一提,已知產物長度為 12 碳的 FAS 酵素相當罕見。

溶劑細胞和表皮碳氫化合物的生產線,兩者都有 FAS、FAR、CYP4G 三類酵素,但是在溶劑細胞作用的三種酵素,都不管其他細胞的脂肪酸合成。除此之外,有時候還有另一種酵素 α-esterase 的參與。依靠這些專門在溶劑細胞工作的酵素們,隱翅蟲能生成 4 種溶劑。

溶劑細胞內,4 種脂肪酸衍生物的合成過程。acetyl-CoA 作為引子,由 FAS 以 malonyl-CoA 為材料,一次加上 2 個碳,再分別經還原酶或 α-esterase 加工。圖/參考資料 1

演化上,隱翅蟲並沒有捨棄原本的脂肪酸生產線,整套都還存在;相對地,隱翅蟲在少數特定細胞新增一條產線,不影響原本的重要部門。這是隱翅蟲在遺傳和細胞層次的演化創新。

改造粒線體代謝線路,生產毒素

類似的狀況,也在毒素生產線觀察到。隱翅蟲的毒素,也是由原本有重要功能的古老生產線,調整再改版而成。

論文將生產毒素的細胞稱為「BQ 細胞」,這部分沒有溶劑細胞了解的那麼詳盡,不過經由碳的穩定同位素追蹤,還是得知毒素原料來自食物中的氨基酸:酪胺酸 (tyrosine) ,經過一系列加工後形成 BQ。

這條生產線上有個關鍵酵素叫作 laccase,它一般的功能是參與 Coenzyme Q10,也就是 ubiquinone 的合成。這是粒線體有氧代謝中的重要成分,對生存不可或缺。和其他甲蟲相比,隱翅蟲多出一個 laccase 酵素,專門在 BQ 細胞表現,將 HQ (hydroquinone) 催化成 BQ 作為毒素。

由此看來,隱翅蟲祖先演化出溶劑和毒素的道理是一樣的。

溶劑方面,以舊的表皮碳氫化合物生產線為基底,改用多個新酵素基因,形成新的生產線。毒素方面,源自古老的粒線體代謝線路,同樣加入新的酵素基因,改版後變成毒素產線。兩者各自皆為遺傳與細胞層次的新玩意,合在一起則衍生出功能上的演化創新。

由粒線體代謝線路改版而成的 BQ 毒素生產線,有一個專職生產毒素的 laccase(Dmd)酵素參與。圖/參考資料 1

組合新功能,一步一步累積有利變異

這項研究有許多潛在的討論方向,有興趣的讀者可以自行鑽研。像是生物學研究者能估計所有實驗耗資多少,感受自己的微渺(例如為了分辨不同細胞的作用,論文使用大量昂貴的「單細胞轉錄組 single cell transcriptome」進行分析)。這邊只提兩點。

第一點有趣的問題是:隱翅蟲的溶劑和毒素要同時存在才有效果,可是演化上是哪個先出現呢?論文推測是溶劑細胞先出現。

假如只有 BQ 這類毒素存在,殺傷效果非常差(論文用果蠅幼蟲做實驗),但是溶劑細胞的產物,即使不作為 BQ 的溶劑,脂肪酸衍生物也可以有其他用途,像是潤滑油之類的,或是扮演別種物質的溶劑。

想來新的脂肪酸生產線比較可能先出現,扮演某些不是太重要的角色,接著再加入 BQ;毒素加上溶劑,兩者合體產生新的強大功能,脂肪酸生產線又由於獲得新功能而調整優化,最終形成現在的樣貌。

替隱翅蟲帶來優勢的毒液,由兩個原本獨立的部門組合而成。圖/參考資料 1

第二點有趣的是,這回發現產物為 12 碳的 FAS 酵素。乍看沒什麼,影響卻很關鍵。

FAS 這類酵素的差異,在於催化生成的脂肪酸最終產物有幾個碳(或是說,可以加到幾個碳那麼長);已知幾乎皆為 14、16、18 個碳,隱翅蟲的溶劑細胞表現的 FAS 卻是 12 個碳。好像只差一點,然而實際測試發現,脂肪酸衍生物超過 13 個碳,作為 BQ 溶劑的效果便會差一大截。

也就是說,隱翅蟲倘若沒有脂肪酸產物僅 12 碳長的 FAS,儘管仍然可以生成溶劑,毒性將弱化不少。由此推想,隱翅蟲如今威力強大的毒液,並非透過少數變化一次到位,而是逐漸累積有利變異的結果。

想得更遠一點,由兩種細胞合作衍生而成的毒液,可以視為由多種細胞合夥,複雜器官的最簡單版本。原本不相關的各式細胞們,持續累積一個一個微小的改變,也有機會組合發展成複雜的組織或器官。

延伸閱讀

參考資料

  1. Evolutionary assembly of cooperating cell types in an animal chemical defense system.
  2. A beetle chemical defense gland offers clues about how complex organs evolve

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
84 篇文章 ・ 331 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。