0

0
1

文字

分享

0
0
1

交通號誌燈模擬:省時省油的好方法

昱夫
・2014/08/04 ・1248字 ・閱讀時間約 2 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

Traffic light tree. Credit: William Warby
Traffic light tree. Credit: William Warby

每天傍晚5~7點,卡在車陣中的我總是感到焦躁不安,既煩悶又空虛,望向前方的紅綠燈,竟然給我ㄧ片通紅⋯⋯逢年過節,有些路段要移動5公尺甚至得耗上半小時以上,簡直是煉獄。

長時間的塞車消磨人心也浪費汽油,更會排放出多餘的廢氣造成污染。你應該有過這樣的疑惑,為什麼紅燈老是在交通擁塞時一直亮起呢?難道沒有好的號誌設定可以讓交通變得更順暢嗎?其實,這類複雜的網絡問題早已有許多理論模型被提出,其中一些是以縮短交通時間為目的,另外也有部份是針對汽油消耗最佳化的模型,只是以往這兩者鮮少被混合應用在同ㄧ個模型上。

前些日子,麻省理工(Massachusetts Institute of Technology, MIT)的Carolina Osorio團隊,發展了ㄧ套新的交通號誌演算模型,可以結合交通時間與燃料消耗兩個因素,來達到最佳化效果[1]。他們以瑞士的洛桑(Lausanne)作為研究對象,針對進入傍晚尖峰時間的第一個小時,分析區域內47條道路和15個路口的交通狀況(其中包含9個有安裝交通號誌的路口,每個號誌的變換週期設定為90秒或100秒),透過模擬結果,他們的新演算方法可以減少車輛群體平均花在行進的時間高達22%,效果顯著。

Photo Credit: Jose-Luis Olivares/MIT
Photo Credit: Jose-Luis Olivares/MIT

針對交通號誌的控制,常見的演算方法分為兩類型,一種是大尺度、以流量統計分析為基礎,這種方法的精準度較差,但相對節省計算資源;另一種方法,則是導入每一輛行車的資料,在各別路口與路段重新做計算,「由下往上」建立整體的模型,此類型方法會遇到的困難,就是其結果往往極度非線性,需要很大量的資料和重複計算,才能得到與現實接近的狀況。而Osorio團隊的想法,便是希望以大尺度方法的模型為基礎,從中引入小單元的行車資訊,提高精準度,同時又可以避免消耗過多的計算資源。

-----廣告,請繼續往下閱讀-----

「在現實中,當我們想要調整號誌時間來提高效率,常常都會將設定的目標侷限在很小的區域,但這樣的效果卻不一定很好;在我們的研究裡,我們將目標區域擴展至整個城市,以宏觀的角度去分析路段間的關係與行車的流量,從而有效縮短了交通時間」Osorio說道。

除了麻省理工的這項研究,在交通網絡的領域也有很多新奇的點子,希望改善交通擁塞的問題:有人提出可以直接讓車輛和交通號誌做網路連結,建立一個「智慧交通」系統,當車子接近時,號誌可以主動根據該路口的車流量,來調整燈號變換的時機[2]。

目前,紐約已開始和麻省理工合作,希望將Osorio的研究實際應用到城市交通網上,測試它的實用性;如果成功,希望類似的計劃也能在近幾年內快速普及至各大城市,畢竟,改善塞車,不只可以減緩空氣污染,更是挽救了千千萬萬人煩悶的心啊~

 

延伸閱讀:

-----廣告,請繼續往下閱讀-----

 參考資料:

  1. 此論文將刊登於下一刊的Transportation Science上 :Carlina Osorio and kanchana Nanduri, Energy-efficient urban traffic management: a microscopic-based approach, Transportation Science
  2. Smart Traffic Light Could help Cars Save Gas [IEEE, Oct 27, 2010]

資料來源:Better Traffic Light Simulations Could Cut Travel Time and Gas Use [IEEE, July 10, 2014]

-----廣告,請繼續往下閱讀-----
文章難易度
昱夫
57 篇文章 ・ 2 位粉絲
PanSci實習編輯~目前就讀台大化學所,研究電子與質子傳遞機制。微~蚊氫,在宅宅的實驗室生活中偶爾打點桌球,有時會在走廊上唱歌,最愛929。

0

2
0

文字

分享

0
2
0
地震之島的生存法則!921地震教育園區揭開台灣的防災祕密
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/20 ・4553字 ・閱讀時間約 9 分鐘

為什麼台灣會像坐在搖搖椅上,總是時不時地晃動?這個問題或許有些令人不安,但卻是我們生活在這片土地上的現實。根據氣象署統計,台灣每年有 40,000 次以上的地震,其中有感地震超過 1,000 次。2024年4月3日,花蓮的大地震發生後,台灣就經歷了超過 1,000 次餘震,這些數據被視覺化後形成的圖像,宛如台北101大樓般高聳穿雲,再次引發了全球對台灣地震頻繁性的關注。

地震發生後,許多外國媒體擔心半導體產業會受影響,但更讓他們稱奇的是,台灣竟然能在這麼大的地震之下,將傷害降到這麼低,並迅速恢復。不禁讓人想問,自從 25 年前的 921大地震以來,台灣經歷了哪些改變?哪些地方可能再發生大地震?如果只是遲早,我們該如何做好更萬全的準備?

