0

0
0

文字

分享

0
0
0

鳥事:大鳥小鳥,還有牠們的羽毛

Gilver
・2014/08/24 ・5137字 ・閱讀時間約 10 分鐘 ・SR值 492 ・五年級

birdsKKTIX_large

鳥的眼神百般神韻,純真如雀、尖銳如鷹;鳥的身形人心嚮往,流線型的身體輕盈優雅,強壯的翅膀騰空而飛;鳥的鳴唱,是迴盪密林的餘音繞樑,也可以是敲響農忙的晨鐘。鳥如此迷人,也難怪梁實秋在《鳥》一文直白地以「我愛鳥」開門見山,絲毫不掩飾他對這群靈巧生物的熱愛。

雖然多數人都會欣賞鳥的各種姿態,卻難有餘韻去仔細凝視牠們、觀察牠們的行為。因此,本期微型點子對撞機(M.I.C.)邀請到「台灣猛禽研究會」成立發起人之一的林文宏先生,以及中研院生物多樣性研究中心的黃貞祥研究員,分別從台灣都市與異國森林兩個完全不同的生態界域,為我們揭示那些鳥類令人驚豔的秘密和驚奇。

林文宏:漫談鳥類的生存之道

林文宏先生參與過20個以上的鳥類調查研究計畫,鍾情於鷹類等猛禽,長年與同好一起關注猛禽的生態和保育,現任「台灣猛禽研究」會刊之主編。今天要來和大家分享他住在都市觀察到的「鳥」生百態,談談這些都市常見鳥類的生存之道。

看似普通的鳥,其實也不普通!

鳥是很特別的生物,飛翔不但是牠們的拿手,還飛出各種獨門絕活。許多賞鳥人喜愛的游隼,牠的瞬間俯衝速度可達時速三百公里;飛行高度最高的鳥類,能夠拔升一萬公尺、飛越喜馬拉雅山度冬;體型嬌小、動作靈巧的蜂鳥,可以在訪花的時候「定格」在空中;有些鳥是獵魚高手,能夠俯衝至水中捕魚而不弄濕自己。然而,這些精采的鳥事對於台灣的觀眾來說,卻好像都是操著外語的科學頻道播送的畫面。台灣的鳥,尤其是都市裏面的鳥,好像就沒有那麼厲害。真的嗎? 林文宏認為,台灣的鳥看起來很普通,但若是仔細觀察下來,你會發現有些常見鳥的生存之道其實是很有趣的。在這次演講中,林文宏介紹了十二種在台北市都看得到的鳥類,且聽他娓娓道來。

要活得不起眼,也沒那麼容易

14105621208_7fe40669bc_z

若要列一張都市裡最常見的鳥類清單,麻雀必然是榜上有名。林文宏形容牠們是「不起眼的遜咖,才是超級A咖。」這話怎麼說呢? 麻雀雖然無法飛得快,也不太能瞬間起飛到幾層樓高,卻是都市裡唯一能在人類腳邊啄食的鳥類。牠們的嘴喙使得牠們易於取食穀類,在農業時代即與人類共存,也比較不怕人。不過,在取食的同時,牠們也持續警戒著周遭環境的危險,如果你靠得太近,牠們就會靈巧的拔地而起,飛向四面八方─反正只要比你的頭頂高個兩公尺,你就抓不到啦!

14312454873_13058a832f_z

另一個和麻雀體型相仿的小型鳥類是綠繡眼,林文宏形容牠是「站在尖端的小精靈」。牠只吃小的東西,卻吃個不停。牠的嘴喙細小,只能取食一些比較小的食物,例如花蜜、花粉、小型昆蟲、小蜘蛛等,而環顧整個花園庭院,這些小食物通常都位在最尖端。正因為綠繡眼的輕巧,牠才能活躍於枝梢尖端,取食那些位在其他競爭者不敢踏足之地的小食物。另外,綠繡眼的巢也小小的織在樹枝之間,常在四、五月可以在枝頭末端或人類的陽台上看到。

