Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

交通號誌燈模擬:省時省油的好方法

昱夫
・2014/08/04 ・1248字 ・閱讀時間約 2 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

Traffic light tree. Credit: William Warby
Traffic light tree. Credit: William Warby

每天傍晚5~7點,卡在車陣中的我總是感到焦躁不安,既煩悶又空虛,望向前方的紅綠燈,竟然給我ㄧ片通紅⋯⋯逢年過節,有些路段要移動5公尺甚至得耗上半小時以上,簡直是煉獄。

長時間的塞車消磨人心也浪費汽油,更會排放出多餘的廢氣造成污染。你應該有過這樣的疑惑,為什麼紅燈老是在交通擁塞時一直亮起呢?難道沒有好的號誌設定可以讓交通變得更順暢嗎?其實,這類複雜的網絡問題早已有許多理論模型被提出,其中一些是以縮短交通時間為目的,另外也有部份是針對汽油消耗最佳化的模型,只是以往這兩者鮮少被混合應用在同ㄧ個模型上。

前些日子,麻省理工(Massachusetts Institute of Technology, MIT)的Carolina Osorio團隊,發展了ㄧ套新的交通號誌演算模型,可以結合交通時間與燃料消耗兩個因素,來達到最佳化效果[1]。他們以瑞士的洛桑(Lausanne)作為研究對象,針對進入傍晚尖峰時間的第一個小時,分析區域內47條道路和15個路口的交通狀況(其中包含9個有安裝交通號誌的路口,每個號誌的變換週期設定為90秒或100秒),透過模擬結果,他們的新演算方法可以減少車輛群體平均花在行進的時間高達22%,效果顯著。

Photo Credit: Jose-Luis Olivares/MIT
Photo Credit: Jose-Luis Olivares/MIT

針對交通號誌的控制,常見的演算方法分為兩類型,一種是大尺度、以流量統計分析為基礎,這種方法的精準度較差,但相對節省計算資源;另一種方法,則是導入每一輛行車的資料,在各別路口與路段重新做計算,「由下往上」建立整體的模型,此類型方法會遇到的困難,就是其結果往往極度非線性,需要很大量的資料和重複計算,才能得到與現實接近的狀況。而Osorio團隊的想法,便是希望以大尺度方法的模型為基礎,從中引入小單元的行車資訊,提高精準度,同時又可以避免消耗過多的計算資源。

-----廣告,請繼續往下閱讀-----

「在現實中,當我們想要調整號誌時間來提高效率,常常都會將設定的目標侷限在很小的區域,但這樣的效果卻不一定很好;在我們的研究裡,我們將目標區域擴展至整個城市,以宏觀的角度去分析路段間的關係與行車的流量,從而有效縮短了交通時間」Osorio說道。

除了麻省理工的這項研究,在交通網絡的領域也有很多新奇的點子,希望改善交通擁塞的問題:有人提出可以直接讓車輛和交通號誌做網路連結,建立一個「智慧交通」系統,當車子接近時,號誌可以主動根據該路口的車流量,來調整燈號變換的時機[2]。

目前,紐約已開始和麻省理工合作,希望將Osorio的研究實際應用到城市交通網上,測試它的實用性;如果成功,希望類似的計劃也能在近幾年內快速普及至各大城市,畢竟,改善塞車,不只可以減緩空氣污染,更是挽救了千千萬萬人煩悶的心啊~

 

延伸閱讀:

-----廣告,請繼續往下閱讀-----

 參考資料:

  1. 此論文將刊登於下一刊的Transportation Science上 :Carlina Osorio and kanchana Nanduri, Energy-efficient urban traffic management: a microscopic-based approach, Transportation Science
  2. Smart Traffic Light Could help Cars Save Gas [IEEE, Oct 27, 2010]

資料來源:Better Traffic Light Simulations Could Cut Travel Time and Gas Use [IEEE, July 10, 2014]

-----廣告,請繼續往下閱讀-----
文章難易度
昱夫
57 篇文章 ・ 2 位粉絲
PanSci實習編輯~目前就讀台大化學所,研究電子與質子傳遞機制。微~蚊氫,在宅宅的實驗室生活中偶爾打點桌球,有時會在走廊上唱歌,最愛929。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