要找到這些問題的答案,最合適的地點就在一座從地震遺跡中冒出的主題博物館:國立自然科學博物館的 921地震教育園區。

圖:跑道捕捉了地震的瞬間 / 圖片來源:劉志恆/青玥攝影

下一個大地震在哪、何時?先聽斷層說了什麼

1999年9月21日凌晨1點47分,台灣發生了一場規模7.3的大地震,震央在南投縣集集鎮,全台 5 萬棟房子遭震垮,罹難人數超過 2,400 人。其中,台中霧峰光復國中校區因車籠埔斷層通過,地面隆起2.6公尺,多棟校舍損毀。政府決定在此設立921地震教育園區,保留這段震撼人心的歷史,並作為防災教育的重要基地。園區內兩處地震遺跡依特性設置為「車籠埔斷層保存館」和「地震工程教育館」。

-----廣告,請繼續往下閱讀-----

車籠埔斷層保存館建於原操場位置,為了保存地表破裂及巨大抬升,所以整體設計不採用樑柱結構,而是由82根長12公尺、寬2.4公尺、重約10噸的預鑄預力混凝板組成,外觀為曲線造型,技術難度極高,屬國內外首見,並榮獲多項建築獎。而地震工程教育館保留了原光復國中受損校舍,讓民眾親眼見證地震的驚人破壞力,進一步強調建築結構與安全的重要性。毀損教室旁設有由園區與「國家地震工程研究中心」共同策劃的展示館,透過互動展示,讓參觀者親手操作,學習地震工程相關知識。

國立自然科學博物館地質學組研究員蔣正興博士表示,面積上,台灣是一個狹長的小島,卻擁有高達近4000公尺的山脈,彰顯了板塊激烈擠壓、地質活動極為活躍的背景。回顧過去一百年的地震歷史,從1906年的梅山地震、1935年的新竹-台中地震,到1999年的921大地震,都發生在台灣西部,與西部的活動斷層有密切關聯,震源位於淺層,加上人口密度較高,因此對台灣西部造成了嚴重的災情。

而台灣東部是板塊劇烈擠壓的區域,地震震源分佈更廣。與西部相比,雖然東部地震更頻繁,但由於人口密度相對較低,災情相對較少。此外,台灣東北部和外海也是地震多發區,尤其是菲律賓海板塊往北隱沒至歐亞板塊的隱沒地震帶,至沖繩海槽向北延伸,甚至可能影響到台北下方,發生直下型地震,這種地震因震源位於城市正下方,危害特別大,加上台北市房屋非常老舊,若發生直下型地震,災情將非常嚴重。

除了台北市,蔣正興博士指出在台灣西部,我們特別需要關注的就是彰化斷層的影響,該斷層曾於1848年發生巨大錯動。此外,我們也需要留意西南部的地震風險,如 1906 年的梅山地震。此兩條活動斷層距今皆已超過 100 年沒活動了。至於東部,因為存在眾多活動斷層,當然也需要持續注意。

-----廣告,請繼續往下閱讀-----

我們之所以擔心某些斷層,是因為這些區域可能已經累積了相當多的能量,一旦達到臨界點,就會釋放,進而引發地震。地質學家通常會沿著斷層挖掘,尋找過去地震的證據,如受構造擾動沉積物的變化,然後透過定年技術來確定地震發生的時間點,估算出斷層的地震週期,然而,這些數字的計算過程非常複雜,需要綜合大量數據。

挑戰在於,有些斷層的活動時間非常久遠,要找到活動證據並不容易。例如,1906年的梅山地震,即使不算久遠,但挖掘出相關斷層的具體位置仍然困難,更不用說那些數百年才活動一次的斷層,如台北的山腳斷層,因為上頭覆蓋了大量沉積物,要找到並研究這些斷層更加困難。

儘管我們很難預測哪個斷層會再次活動,我們仍然可以預先對這些構造做風險評估,從過往地震事件中找到應變之道。而 921 地震教育園區,就是那個可以發現應變之道的地方。