目中無人的中型鳥類

14105585829_911ac26d09_z

俗稱大卷尾的烏秋,體型不大不小,卻連貓狗、甚至天上飛的老鷹都敢修理,有時意外的會成為其他小鳥的守護者。牠的嘴和爪都十分銳利,主要取食昆蟲,也會吃老鼠或其他小鳥。烏秋喜歡把巢築在一些採光良好、視野開闊、沒什麼遮擋的地方,例如電纜或電線桿上明顯的位置。牠不怕迎面而來的挑戰書,反倒比較擔心其他生物的偷襲,例如巢可能會被蛇趁虛而入。

14105653120_faa2e97266_z

在都市的河濱常見的鳥類中,喜鵲是體型較大的鳥類,牠沒什麼天敵,喜歡在河濱活動。牠是都市鳥界的豪宅主人,林文宏就曾在內湖拍攝到一個高達1公尺的誇張大巢,好像在宣示地盤一樣。另一種鳥類黑領椋鳥則像是蓋違章建築的怪客,由於都市裡的河濱地區適合築巢的樹較少,競爭激烈,因此牠的築巢地點較為隨便、巢形較為凌亂,甚至曾把巢築在工程車臂上。

時代變了,習慣改了,競爭來了

在農田裡,常見的鳥類之一是牛背鷺。過去農民仍用水牛犁田時,牠們喜歡停在牛背上,吃那些從被牛踩踏的植物間隙遁逃出來的昆蟲。如今進入農機時代,牠們轉而逐「鐵牛」覓食,林文宏說,反正牠們「有牛就是娘」。另一群水鳥像是小白鷺夜鷺等,也隨著都市開發和人為活動改變捕魚的方式,過去牠們都是在水邊和魚塭自己捕魚,但最近牠們開始會尾隨釣客,現場撿食釣客不要的魚,比如朱文錦或吳郭魚之類的。 在台北的河口地區散步,常可以見到在爛泥上優雅漫步的埃及聖鹮。牠們在古埃及文明中是神聖的鳥,被認為可以驅魔;然而在二十幾年前開始出現於台灣各地河口地區,疑似是從動物園裡脫逃,並在野外繁殖、成為外來種。牠們在深深的爛泥地上適應得很好,和本土的河口鳥種(例如白鷺鷥) 競爭棲位和資源。

14288953201_7648b4c265_z

同樣類似外來種競爭在地種在都市的案例,便是本土八哥鳥 vs. 外來的三種八哥。本土八哥需要天然的洞穴來繁殖,但外來種喙利用的洞卻很都市化、多樣化,像是紅綠燈上的支撐管中,這種高強的適應能力使得本土的八哥反而敗下陣來,在都市中不易見到。這些外來種八哥包括家八哥爪哇八哥輝椋鳥

城市裡的遠眺者

在人造城市裡,聳立的水泥建築製造了許多制高點,有些猛禽因此遷入都市,成為君臨水泥叢林的城市之鷹。蛇鵰充分利用人造建築的制高優勢,拓寬了牠的獵場;鳳頭蒼鷹獵鳥功夫十分了得,原本住在樹林裡的牠,現在常以公園裡的鴿子、老鼠和松鼠為食。而全世界打獵飛行最快的鳥游隼,是懸崖上的閃電殺手,喜歡以摩天大樓的縫隙作為根據地,並俯衝出去獵食鴿子。 無論是兇猛如鷹、或是平凡如麻雀,其實光是在都市裡找到自己適合的位置、發揮適合自己的生存策略,就是件不容易的事了。林文宏以這句話作結:「對自然界的萬物而言,只要能活著,就是人生勝利組。」

黃貞祥:鳥羽之美

黃貞祥研究員(Gene Ng)目前任職於中研院生物多樣性研究中心,長期經營公眾科學議題部落格 The Sky of Gene,也是泛科學的專欄作者之一 ( 發表文章請按此 )。他在中研院李文雄院士的實驗中研究鳥羽多樣性的遺傳基礎,今天帶來的講題則是「鳥羽之美」。

所謂鳥樣,該是什麼樣?