3
1

文字

分享

1
3
1
從號誌開始還路於民:增設行人專用時相真的能保護行人嗎?
PanSci_96
・2023/09/02 ・3577字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

「好不容易綠燈了,怎麼又有路人擋在斑馬線上?現在汽機車要停讓行人,不是只會讓路口更塞嗎?」

「怎麼一綠燈,腳才剛踏出去,就差點被撞到,台灣真的是行人地獄啊!」

話說道路設計的最高原則,就跟XX製藥一樣,是先研究不傷身體,再講求效果。包括行人、駕駛者等用路人的安全要確保,再來才是讓所有用路人都能在安全的條件下,快速地到達目的地。

那麼駕駛轉彎時須等候行人的規定,你怎麼看呢?身為行人的我覺得,這只是遲來的行人正義,本該如此啊!以前每次過馬路都要急急忙忙,還擔心被司機怒瞪,感覺真的很差。不過握上方向盤的我卻又覺得,哇靠,現在每次汽車轉彎遇到行人就要停下來,結果根本如入行車地獄,一整排車子在路上塞爆,綠燈都結束了,車子還卡在路中間!

-----廣告,請繼續往下閱讀-----

與其讓每個人都陷入行人與駕駛的無間道,也許我們該思考的是最根本的燈號設計問題,調整號誌設置加上增設行人專用時相(Pedestrian Scramble),被認為是擺脫行人地獄惡名的關鍵一招,但這招真的有用嗎?該怎麼用才真的好棒棒呢?

紅綠燈秒數該如何設計?

最近交通改革的呼聲很高,820「還路於民大遊行」也即將登場。台灣交通雖然不會因為一次的遊行,在一夕之間改變,但能讓更多人在乎交通的癥結,願意理性討論,我認為都是很好的發展。

因為多起令人傷心的事故,「道路設計」如今備受重視,然而設計道路不是看心情或靠直覺,不論是車道寬度、人行道寬度或是標線位置,都是集合交通學、數學和心理學分析的綜合結果。其中,紅綠燈的設計相對來說比較簡單,因為那就是解數學題嘛。

喔?這數學題該怎麼解呢?我們先以最簡單的雙時相號誌來舉例。這裡所謂的時相,就是指號誌的狀態。例如一個最一般的十字路口,會由一個南北向綠燈、東西向紅燈的時相,加東西向綠燈、南北向紅燈的另一個時相,組成雙時相系統。如果又加上禁止直行、僅允許轉彎的情況,那就是又多了一個時相。而由三個以上組成的系統,就是我們常聽到的「多時相交通號誌」。

-----廣告,請繼續往下閱讀-----
雙時相號誌例圖。圖/轉動高雄青春夢-高雄市政府交通局

現在我們眼前有一個雙時相號誌路口,我們的目標,是設計一個在固定時間內,能讓更多車通過,駕駛可以花更少時間抵達目的地的路口。唯一的條件,是它的紅燈與綠燈時間必須一樣長,那麼你會希望紅燈長一點還是短一點呢?蛤,短一點比較好?真的是這樣嗎?

當我們在設計號誌週期 (signal timing) 時,通常會將號誌畫成類似於 PM 常用的甘特圖,更加一目了然。現在我們有第一種設計:紅燈、綠燈各一分鐘,一個號誌週期是兩分鐘。以及第二種設計:紅燈、綠燈各 30 秒,一個週期是一分鐘。實際畫成甘特圖,雖然一次的紅燈等待時間變短了。但長時間來看,你遇到綠燈跟等紅燈的時間,是一樣多的,也就是在相同時間內,前進的距離是一樣的。