圖:北棟教室毀損區 / 圖片來源:劉志恆/青玥攝影

921 後的 25 年

在園區服務已 11 年的黃英哲擔任志工輔導員,常代表園區到各地進行地震防災宣導。他細數 921 之後,台灣進行的六大改革。制定災害防救法,取代了總統緊急命令。修訂了建築法規,推動斷層帶禁限建與傳統校舍建築改建。組建災難搜救隊伍,在面對未來災害時能更加自主應對。為保存文化資產,增設了歷史建築類別,確保具有保存價值的建築物得到妥善照料。

-----廣告,請繼續往下閱讀-----

最後,則是推行防災教育。黃英哲表示,除了在學校定期進行防災演練,提升防災意識外,更建立了921地震教育園區,不僅作為教育場所,也是跨部門合作的平台,例如與交通部氣象署、災害防救辦公室、教育部等單位合作,進行全面的防災教育。園區內保留了斷層線的舊址,讓遊客能夠直觀地了解地震的破壞力,最具可看性;然而除此之外,園區也是 921 地震相關文物和資料的重要儲存地,為未來的地震研究提供了寶貴的資源。

堪稱園區元老,在園區服務將近 19 年,主要負責日語解說工作的陳婉茹認為,園區最大的特色是保存了斷層造成的地景變化,如抬升的操場和毀壞的教室場景,讓造訪的每個人直觀地感受地震的威力,尤其是對於年輕的小朋友,即使他們沒有親身經歷過,也能透過這些真實的展示認識到地震帶來的危險與影響。

陳婉茹回憶,之前有爸媽帶著小學低年級的小朋友來參觀,原本小朋友並不認真聽講,到處跑來跑去,但當他看到隆起的操場,立刻大聲說這他在課本看過,後來便聚精會神地聽完 40 分鐘的解說。

圖:陳婉茹在第一線負責解說工作 / 圖片來源:921地震教育園區

除了每看必震撼的地景,園區也透過持續更新策展,邀請大家深入地震跟防災的各個面向。策展人黃惠瑛負責展示設計、活動規劃、教具設計等工作。她提到,去年推出的搜救犬特展和今年的「921震災啓示展」與她的個人經歷息息相關。921 大地震時的她還是一名台中女中的住宿生,當時她儘管驚恐,依舊背著腿軟的學姊下樓,讓她在策劃這些展覽時充滿了反思。

-----廣告,請繼續往下閱讀-----

在地震體驗平臺的設計中,黃惠瑛強調不僅要讓觀眾了解災害的破壞力,更希望觀眾能從中學到防災知識。她與設計師合作,一樓展示區採用了時光機的概念,運用輕鬆、童趣的風格,希望遊客保持積極心態。二樓的地震體驗平臺結合六軸震動臺和影片,讓遊客真實感受921地震的情境。她強調,這次展覽的目標是全民,設計上避免了血腥和悲傷的元素,旨在讓觀眾帶著正向的感受離開,並重視防災意識。

圖:地震體驗劇場 / 圖片來源:921地震教育園區

籌備今年展覽的最大挑戰是緊迫的時間。從五月開始,九月完成,為了迅速而有效地與設計師溝通,黃惠瑛使用了AI工具如ChatGPT與生成圖像工具,來加快與設計師溝通的過程。

圖:黃惠瑛與設計師於文件中討論設計/ 圖片來源:921地震教育園區

蔣正興博士說,當初學界建議在此設立地震教育園區,其中一位重要推手是法國地質學家安朔葉。他曾在台灣指導十位台灣博士生,這些博士後來成為地質研究的中堅力量。1999年921大地震後,安朔葉教授立刻趕到台灣,認為光復國中是全球研究斷層和地震的最佳觀察點,建議必須保存。為紀念園區今年成立20週年,在斷層館的展示更新中,便特別強調安朔葉的貢獻與當時的操場圖。

此外,作為 20 週年的相關活動,今年九月也將與日本野島斷層保存館簽署合作備忘錄(MOU),強化合作並展示台日合作歷史。另一重頭戲則是向日本兵庫縣人與自然博物館主任研究員加藤茂弘致贈感謝狀,感謝他不遺餘力,長期協助園區斷層保存館的剖面展品保存工作。

-----廣告,請繼續往下閱讀-----
右圖:法國巴黎居禮大學安朔葉教授。左圖:兵庫縣立人與自然博物館主任研究員加藤茂弘
/ 圖片來源:921地震教育園區

前事不忘,後事之師

盡力保存斷層跟受創校舍,只因不想再重蹈覆徹。蔣正興博士表示,921地震發生在車籠埔斷層,其錯動形式成為全球地質研究的典範,尤其是在研究斷層帶災害方面。統計數據顯示,距離車籠埔斷層約100公尺內,住在上盤的罹難率約為1%,而下盤則約為0.6%。這說明住在斷層附近,特別是上盤,是非常危險的。由於台灣主要是逆斷層活動,這一數據清楚告訴我們,在上盤區域建設居住區應特別小心。