鳥,就長得一臉鳥樣,但鳥該是個什麼樣呢?牠們披羽,有翅膀,有喙、沒有牙齒。在生物學上最嚴謹的定義上,鳥屬於爬蟲類。牠們最近的近親是鱷魚,和其他現生爬蟲類有共同的祖先。

鳥的祖先可能就是披有羽毛的恐龍,像是電影《侏儸紀公園》裡大名鼎鼎的迅猛龍,若和化石證據比對,會發現牠們其實是披著羽毛的。因此,羽毛其實不是鳥類獨有的特徵。

 

14105667920_282cb9887f_z

現今,沒有任何一隻鳥長得像迅猛龍或鱷魚。鳥的祖先經歷了幾場驚奇大演化,讓牠們出現許多有趣的特徵。有些讓牠們變得漂亮,有些讓牠們找到新的生存之道。牠們是地球上分布最廣的脊椎動物,從熱帶雨林到酷寒的南極,都可以是「鳥地方」。 黃貞祥說,公鳥的羽毛通常比母鳥的漂亮。面對登門造訪的眾多求愛者,母鳥的審美標準很高,不需要教育部來教她們何謂美感 (笑)。鳥類多樣性所造就的羽毛能有多華麗?除了我們能想像得到的各種華美斑紋,甚至還能出現3D立體感的驚奇圖案。就算不談及不同種鳥類的鳥羽多樣性,光是同一隻鳥身上羽種之多就夠叫人嘖嘖稱奇,且各具有不同的功能。 黃貞祥說:鳥是藝術家。接下來,他就要帶領聽眾看看幾種鳥類,牠們的羽毛和行為保證讓你瞠目結舌。

華麗至極的鳥羽絕活,都是為了求偶

14105669840_5214be2436_z

馬來西亞、婆羅洲一帶的冠青鸞 (Great argus),在亞洲地區有人叫牠鳳凰。公鳥在求偶時,會把所有華麗的飛羽張開。飛羽上,密布著大大小小如珠的斑紋,更誇張的是它們竟然還有立體感,在光線透射下簡直具有3D效果!但畫面上這隻母鳥似乎有點無動於衷 (笑)。

新幾內亞有42種的天堂鳥,又稱為極樂鳥,牠會以「變身」來博得異性的芳心。新幾內亞的食物豐富,使得雄鳥們有餘韻去布置一個華麗的巢,把心思都花在求偶上。在站上舞台之前,還得先把雜亂的樹枝和碎屑清掉,才能開始展示牠的行為藝術。有的雄鳥比較聰明,會先鳴叫吸引母鳥的注意再開始跳舞,像是影片中這隻華美極樂鳥(Lophorina superba),牠用尾巴開出一個屏幕,好像變形金剛一樣。 華美極樂鳥是新幾內亞所有天堂鳥裡競爭最激烈的,研究發現一隻母鳥必須要從15-20隻公鳥的舞蹈中挑選牠的最佳伴侶。

14269183666_3f894bd8bb_z

另外,有些求偶色,其實存在人眼所能看見的範圍之外。鳥的視覺感官比人類厲害太多,能看見的波長範圍極廣,其中就包括UV光 (紫外線)。Arnold等人於2002年發表的研究中指出,若是在鸚鵡的羽毛上塗上抗紫外光的防曬乳,母鳥的興致就會大為降低,影響交配的機率!

以羽為弦的鳴響

棲息於南美洲的梅花翅嬌鶲(club-winged manakin)求偶的招數是音樂表演。牠的移動速度非常快,需要用高速攝影機捕捉其身影,要快到1秒500幅攝影才抓得到。康乃爾大學的研究團隊發現,牠所發出的求偶之歌,竟然是來自於飛行羽,震驚了整個學界!梅花翅嬌鶲的聲音是從第五根翅羽撥動第六根,其振動頻率高達每秒100次,類似於小提琴發出弦音的原理。另外,還有一種求偶行為非常酷炫的紅頂嬌鶲(red-capped manakin),甚至還會表演月球漫步

14291786964_82e2be8212_z

除了嬌鶲,利用聲音來吸引母鳥青睞的還有蜂鳥。美聲女神蜂鳥(calliope hummingbird)是北美洲體型最小的蜂鳥,身長只有11cm、體重僅有23公克。牠振翅時會發出聲響,在高速攝影機的捕捉下,能夠看到牠每拍幾次翅膀會暫停一次。值得注目的是,牠會飛高20-30公尺,並高速俯衝向下,一面張開尾羽展示,發出特別的聲音吸引母鳥的青睞。在北美洲,蜂鳥的尾羽演化得很快,出現各種特別的尾之鳴唱。不同的蜂鳥尾羽形狀不一,透過風洞實驗和高速攝影機,科學家發現蜂鳥尾羽的振動方式、羽毛構型、頻率、承風角度、羽毛數目都會影響發出的聲響。