設計號誌週期不同,實際有效時間也會不同。圖/PanSci YouTube

當然啦,相信你也看出來了,現實情況不是這樣,就算是藤原豆腐店的送貨員,從零加速到一百,喔不對,一般道路速限是 50 公里。從零加速到 50,也是需要起步時間的,如果遇到紅燈也需要煞車時間。再加上黃燈的轉換時間,這些時間加起來會產生不少的時間損耗。如果遇到一次紅燈,就會損失 5 秒。那麼在週期為兩分鐘的道路上行駛兩分鐘,實際上的有效時間,只有 60-5 秒,也就是 55 秒的時間。在週期為一分鐘的路口呢?雖然行駛兩分鐘的綠燈時間總計也是一分鐘,卻因為會多遇到一次紅綠燈。所以有效時間會損失 2 次 5 秒,也就是有效時間只剩下 50 秒,比週期是兩分鐘的道路還少了五秒。

結論就是,雖然綠燈長一點,紅燈也需要等久一點,但比起不斷地走走停停,能將速度維持在速限的時間更久,就能節省更多時間。

-----廣告,請繼續往下閱讀-----

號誌連鎖,幹道更順暢

當然,以上假設是紅燈與綠燈一樣長的情形,大部分的道路規劃都存在幹道、支道的區分。幹道是交通的命脈,也是車流量最大的地方,因此綠燈時間就會設計的比紅燈還要長,在號誌設計上也會有其他的考量。

例如,大家在路上看到一整排綠燈,一路大順暢,心情一定也十分舒暢,這被稱為號誌同步 (Signal Synchronization)。剛才討論的是單一紅綠燈的時間長短,現在我們同時考慮整條路上的紅綠燈,依照經驗也知道,沒有號誌同步的幹道,遇到的紅燈次數自然也會比較多,那麼因為頻繁減速、加速而出現的時間損失又多起來了。

但是,號誌同步真的是最優的作法嗎?其實不見得。當我們將號誌再次畫成圖,把號誌的時間和空間擺在一起,形成時空圖(Time-Space Diagram),並且加入行駛速限的考量。

號誌時空圖(Time-Space Diagram)。圖/Traffic Signal Timing Manual

我們會發現,放入合適的時差,能讓號誌如波浪般傳遞下去,每次你剛好到下一個路口,就會剛好遇到綠燈,達到真正的一路大順暢。這種安排方式被稱為號誌連鎖 (Signal Coordination)。而要讓雙向的道路都能受益於號誌連鎖的好處,就需要透過嚴密的車流量與數學計算。

-----廣告,請繼續往下閱讀-----

在這些基礎之上,還需要加入時間、車流、轉彎道等資訊,才能做出最有效的號誌設計,實在不簡單。在這個基礎之上,若要解決行人屢屢遭遇事故的困境,該怎麼設計紅綠燈呢?

行人專用時相是什麼?

前陣子,關於駕駛轉彎時須等候行人的議題又再度浮上水面,有人提出既然每次汽車轉彎遇到行人就要停下來,不如增設「行人專用時相」(Pedestrian Scramble)來解決問題。在這個時相內,只有行人可以移動,反過來說,在汽車移動的時候,行人是不能移動的。

這有什麼好處呢?首先,因為行人穿越馬路時所有汽車都得靜止,因此行人可以穿越對角線,穿越馬路的次數從兩次變為一次。對於駕駛來說也有好處,因為駕駛行駛時已經沒有行人會穿越斑馬線,因此右轉車輛可以不受影響,降低等待時間。而最重要的是,行人移動時沒有任何交通工具正在移動,直接降低了車禍的風險。倫敦交通局在 2010 年的報告中,便說明行人專用時相可以降低 38% 的行人傷亡。

行人專用時相可以降低 行人傷亡。圖/Giphy

既然這麼立竿見影,那把所有路口都加設「行人專用時相」就解決問題了嗎?其實也不是。增加一個時相,就意味整個週期拉長了。因此不論是行人還是車輛,要等的紅燈時間也會拉長。在少部分城市,就觀察到駕駛更容易因為等得不耐煩而搶跑、闖紅燈,例如加拿大的多倫多,就因此在 2015 年取消了行人專用時相。

-----廣告,請繼續往下閱讀-----

一般認為,適合設置行人專用時相的地方,僅在行人人流量高的路口,例如鬧區、車站前、幹道交叉口等等。在行人數量不多的路口,增加時相可能反而會使塞車問題更加嚴重。

還有什麼方法能讓行人更安全的過馬路?