2018年花蓮米崙斷層地震就是一個例證。

在921地震後,政府在斷層帶兩側劃設了「地質敏感區」。因為斷層活動週期較長,全球大部分地區難以測試劃設敏感區的有效性,但台灣不同,斷層活動十分頻繁。例如 1951 年,米崙斷層造成縱谷地震,規模達 7.3,僅隔 67 年後,在 2018 年再次發生花蓮地震,這在全球是罕見的,也因此 2016 年劃設的地質敏感區,在 2018 年的地震中便發現,的確更容易發生地表破裂與建築受損,驗證了地質敏感區劃設的有效性。

圖:黃英哲表示曾來園區參訪的兒童寄來的問候信,是他認真工作的動力 / 圖片來源:921地震教育園區

在過去的20年裡,921地震教育園區不僅見證了台灣在防災教育上的進步,也承載著無數來訪者的情感與記憶。每一處地震遺跡,每一項展示,都在默默提醒我們,那段傷痛歷史並未走遠。然而,我們對抗自然的力量,並非源自恐懼,而是源自對生命的尊重與守護。當你走進這座園區,感受那因地震而隆起的操場,或是走過曾經遭受重創的教室,你會發現,這不僅僅是歷史的展示,更是我們每一個人的責任與使命。

-----廣告,請繼續往下閱讀-----

來吧,今年九月,走進921地震教育園區,一起在這裡找尋對未來的啓示,為台灣的下一代共同築起一個更堅固、更安全的家園。

圖:今年九月,走進921地震教育園區 / 圖片來源:劉志恆/青玥攝影

延伸閱讀:
高風險? 家踩「斷層帶、地質敏感區」買房留意
「我摸到台灣的心臟!」法國地質學家安朔葉讓「池上斷層」揚名國際
百年驚奇-霧峰九二一地震教育園區|天下雜誌

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

3
1

文字

分享

1
3
1
從號誌開始還路於民:增設行人專用時相真的能保護行人嗎?
PanSci_96
・2023/09/02 ・3577字 ・閱讀時間約 7 分鐘

「好不容易綠燈了,怎麼又有路人擋在斑馬線上?現在汽機車要停讓行人,不是只會讓路口更塞嗎?」

「怎麼一綠燈,腳才剛踏出去,就差點被撞到,台灣真的是行人地獄啊!」

話說道路設計的最高原則,就跟XX製藥一樣,是先研究不傷身體,再講求效果。包括行人、駕駛者等用路人的安全要確保,再來才是讓所有用路人都能在安全的條件下,快速地到達目的地。

那麼駕駛轉彎時須等候行人的規定,你怎麼看呢?身為行人的我覺得,這只是遲來的行人正義,本該如此啊!以前每次過馬路都要急急忙忙,還擔心被司機怒瞪,感覺真的很差。不過握上方向盤的我卻又覺得,哇靠,現在每次汽車轉彎遇到行人就要停下來,結果根本如入行車地獄,一整排車子在路上塞爆,綠燈都結束了,車子還卡在路中間!

-----廣告,請繼續往下閱讀-----

與其讓每個人都陷入行人與駕駛的無間道,也許我們該思考的是最根本的燈號設計問題,調整號誌設置加上增設行人專用時相(Pedestrian Scramble),被認為是擺脫行人地獄惡名的關鍵一招,但這招真的有用嗎?該怎麼用才真的好棒棒呢?

紅綠燈秒數該如何設計?

最近交通改革的呼聲很高,820「還路於民大遊行」也即將登場。台灣交通雖然不會因為一次的遊行,在一夕之間改變,但能讓更多人在乎交通的癥結,願意理性討論,我認為都是很好的發展。

因為多起令人傷心的事故,「道路設計」如今備受重視,然而設計道路不是看心情或靠直覺,不論是車道寬度、人行道寬度或是標線位置,都是集合交通學、數學和心理學分析的綜合結果。其中,紅綠燈的設計相對來說比較簡單,因為那就是解數學題嘛。

喔?這數學題該怎麼解呢?我們先以最簡單的雙時相號誌來舉例。這裡所謂的時相,就是指號誌的狀態。例如一個最一般的十字路口,會由一個南北向綠燈、東西向紅燈的時相,加東西向綠燈、南北向紅燈的另一個時相,組成雙時相系統。如果又加上禁止直行、僅允許轉彎的情況,那就是又多了一個時相。而由三個以上組成的系統,就是我們常聽到的「多時相交通號誌」。

-----廣告,請繼續往下閱讀-----
雙時相號誌例圖。圖/轉動高雄青春夢-高雄市政府交通局

現在我們眼前有一個雙時相號誌路口,我們的目標,是設計一個在固定時間內,能讓更多車通過,駕駛可以花更少時間抵達目的地的路口。唯一的條件,是它的紅燈與綠燈時間必須一樣長,那麼你會希望紅燈長一點還是短一點呢?蛤,短一點比較好?真的是這樣嗎?