貓頭鷹的無聲飛行

14291794684_64ab1feba6_z

有時候,飛行時會發出聲音是很糟糕的事情,例如說貓頭鷹捕食動物。貓頭鷹的飛羽在迎風面長得像梳子,使得通過飛行羽亂流極小化,頻率低到嚙齒類聽不見。而翅膀較內側部分的羽毛是很蓬鬆的,當作吸音板的功用。以「梳形」降低亂流,以「蓬鬆」吸收噪音,就是貓頭鷹無聲飛行的成功關鍵。 最後,黃貞祥也推薦商周出版的《鳥羽》給大家,在這本書中你將能看到如何見微知著,從鳥羽窺見鳥的生命。

Q&A (節錄)

14292327075_67590b16b9_z

Q:都市中是不是能有能讓鳥類棲息的結構? 林文宏:都市鳥類多以椋鳥科為主,例如八哥。除了演講中提到的紅綠燈,所有沒接好的結構都會變成他們的築巢洞。另外,我們偶爾會見到鐵絲、塑膠等材質變成鳥類築巢的素材。Q:鮮明的色彩和形狀會不會讓他增加被捕食的機率? 黃貞祥:「感官偏好」可能使得鳥的求偶色變得多樣化。至於被捕食的機率和求偶色鮮明之間的關係,可以從「好基因理論」(Good genes hypothesis)「不利條件原理」(handicap principle) 去做討論。

14105615329_0718d6c4d8_z 14312518883_e05efc3e96_z

Created with flickr slideshow.

 

【關於 M. I. C.】 M. I. C.(Micro Idea Collider,M. I. C.)微型點子對撞機是 PanSci 定期舉辦的小規模科學聚會,約一個月一場,為便於交流討論,人數設定於三十人上下,活動的主要形式是找兩位來自不同領域的講者,針對同一主題,各自在 14 分鐘內與大家分享相關科學知識或有趣的想法,並讓所有人都能參與討論,加速對撞激盪出好點子。請務必認知:參加者被(推入火坑)邀請成為之後場次講者的機率非常的高!

本場演講由科技部「科普資源整合運用推廣計畫」支持,PanSci泛科學與國家高速網路與計算中心共同舉辦。歡迎大家到科技大觀園閱讀更多科學內容。

文章難易度
Gilver
28 篇文章 ・ 3 位粉絲
畢業於人人唱衰的生科系,但堅信生命會自己找出路,走過的路都是養份,重要的是過程。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
160 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
環境 DNA 猛獁象現蹤,化石消失幾千年後才真正滅團?
寒波_96
・2023/01/13 ・3572字 ・閱讀時間約 7 分鐘

一萬多年前冰河時期結束後,許多地方的生態系明顯改變,例如歐亞大陸和美洲的猛獁象都滅絕了,僅有少少倖存者,殘存於北冰洋的小島一直到 4000 年前。

上述認知來自對化石遺骸的判斷,可是最近由環境沉積物中取樣古代 DNA 分析,卻指出猛獁象等幾種生物,在亞洲和美洲大陸其實又延續了好幾千年。這些證據可靠嗎,猛獁象到底什麼時候滅絕?

距今 200 萬前的格陵蘭,生態想像圖。圖/Beth Zaikenjpg

古時候的環境 DNA,創下 200 萬年紀錄

DNA 原本位於生物的細胞之內,生態系中有很多生物,時時刻刻留下各自的 DNA,從土壤、水域等來源取樣分析所謂的「環境 DNA」(environmental DNA,可簡稱為 eDNA),能得知環境中包含哪些生物。

如果環境樣本能保存成千上萬年,那麼定序其中的 DNA 片段,再加上化石、花粉等不同線索,便有希望窺見古時候的生態系。

威勒斯勒夫(Eske Willerslev)率領的一項研究,藉由此法重現來自格陵蘭沉積層,距今 200 萬年之久的 DNA 片段,2022 年底發表時成為年代最古早的 DNA 紀錄,也得知當年存在格陵蘭的眾多植物與動物。[參考資料 5]