事實上,台灣交通安全協會理事長陳宏益也表示,行人專用時相只是短期應急作法,更好的做法是搭配不同路口採用不同的措施。例如設置「行人早開時相」(Leading Pedestrian Interval),讓行人比車輛早 3~7 秒綠燈,增加行人被駕駛看到的機會、減少人車爭道。

或是呢,設置行人庇護島或將行穿線退縮,除了庇護島能多一分保障外,重要的是行穿線退縮能增加汽車的等候空間,並且因為車輛在轉入時已經轉直,比較不容易因為 A 柱死角而看不見行人。

行穿線退縮也能保護行人安全。圖/PanSci YouTube

這樣聽起來,只要根據每個路口車流、人流,調整燈號設計,台灣的「行人地獄」應該有解囉?你覺得呢?有可能改變嗎?

  1. 當然有解,那麼多國家都提出了交通零死亡願景,事在人為啊!
  2. 教育才是最佳解,從幼兒園開始重新學習行人路權觀念,保守估計下一代……大概就會成功了。
  3. 我不入地獄,誰入地獄,這個肉身臭皮囊,還是靠自己長眼顧好吧!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

7
4

文字

分享

0
7
4
超級電腦爭霸戰的新一頁開始了:Exascale(10 的 18 次方)之戰
Y.-S. Lu
・2022/09/10 ・5230字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

2023 即將上線的超級電腦(Supercomputer)

歐洲最大的超級電腦(Supercomputer),將要在 2023 年上線啦!今年六月中時,德國于利希研究中心(Forschungszentrum Jülich GmbH)的超級計算中心(Jülich Supercomputing Centre, JSC)發佈新聞稿[1],表示歐盟的歐洲超級電腦中心聯合承辦組織(EuroHPC Joint Undertaking)選定該研究中心的超級計算中心,做為歐洲第一個設立 Exascale 超級電腦 Jupiter 的地點[2],歐盟出資一半,而另一半的資金將由德國教育部(BMBF)以及北萊茵威斯特法倫州(Nordrhein-Westfalen)文化部共同出資,其意昧著這台超級電腦也將優先提供給德國的科學家,以及北威州的研究單位使用[註一]。表示現今的超級電腦軍備競賽,已打到了 Exascale 了,Jupiter 將是繼美國設立世界第一台 Exascale[註二]的超級電腦 Frontier 後[3],即將出現的次世代超級電腦(如果德國的施工期有好好的踩點)

位於阿貢國家實驗室的 IBM Blue Gene/P 超級計算機。圖/wikipedia

Exascale 的超級電腦具有「每秒百億億次(1018)」(也就是 100 京)的每秒浮點運算(FLOP)能力,實際規模也將具有國家高速運算中心台灣杉二號[4]的 111 倍以上的運算能力,也就是要建立超過百台規模的台灣杉二號才具有 Exascale 的規模,但也同時考驗硬體的處理能力、主機間節點的連線架構、資料讀寫能力,更甚者,則是軟體是否具有 Exascale 的使用能力,也就是硬體與軟體都必須要能夠良好的契合才行。

什麼是超級電腦?可以幫助都市成為超級都市嗎?

「這些顯示器太舊了」雷迪亞茲說。

「但它們後面是世界最強大的電腦,每秒可以進行五百萬億次浮點運算。」

~ 劉欣慈《三體:黑暗森林》

劉欣慈《三體:黑暗森林》(2007)提到人類「當時」最強的電腦,為五百萬億的運算能力「而已」,沒想到 15 年後的今天,地表最強的超級電腦 Frontier 是出現在美國的橡樹嶺國家實驗室(Oak Ridge National Laboratory),而不是小說裡說的,在洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory),而且 Frontier 的效能還是小說裡超級電腦的五千多倍,可說是現實終於有超過小說的時候了(但我們依就沒有飛天滑板可以借東京都的死神小學生)