當我們在設計號誌週期 (signal timing) 時,通常會將號誌畫成類似於 PM 常用的甘特圖,更加一目了然。現在我們有第一種設計:紅燈、綠燈各一分鐘,一個號誌週期是兩分鐘。以及第二種設計:紅燈、綠燈各 30 秒,一個週期是一分鐘。實際畫成甘特圖,雖然一次的紅燈等待時間變短了。但長時間來看,你遇到綠燈跟等紅燈的時間,是一樣多的,也就是在相同時間內,前進的距離是一樣的。

設計號誌週期不同,實際有效時間也會不同。圖/PanSci YouTube

當然啦,相信你也看出來了,現實情況不是這樣,就算是藤原豆腐店的送貨員,從零加速到一百,喔不對,一般道路速限是 50 公里。從零加速到 50,也是需要起步時間的,如果遇到紅燈也需要煞車時間。再加上黃燈的轉換時間,這些時間加起來會產生不少的時間損耗。如果遇到一次紅燈,就會損失 5 秒。那麼在週期為兩分鐘的道路上行駛兩分鐘,實際上的有效時間,只有 60-5 秒,也就是 55 秒的時間。在週期為一分鐘的路口呢?雖然行駛兩分鐘的綠燈時間總計也是一分鐘,卻因為會多遇到一次紅綠燈。所以有效時間會損失 2 次 5 秒,也就是有效時間只剩下 50 秒,比週期是兩分鐘的道路還少了五秒。

結論就是,雖然綠燈長一點,紅燈也需要等久一點,但比起不斷地走走停停,能將速度維持在速限的時間更久,就能節省更多時間。

-----廣告,請繼續往下閱讀-----

號誌連鎖,幹道更順暢

當然,以上假設是紅燈與綠燈一樣長的情形,大部分的道路規劃都存在幹道、支道的區分。幹道是交通的命脈,也是車流量最大的地方,因此綠燈時間就會設計的比紅燈還要長,在號誌設計上也會有其他的考量。

例如,大家在路上看到一整排綠燈,一路大順暢,心情一定也十分舒暢,這被稱為號誌同步 (Signal Synchronization)。剛才討論的是單一紅綠燈的時間長短,現在我們同時考慮整條路上的紅綠燈,依照經驗也知道,沒有號誌同步的幹道,遇到的紅燈次數自然也會比較多,那麼因為頻繁減速、加速而出現的時間損失又多起來了。

但是,號誌同步真的是最優的作法嗎?其實不見得。當我們將號誌再次畫成圖,把號誌的時間和空間擺在一起,形成時空圖(Time-Space Diagram),並且加入行駛速限的考量。

號誌時空圖(Time-Space Diagram)。圖/Traffic Signal Timing Manual

我們會發現,放入合適的時差,能讓號誌如波浪般傳遞下去,每次你剛好到下一個路口,就會剛好遇到綠燈,達到真正的一路大順暢。這種安排方式被稱為號誌連鎖 (Signal Coordination)。而要讓雙向的道路都能受益於號誌連鎖的好處,就需要透過嚴密的車流量與數學計算。

-----廣告,請繼續往下閱讀-----

在這些基礎之上,還需要加入時間、車流、轉彎道等資訊,才能做出最有效的號誌設計,實在不簡單。在這個基礎之上,若要解決行人屢屢遭遇事故的困境,該怎麼設計紅綠燈呢?

行人專用時相是什麼?

前陣子,關於駕駛轉彎時須等候行人的議題又再度浮上水面,有人提出既然每次汽車轉彎遇到行人就要停下來,不如增設「行人專用時相」(Pedestrian Scramble)來解決問題。在這個時相內,只有行人可以移動,反過來說,在汽車移動的時候,行人是不能移動的。

這有什麼好處呢?首先,因為行人穿越馬路時所有汽車都得靜止,因此行人可以穿越對角線,穿越馬路的次數從兩次變為一次。對於駕駛來說也有好處,因為駕駛行駛時已經沒有行人會穿越斑馬線,因此右轉車輛可以不受影響,降低等待時間。而最重要的是,行人移動時沒有任何交通工具正在移動,直接降低了車禍的風險。倫敦交通局在 2010 年的報告中,便說明行人專用時相可以降低 38% 的行人傷亡。