最出乎意料的莫過於乳齒象(mastodon),由於缺乏化石,古生物學家一直認為那時候的乳齒象,並未棲息於這麼北的地帶,此一發現充分展示出古代環境 DNA 的價值。然而 DNA 的探索範圍也明顯有侷限,例如該地區出土超過 200 個物種的昆蟲化石,DNA 卻只能偵測到 2 種。

猛獁象化石無存後幾千年,依然有留下 DNA

當時間尺度是百萬年時,實際是 200 萬 3300 年或是 199 萬 8700 年,也就是 200.33 或 199.87 萬,幾千年的誤差範圍無關緊要。但是當探討對象是最近一萬年,猛獁象的 DNA 究竟存在於 9000 或 6000 年前,意義就差別很大。

這兒的「猛獁象」都是指真猛獁象(woolly mammoth,學名 Mammuthus primigenius)。由另一位古代 DNA 名家波因納(Hendrik Poinar)和威勒斯勒夫各自率隊,同在 2021 年底發表的論文獲得類似結論:猛獁象化石消失的幾千年後,沉積物中仍然能見到 DNA,可見還有個體又存續幾千年。[參考資料 1, 2]

威勒斯勒夫主導論文的取材地點。以北極為中心,視角和台灣人習慣的地圖很不一樣。圖/參考資料 2

波因納率領的研究探討白令東部,也就是如今加拿大的育空地區,距今 4000 到 3 萬年前的沉積層;結論是原本認為早已消失的美洲馬、猛獁象,一直延續到 5700 年前。威勒斯勒夫戰隊取材的地理範圍廣得多,包括西伯利亞西北部、中部、東北部、北美洲、北大西洋,判斷猛獁象生存到 3900 年前。

更詳細看,威勒斯勒夫主導的論文指出,猛獁象在西伯利亞東北部最後現蹤於 7300 年前,西伯利亞中北部的泰梅爾半島(Taimyr Peninsula)為 3900 年前,此一年代和北冰洋的外島:弗蘭格爾島(Wrangel)之化石紀錄相去不遠。而北美洲則是 8600 年前,比波因納戰隊的 5700 年更早。

如果兩隊人馬的判斷都正確,意思是猛獁象(與某些大型動物)在北美洲延續到 5700 年前,在亞洲大陸與外島到 3900 年;比起當地出土最晚化石的時間,皆更晚數千年。

只有 DNA 不見化石,會不會是死掉好幾千年仍一直外流 DNA?

根據化石紀錄,冰河時期結束後,仍有少少生還的猛獁象在弗蘭格爾島一直延續到 4000 年前。由此想來,當大多數同類已經滅團時,某些地點還有孤立的小團體延續,並不意外。只是我們不見得能見到化石。

然而,威勒斯勒夫主導的論文受到挑戰。質疑者提出,猛獁象這類動物住在寒冷的環境,去世後遺體如果被冷凍保存,又持續緩慢解凍,在接下來的幾千年便有可能不斷釋出新鮮的 DNA,讓我們誤以為仍有活體。[參考資料 3]

舉個極端狀況。假如 2 萬年前死亡的猛獁象,去世後一直冷凍在冰層中,現在被我們取出解凍,也許其中仍保有不少生猛 DNA,可是實際上牠已經去世很久了。

上述質疑,應該是這類研究手法共通的潛在問題。發生在一百萬年前無關緊要,一萬年內卻會導致不小的誤判。

喔~~喔喔~~喔喔~~喔喔~爪爪

距今 1 萬多年前的育空,生態想像圖。圖/Julius Csotonyi

化石消失的時刻,往往比生物滅團更早

威勒斯勒夫戰隊則回應表示:論文結論沒有問題,沈積層中取得的古代 DNA 確實來自那時在世的動物。我覺得不論觀點是否正確,回應的思路都值得瞧瞧。[參考資料 4]

為什麼動物依然存在時,見不到當時的化石紀錄?主因是動物去世後,只有極低比例的個體會變成化石。一種動物在滅團以前,通常個體數目持續降低,少到一個程度後,還能留下化石的機率已逼近 0 。所以化石紀錄最後的時間點,早於動物實際消失的年代。

和化石相比,動物遺留 DNA 的機率遠高於化石。活生生的動物就會持續排放 DNA,死亡身體分解後又會釋出不少; DNA 未必會留在原本生活的地點,不過如今的偵測技術足夠敏銳,即使只有幾段也有機會抓到。

猛獁象,活的!