超級電腦是科學家進行高速/高效計算(High Performance Computing)的主要設備。超級電腦的架構,可以說是非常的簡單:用網路線連結各台主機,讓主機間互相溝通,才能夠進行平行運算。

-----廣告,請繼續往下閱讀-----

一般超級電腦的架構大致上如下:一機板上可能會有一個到數個 CPU,而一個或是數個機板會組成一個節點(Node),有時數個結點會組成一個機櫃(Rack/Cabinet)。節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。

節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。圖/pixabay

在此架構下,如何讓結點間有效溝通,也是一門學問了[5]。這些 CPU 可以想象是每個拿著工程計算機的研究生,正等著教授指派任務給他們算,而一個節點就是一個房間,在同一個房間內的溝通一定是比較快的,當不同房間需要溝通時,就會需要走出房間去給資料,如果所有的人一起拿資料回報給教授,那這教授可能就會崩潰,所以如何讓研究生(CPU)互相溝通,又不至於塞車,就是電腦工程專家們的專業了。

現在超級電腦的架構也與過往的超級電腦不同了。除了採用巨量 Arm 晶片的日本富岳(具 158,976 節點)、自主研發晶片的中國神威太湖之光(具 40,960 節點)外,前十大超級電腦[3]都是採用 CPU 加上 GPU 的混合架構(如在機板上插上 GPU 增加運算效率),才達到 100 Peta-Flop(1Peta = 1015) 以上的計算量,也意味著未來要在超級電腦上進行高效計算,GPU 運算也成為很重要的應用,因此也有許多計畫正在將軟體朝 GPU 運算的方向前進與推動。

軟體是否能配合平行化,也是非常是否能進行高效運算的重點之一。所謂的高效計算,也是利用許許多多的運算元件(CPU 或是 GPU),採平行運算的方法,將一個問題切成許多碎片,以螞蟻雄兵的方法一一解決,所以不要再怪為什麼你家的電腦 CPU 無論幾核心都只用了一核心,那是因為你的軟體沒有進行平行處理。早期土木界在進行坡面的圓弧破壞面計算時,據說就是用人力一人算一片圓弧的切片,也算是(人力)平行運算的先驅之一了。一般電腦中使用平行運算最多的,應該就是你手上那張 GPU 顯卡,在 GPU 的加持下,電腦螢幕中每個點、每個邊、每個平面上的顏色與光影,才能完美的呈現在使用者的眼前,所以與其用顯卡挖礦,還不如投身虛幻而真實的遊戲世界

-----廣告,請繼續往下閱讀-----

不過有了地表最強的超級電腦,並不代表我們今天就能夠像小說形容的一樣,能幾秒內預測核子彈的破壞能力,或是在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。

有了地表最強的超級電腦,並不代表我們能夠像小說一樣,在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。圖/pixabay

資料的讀入或是寫出,也是瓶頸之一,電路板與網路速度,以及資料存取方式都會造成資料讀寫的延遲,更不用說,若是打算模擬地球,其將耗盡 80 exabyte 等級的儲存空間,其為 CERN 的 ATLAS 與 CMS 計畫所產生的資料量的十倍[6]

為什麼氣候模擬要用到 Exascale?

Exascale 的超級電腦除了可以提供更多的運算能力,給更多的使用者進行模擬與計算外,也是挑戰超大型計算的開始。不過為什麼要 Exascale?到底為什麼一個模擬要用到上千甚至是上萬顆的 CPU 在運算?氣象氣候模擬已經將 Exascale 喻為下一階段應使用的救星[7],在氣象上除了要能做到一小時內達成氣象預測外,也希望能夠進行叢集式運算(像是利用隨機方法產生上百個因亂度而有不同結果的預測),進而進行機率式預測分析,或是提高水平距離至 2.5 公里以下的網格精度,此精度也為可進行對流模擬 (Convection-Permit)[8] 的精度。氣候模擬也需要高效能的運算,除了高精度的全球模型外,也需要進行長程的氣候模擬,幾十年到幾百萬年的模擬時間,也將需要 Exascale 等級的超級電腦來加速模擬,縮短實驗時間。越多的計算核心以及有效的平行運算,才能讓最真實的模擬結果讓人類使用,畢竟,誰都希望出遊不要遇上下大雨,也會希望能夠提前幾天知道颱風的路徑。