行人專用時相可以降低 行人傷亡。圖/Giphy

既然這麼立竿見影,那把所有路口都加設「行人專用時相」就解決問題了嗎?其實也不是。增加一個時相,就意味整個週期拉長了。因此不論是行人還是車輛,要等的紅燈時間也會拉長。在少部分城市,就觀察到駕駛更容易因為等得不耐煩而搶跑、闖紅燈,例如加拿大的多倫多,就因此在 2015 年取消了行人專用時相。

-----廣告,請繼續往下閱讀-----

一般認為,適合設置行人專用時相的地方,僅在行人人流量高的路口,例如鬧區、車站前、幹道交叉口等等。在行人數量不多的路口,增加時相可能反而會使塞車問題更加嚴重。

還有什麼方法能讓行人更安全的過馬路?

事實上,台灣交通安全協會理事長陳宏益也表示,行人專用時相只是短期應急作法,更好的做法是搭配不同路口採用不同的措施。例如設置「行人早開時相」(Leading Pedestrian Interval),讓行人比車輛早 3~7 秒綠燈,增加行人被駕駛看到的機會、減少人車爭道。

或是呢,設置行人庇護島或將行穿線退縮,除了庇護島能多一分保障外,重要的是行穿線退縮能增加汽車的等候空間,並且因為車輛在轉入時已經轉直,比較不容易因為 A 柱死角而看不見行人。

行穿線退縮也能保護行人安全。圖/PanSci YouTube

這樣聽起來,只要根據每個路口車流、人流,調整燈號設計,台灣的「行人地獄」應該有解囉?你覺得呢?有可能改變嗎?

  1. 當然有解,那麼多國家都提出了交通零死亡願景,事在人為啊!
  2. 教育才是最佳解,從幼兒園開始重新學習行人路權觀念,保守估計下一代……大概就會成功了。
  3. 我不入地獄,誰入地獄,這個肉身臭皮囊,還是靠自己長眼顧好吧!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1

0

7
4

文字

分享

0
7
4
超級電腦爭霸戰的新一頁開始了:Exascale(10 的 18 次方)之戰
Y.-S. Lu
・2022/09/10 ・5230字 ・閱讀時間約 10 分鐘

2023 即將上線的超級電腦(Supercomputer)

歐洲最大的超級電腦(Supercomputer),將要在 2023 年上線啦!今年六月中時,德國于利希研究中心(Forschungszentrum Jülich GmbH)的超級計算中心(Jülich Supercomputing Centre, JSC)發佈新聞稿[1],表示歐盟的歐洲超級電腦中心聯合承辦組織(EuroHPC Joint Undertaking)選定該研究中心的超級計算中心,做為歐洲第一個設立 Exascale 超級電腦 Jupiter 的地點[2],歐盟出資一半,而另一半的資金將由德國教育部(BMBF)以及北萊茵威斯特法倫州(Nordrhein-Westfalen)文化部共同出資,其意昧著這台超級電腦也將優先提供給德國的科學家,以及北威州的研究單位使用[註一]。表示現今的超級電腦軍備競賽,已打到了 Exascale 了,Jupiter 將是繼美國設立世界第一台 Exascale[註二]的超級電腦 Frontier 後[3],即將出現的次世代超級電腦(如果德國的施工期有好好的踩點)

位於阿貢國家實驗室的 IBM Blue Gene/P 超級計算機。圖/wikipedia

Exascale 的超級電腦具有「每秒百億億次(1018)」(也就是 100 京)的每秒浮點運算(FLOP)能力,實際規模也將具有國家高速運算中心台灣杉二號[4]的 111 倍以上的運算能力,也就是要建立超過百台規模的台灣杉二號才具有 Exascale 的規模,但也同時考驗硬體的處理能力、主機間節點的連線架構、資料讀寫能力,更甚者,則是軟體是否具有 Exascale 的使用能力,也就是硬體與軟體都必須要能夠良好的契合才行。

什麼是超級電腦?可以幫助都市成為超級都市嗎?