是否有可能,猛獁象去世幾千年仍持續釋出 DNA 片段?的確無法排除可能性。不過這項研究中有 4 個方向,支持沉積層之 DNA 源於族群規模大減,卻依然活跳跳的猛獁象。

不同時間,各地猛獁象的粒線體 DNA 型號。可以看出趨勢是,猛獁象分佈的範圍愈來愈窄,遺傳型號也愈來愈少。圖/參考資料 2

第一,如果環境中的 DNA 來自死亡多時的動物,那麼各地區應該都會見到類似現象。實際上只在少部分取樣地點偵測到。

第二,假如猛獁象遺骸緩慢分解,DNA 持續進入沉積層,同一地點的不同取樣應該都能見到。可是同一處地點,只有少數樣本能抓到猛獁象 DNA。

第三,不同沉積層取得的環境樣本,包含當時生態系中很多生物的 DNA。存在猛獁象 DNA 的樣本,也能見到適合猛獁象生態系的其他植物;表示猛獁象的命運,很可能與適合牠們生活的環境同進退。

第四,倘若較晚沉積層的猛獁象 DNA,直接源自較早去世的個體,遺傳多樣性應該不會變化。然而較晚出現的粒線體型號明顯變少,後來只剩下一款。

實際狀況沒人可以肯定。我覺得前三點,都涉及樣本保存的潛在問題,干擾因素較多。第四點大概是最有力的證據,支持環境沉積物中留下的 DNA 並非源於死象遺骸,而是活體猛獁象。

研究日新月異,腦袋也要趕上

科學研究日新月異,不少人見到論文寫什麼就信以為真,卻不了解做研究其實有很多限制,即使是結論「正確」的論文,也會處處碰到解釋的侷限。

持續搜集證據,反覆思考才能進步。腦袋要靈活運用,但是也不要胡亂腦補!

延伸閱讀

參考資料

  1. Murchie, T. J., Monteath, A. J., Mahony, M. E., Long, G. S., Cocker, S., Sadoway, T., … & Poinar, H. N. (2021). Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA. Nature Communications, 12(1), 1-18.
  2. Wang, Y., Pedersen, M. W., Alsos, I. G., De Sanctis, B., Racimo, F., Prohaska, A., … & Willerslev, E. (2021). Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature, 600(7887), 86-92.
  3. When did mammoths go extinct?
  4. Reply to: When did mammoths go extinct?
  5. Kjær, K. H., Winther Pedersen, M., De Sanctis, B., De Cahsan, B., Korneliussen, T. S., Michelsen, C. S., … & Willerslev, E. (2022). A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature, 612(7939), 283-291.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
178 篇文章 ・ 709 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

1
0

文字

分享

1
1
0
動物其實吃不出甜食!因「偏食」而消逝的味覺演化——《舌尖上的演化》
商周出版_96
・2023/01/02 ・2011字 ・閱讀時間約 4 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本喵不懂甜食啦!

貓即便有了甜味受器,也不會更容易存活或繁殖,如果牠們花更多時間吸花蜜,吃獵物的時間就會變少,如此一來還可能會影響生存。因此,即便貓的祖先的甜味受器失去功能,牠依舊可以存活。

時任蒙內爾化學感官中心研究員的李夏發現:這個演化對貓不僅有存活的意義,更是現代貓科動物的味覺濫觴,沒有任何一種現代貓科動物具有活化的甜味受器,充滿花蜜與甘甜果實的森林對貓沒有一絲口慾上的吸引力。

如果你給一隻貓一片糖霜餅乾,呃,牠也不會理你;就算牠吃了餅乾,也沒辦法感受到糖霜帶來的愉悅感,因為這個餅乾對牠來說沒有甜味。

貓咪其實無法分辨甜味。圖/envatoelements

除了貓以外,其他肉食動物如海狗、亞洲小爪水獺、斑鬣狗、馬島長尾狸貓以及瓶鼻海豚,牠們的甜味受器也沒有作用,只是這些甜味受器基因出現的破壞性突變都屬於獨立的演化事件,不過也共屬於一種基因功能缺失的趨同演化。