地球系統模擬中,其中一個挑戰便是進行模擬時程:挑戰一日(24 小時)的超級電腦計算可以得到多少年的模擬結果(simulated years per wall-clock day, SYPD)[6]還真的是「度日如年」,而此地球系統的精度為水平方向僅一公里的超高解析度,用來進行最終極的地球系統模擬:數位攣生(Digital Twins)[9]。數位攣生計畫主要是要建立地球的複製體,以方便人們對地球進行各種「實驗」,了解到經濟或政策面對地球生態或是氣候的影響,因此要達成此目的,強大具 Exascale 能力的電腦,便成為了目標。

目前已經有部份超級電腦都在進行 SYPD 的挑戰,如中國的神威太湖之光,其已完成了每日 3.4 年的地球系統模擬[10],只不過其地面僅有 25 公里的水平精度,海面僅 10 公里的水平精度,還有非常多的進步空間。只可惜,這個實驗並沒有進行進行資料輸出,無法得到正確的效能結果(資料的寫入與輸出也是非常費時的),以及真正的運算結果:因為沒有資料,就沒有辦法分析。

從高速電腦看量子電腦:量子電腦會是傳統的救星嗎?

量子電腦目前也成為了熱門名詞,從 2019 年開始,IBM 與 MIT 共同開始了量子計算課程,各學術單位也在搶攻量子電腦領域,但對地球模擬領域而言,量子電腦還太遙遠,對「傳統物理」的地球科學來說,我們解偏微分、解多項式,用的是傳統的數值方法,跟量子電腦界在進行的運算,也差了十萬八千里。

-----廣告,請繼續往下閱讀-----

編按:這邊所說的數值方法,簡單講就是「暴力解」。例如要求圓周率,就先設定一個半徑為 1 的圓面積公式,然後問電腦答案是多少,電腦的第一步會把所有正整數代入公式中從一個初始數字(Initial State)開始,先找到答案會在 3 到 4 之間,之後又把 3 到 4 之間的所有數,帶回一開始的公式,得知答案在 3.1 到 3.2 之間,之後又將這個區間的所有數帶回一開始的公式,如此重複很多次後,就會得到相對接近的正確答案。

量子電腦就比較詭異了,量子態的平行運算與邏輯閘,使得兩者的運算邏輯完全不同,以上面的圓周率問題為例,量子電腦會直接給出在 3.1415925 至 3.1415927 之間,存在正確答案的可能性是最高的,但是這個範圍也有可能是錯的,而且就算是錯的,以我們現在的能力也很難說明它錯在哪裡。

從表面上來看,傳統電腦用暴力解,以排除錯誤答案的方式逼近正確答案,而量子電腦不排除錯誤答案,直接找到最有可能的答案會在哪個區域,但不保證運算過程中的正確性。

因為這個區別,若將現在成熟的模擬方法直接導入量子電腦中,最有可能出現的就是不知道怎麼解讀得到的數據,這包含了答案的正確程度,以及改動特定變數後所產生的答案變動是從何而來?

IBM 與 GOOGLE 正在爭奪追逐量子霸權(Quantum Supremacy)的同時[11],(不過 Google 號稱的量子霸權,也就是一萬倍的計算速度,在 2021 年被中國科學院理論物理所的 Feng 等人用了 15 個 NVIDIA V100 GPU 給追上[12][註五]),其離傳統電腦計算的距離,也有十萬八千里遠,離應用於地球科學計算上還有一定的距離,但只要哪一天能夠應用在普通的大氣循環模式(GCM),就可以算是第一步吧。但是在量子力學進入大氣科學前,我們氣候與氣象模擬還是只能使用傳統的電腦主機,靠著 2 位元的方法進行大氣模擬,所以目前傳統超級電腦還沒有被取代的機會。