「這些顯示器太舊了」雷迪亞茲說。

「但它們後面是世界最強大的電腦,每秒可以進行五百萬億次浮點運算。」

~ 劉欣慈《三體:黑暗森林》

劉欣慈《三體:黑暗森林》(2007)提到人類「當時」最強的電腦,為五百萬億的運算能力「而已」,沒想到 15 年後的今天,地表最強的超級電腦 Frontier 是出現在美國的橡樹嶺國家實驗室(Oak Ridge National Laboratory),而不是小說裡說的,在洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory),而且 Frontier 的效能還是小說裡超級電腦的五千多倍,可說是現實終於有超過小說的時候了(但我們依就沒有飛天滑板可以借東京都的死神小學生)

超級電腦是科學家進行高速/高效計算(High Performance Computing)的主要設備。超級電腦的架構,可以說是非常的簡單:用網路線連結各台主機,讓主機間互相溝通,才能夠進行平行運算。

-----廣告,請繼續往下閱讀-----

一般超級電腦的架構大致上如下:一機板上可能會有一個到數個 CPU,而一個或是數個機板會組成一個節點(Node),有時數個結點會組成一個機櫃(Rack/Cabinet)。節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。

節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。圖/pixabay

在此架構下,如何讓結點間有效溝通,也是一門學問了[5]。這些 CPU 可以想象是每個拿著工程計算機的研究生,正等著教授指派任務給他們算,而一個節點就是一個房間,在同一個房間內的溝通一定是比較快的,當不同房間需要溝通時,就會需要走出房間去給資料,如果所有的人一起拿資料回報給教授,那這教授可能就會崩潰,所以如何讓研究生(CPU)互相溝通,又不至於塞車,就是電腦工程專家們的專業了。

現在超級電腦的架構也與過往的超級電腦不同了。除了採用巨量 Arm 晶片的日本富岳(具 158,976 節點)、自主研發晶片的中國神威太湖之光(具 40,960 節點)外,前十大超級電腦[3]都是採用 CPU 加上 GPU 的混合架構(如在機板上插上 GPU 增加運算效率),才達到 100 Peta-Flop(1Peta = 1015) 以上的計算量,也意味著未來要在超級電腦上進行高效計算,GPU 運算也成為很重要的應用,因此也有許多計畫正在將軟體朝 GPU 運算的方向前進與推動。

軟體是否能配合平行化,也是非常是否能進行高效運算的重點之一。所謂的高效計算,也是利用許許多多的運算元件(CPU 或是 GPU),採平行運算的方法,將一個問題切成許多碎片,以螞蟻雄兵的方法一一解決,所以不要再怪為什麼你家的電腦 CPU 無論幾核心都只用了一核心,那是因為你的軟體沒有進行平行處理。早期土木界在進行坡面的圓弧破壞面計算時,據說就是用人力一人算一片圓弧的切片,也算是(人力)平行運算的先驅之一了。一般電腦中使用平行運算最多的,應該就是你手上那張 GPU 顯卡,在 GPU 的加持下,電腦螢幕中每個點、每個邊、每個平面上的顏色與光影,才能完美的呈現在使用者的眼前,所以與其用顯卡挖礦,還不如投身虛幻而真實的遊戲世界

-----廣告,請繼續往下閱讀-----

不過有了地表最強的超級電腦,並不代表我們今天就能夠像小說形容的一樣,能幾秒內預測核子彈的破壞能力,或是在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。

有了地表最強的超級電腦,並不代表我們能夠像小說一樣,在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。圖/pixabay

資料的讀入或是寫出,也是瓶頸之一,電路板與網路速度,以及資料存取方式都會造成資料讀寫的延遲,更不用說,若是打算模擬地球,其將耗盡 80 exabyte 等級的儲存空間,其為 CERN 的 ATLAS 與 CMS 計畫所產生的資料量的十倍[6]

為什麼氣候模擬要用到 Exascale?

Exascale 的超級電腦除了可以提供更多的運算能力,給更多的使用者進行模擬與計算外,也是挑戰超大型計算的開始。不過為什麼要 Exascale?到底為什麼一個模擬要用到上千甚至是上萬顆的 CPU 在運算?氣象氣候模擬已經將 Exascale 喻為下一階段應使用的救星[7],在氣象上除了要能做到一小時內達成氣象預測外,也希望能夠進行叢集式運算(像是利用隨機方法產生上百個因亂度而有不同結果的預測),進而進行機率式預測分析,或是提高水平距離至 2.5 公里以下的網格精度,此精度也為可進行對流模擬 (Convection-Permit)[8] 的精度。氣候模擬也需要高效能的運算,除了高精度的全球模型外,也需要進行長程的氣候模擬,幾十年到幾百萬年的模擬時間,也將需要 Exascale 等級的超級電腦來加速模擬,縮短實驗時間。越多的計算核心以及有效的平行運算,才能讓最真實的模擬結果讓人類使用,畢竟,誰都希望出遊不要遇上下大雨,也會希望能夠提前幾天知道颱風的路徑。

地球系統模擬中,其中一個挑戰便是進行模擬時程:挑戰一日(24 小時)的超級電腦計算可以得到多少年的模擬結果(simulated years per wall-clock day, SYPD)[6]還真的是「度日如年」,而此地球系統的精度為水平方向僅一公里的超高解析度,用來進行最終極的地球系統模擬:數位攣生(Digital Twins)[9]。數位攣生計畫主要是要建立地球的複製體,以方便人們對地球進行各種「實驗」,了解到經濟或政策面對地球生態或是氣候的影響,因此要達成此目的,強大具 Exascale 能力的電腦,便成為了目標。