有人可能會想問,為什麼其他肉食性動物的甜味受器沒有失去功能?例如貓的鹹味味覺受器,就跟其他肉食性動物一樣依舊安在,但牠們獵物體內鹽分的含量就足以應付生理所需,所以牠們的鹹味味覺受器喪失功能可能只是時間早晚的問題。

海獅已經喪失了甜味跟鮮味的味覺,海豚也是,而且海豚的無味人生開始得更早,牠們根本無法嚐出甜味、鹹味或是鮮味。對海豚來說,存在的只有飢餓感與飽足感,餓了就去吃飽,而牠們相信海裡任何長得像魚而且會動的東西都可以餵飽自己。

有人可能也會好奇,到底海豚的獵物要有什麼特色才能為牠們帶來進食的愉悅感?我們不知道。海豚的愉悅感從哪來、是什麼,至少到目前為止都是科學謎團。

不吃肉改吃素的大貓熊

特定味覺受器失去功能的情況,並不單發生在肉食性動物身上,也發生在食物選擇非常專一的動物身上。大貓熊的祖先屬於熊科動物,也跟現代的熊一樣是雜食性動物,會狩獵,會吃酸酸的螞蟻,也會吃甜甜的莓果。但到了大貓熊身上,新的食物偏好出現了,就是愛吃竹子,牠們吃竹子就可以活。

其實,當牠們才剛開始喜歡吃竹子時,竹子跟肉都是牠們愛吃的食物,但久而久之,仍然愛吃肉的大貓熊就變得難以生存或難以交配繁殖,或另一個機率較小的可能是,牠們的食物偏好無法符合生理需求,所以在覓食時無法專心致志。一段時間後, 大貓熊的鮮味受器就失去功能了,就像貓兒的甜味受器。現在就算你把肉端到大貓熊面前,牠們也不會碰上一口。

即便在多年後的未來,貓、海獅或海豚的後代也不太可能會嚐到甜味,大貓熊也依然無法嚐到鮮味,雖然隨著竹林減少,大貓熊對吃竹子的執著也讓牠們的數量不斷減少。從這些日常生活中的演化故事中我們學到:當某些東西成為需求時,比起破壞,建設是更困難的。但從頭做起雖然很難,也並非完全不可能。

現在的熊貓不在吃肉,演化成只吃竹子。圖/《舌尖上的演化》

過了三億年,蜂鳥才嘗到了「甜」的滋味

以甜味受器為例, 它在某些動物身上曾經失去功能, 但後來又重新復活了。三億年前,現代鳥類、哺乳類與爬蟲類的祖先,應該可以嚐到食物中的鹹味、鮮味與甜味,然而現代鳥類的甜味味覺沒了,不知是什麼原因,牠們的甜味受器都失去了功能。因此鳥類無法嚐出甜味,至少大多數鳥類都無法。

蜂鳥是從古燕演化而來的,而古燕跟現代的燕子一樣專門吃昆蟲,喜歡品嚐蟲子體內會出現的鮮味,對於糖分則沒什麼興趣。但在大約四千萬年前,有一群燕子開始以花蜜與含糖物質為食,可能只是為了解渴。一般鳥類並無法嚐出花蜜的甜味,所以牠們吸食花蜜就像在喝水,但花蜜畢竟不是水,裡面可富含著糖分。

因此有一假說猜測,那些喝到比較多花蜜的鳥可能獲得更多能量,因此更有機會將牠們的基因傳給後代,而牠們的鮮味受器在演化過程中,變成不只辨識原本的鮮味成分﹙像麩氨酸或是某些核苷酸﹚,也可以同時偵測糖分。

出現這種特徵的古燕就是最早的蜂鳥。蜂鳥跟一般鳥類不同,不僅能嚐出胺基酸,也能嚐出糖分。不過牠們只靠同一種味覺受器,所以胺基酸跟糖分對牠們來說,應該是同一種味道,一樣是帶來愉悅感的「鮮甜味」。

動物吃下新食物而產生美味感受的同時,也滿足了營養所需,這類美妙的演化故事,正是生物藉由愉悅感以精巧調控的生化機制滿足需求的例子。只要持續研究味覺受器的演化,我們就會發現更多類似的故事。

——本文摘自《舌尖上的演化》,2022 年 12 月,商周出版出版,未經同意請勿轉載。

所有討論 1
商周出版_96
110 篇文章 ・ 343 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。