結語:超大主機與超大計算

依摩爾定律,每十八個月,CPU 晶片的製成就會進步一倍,同時,超級電腦中心卻是一直受益於摩爾定律帶來的好處,也就是 CPU 的能力越來越強,而價格也越來越親民,也讓氣候氣象模擬的空間精度也隨之升高。

Neumann 等人也預計在 2030 年代後,進行 1 公里等級的超高精度計算也將不是夢想[7],而在 Exascale 主機降臨前的這個年代,有些超級計算中心已經以節點(Node)做為計算資源耗費的單位(Node per hour),而非 CPU per hour,顯示出大型主機對計算資源消耗的想法以從 CPU 規模上升到了 Node 規模。

一方面使用者受益於更多的 CPU 資源,但同時這些主機也要求更新更大量的計算能力,如瑞士的 Piz Daint 與瑞典的 LUMI,皆要求使用者的計算必須是含有 GPU 運算能力,而純粹靠 CPU 運算的軟體,將無法享受到同等的巨量資源。

-----廣告,請繼續往下閱讀-----
IBM為橡樹嶺國家實驗室開發的Summit超級計算機(或 OLCF-4)。圖/flickr

而相應的挑戰也隨之而生,除了硬體將進入 Exascale 的時代,軟體也將一同進入這場大戰,才能享受同等的資源。另外一個挑戰則是綠色挑戰,1 公里精度的氣象模擬,每一模擬年將耗盡 191.7 百萬瓦時[6],相當於台灣一個家庭可以用上 43 年的電量[註三],也可以讓特斯拉的 Model 3LR 從地球開到月球來回開 1.5 次[註四],其耗能之巨,也是我們計算或是模擬界科學家應該要注意到的問題,也是為何除了 HPC Top500 外,亦有 Green 500[13]的原因吧,而具有超高效能的 Frontier,也同時奪下了 Green 500 之冠,也算是 Exascale 的好處吧。

註解與文獻

  • [註一] 若需使用 JSC 的超級電腦,必須透過不同的計畫項目進行申請,其計畫主持人(PI)為歐洲或是德國的研究者[14]
  • [註二] 日本的富岳其實也可以進行到 Exscale 的運算,只是要超頻而已,想當然爾是非常規設定。
  • [註三] 根據台電 2021 年新聞稿中,家庭離峰平均用電為 339 度以及 6-9 月為 434 度推估。
  • [註四] 根據 Tesla M3 LR 為 25kWh per 100 Miles,月球至地球為 384400 公里推估
  • [註五] Feng 也公開了他的程式碼
  • [1] Forschungszentrum Jülich 新聞稿
  • [2] EUROPE HPC 新聞稿
  • [3] 2022 年六月 HPC Top 500 名單
  • [4] 國家高速網路中心台灣杉二號介紹
  • [5] 司徒加特超級電腦中心:HAWK 主機之連線架構
  • [6] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler and C. Schär, “Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on Weather and Climate Simulations,” in Computing in Science & Engineering, vol. 21, no. 1, pp. 30-41, 1 Jan.-Feb. 2019, doi: 10.1109/MCSE.2018.2888788.
  • [7] Neumann P et al. 2019, Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?. Phil. Trans. R. Soc. A 377: 20180148. http://dx.doi.org/10.1098/rsta.2018.0148
  • [8] Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., & Wilkinson, J. M. (2017). Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?, Bulletin of the American Meteorological Society, 98(1), 79-93
  • [9] Bauer, P., Dueben, P.D., Hoefler, T. et al. The digital revolution of Earth-system science. Nat Comput Sci 1, 104–113 (2021). https://doi.org/10.1038/s43588-021-00023-0
  • [10] Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020. https://gmd.copernicus.org/articles/13/4809/2020/
  • [11] 「嗨量子世界!」~ Nature Newsletter
  • [12] Feng Pan, Keyang Chen, and Pan Zhang, Solving the sampling problem of the Sycamore quantum circuits, accepted by Phys. Rev. Lett.
  • [13] 2022 年六月 HPC Green 500 名單
  • [14] JSC 系統申請辦法

-----廣告,請繼續往下閱讀-----
Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。