目前已經有部份超級電腦都在進行 SYPD 的挑戰,如中國的神威太湖之光,其已完成了每日 3.4 年的地球系統模擬[10],只不過其地面僅有 25 公里的水平精度,海面僅 10 公里的水平精度,還有非常多的進步空間。只可惜,這個實驗並沒有進行進行資料輸出,無法得到正確的效能結果(資料的寫入與輸出也是非常費時的),以及真正的運算結果:因為沒有資料,就沒有辦法分析。

從高速電腦看量子電腦:量子電腦會是傳統的救星嗎?

量子電腦目前也成為了熱門名詞,從 2019 年開始,IBM 與 MIT 共同開始了量子計算課程,各學術單位也在搶攻量子電腦領域,但對地球模擬領域而言,量子電腦還太遙遠,對「傳統物理」的地球科學來說,我們解偏微分、解多項式,用的是傳統的數值方法,跟量子電腦界在進行的運算,也差了十萬八千里。

-----廣告,請繼續往下閱讀-----

編按:這邊所說的數值方法,簡單講就是「暴力解」。例如要求圓周率,就先設定一個半徑為 1 的圓面積公式,然後問電腦答案是多少,電腦的第一步會把所有正整數代入公式中從一個初始數字(Initial State)開始,先找到答案會在 3 到 4 之間,之後又把 3 到 4 之間的所有數,帶回一開始的公式,得知答案在 3.1 到 3.2 之間,之後又將這個區間的所有數帶回一開始的公式,如此重複很多次後,就會得到相對接近的正確答案。

量子電腦就比較詭異了,量子態的平行運算與邏輯閘,使得兩者的運算邏輯完全不同,以上面的圓周率問題為例,量子電腦會直接給出在 3.1415925 至 3.1415927 之間,存在正確答案的可能性是最高的,但是這個範圍也有可能是錯的,而且就算是錯的,以我們現在的能力也很難說明它錯在哪裡。

從表面上來看,傳統電腦用暴力解,以排除錯誤答案的方式逼近正確答案,而量子電腦不排除錯誤答案,直接找到最有可能的答案會在哪個區域,但不保證運算過程中的正確性。

因為這個區別,若將現在成熟的模擬方法直接導入量子電腦中,最有可能出現的就是不知道怎麼解讀得到的數據,這包含了答案的正確程度,以及改動特定變數後所產生的答案變動是從何而來?

IBM 與 GOOGLE 正在爭奪追逐量子霸權(Quantum Supremacy)的同時[11],(不過 Google 號稱的量子霸權,也就是一萬倍的計算速度,在 2021 年被中國科學院理論物理所的 Feng 等人用了 15 個 NVIDIA V100 GPU 給追上[12][註五]),其離傳統電腦計算的距離,也有十萬八千里遠,離應用於地球科學計算上還有一定的距離,但只要哪一天能夠應用在普通的大氣循環模式(GCM),就可以算是第一步吧。但是在量子力學進入大氣科學前,我們氣候與氣象模擬還是只能使用傳統的電腦主機,靠著 2 位元的方法進行大氣模擬,所以目前傳統超級電腦還沒有被取代的機會。

結語:超大主機與超大計算

依摩爾定律,每十八個月,CPU 晶片的製成就會進步一倍,同時,超級電腦中心卻是一直受益於摩爾定律帶來的好處,也就是 CPU 的能力越來越強,而價格也越來越親民,也讓氣候氣象模擬的空間精度也隨之升高。

Neumann 等人也預計在 2030 年代後,進行 1 公里等級的超高精度計算也將不是夢想[7],而在 Exascale 主機降臨前的這個年代,有些超級計算中心已經以節點(Node)做為計算資源耗費的單位(Node per hour),而非 CPU per hour,顯示出大型主機對計算資源消耗的想法以從 CPU 規模上升到了 Node 規模。

一方面使用者受益於更多的 CPU 資源,但同時這些主機也要求更新更大量的計算能力,如瑞士的 Piz Daint 與瑞典的 LUMI,皆要求使用者的計算必須是含有 GPU 運算能力,而純粹靠 CPU 運算的軟體,將無法享受到同等的巨量資源。

-----廣告,請繼續往下閱讀-----
IBM為橡樹嶺國家實驗室開發的Summit超級計算機(或 OLCF-4)。圖/flickr

而相應的挑戰也隨之而生,除了硬體將進入 Exascale 的時代,軟體也將一同進入這場大戰,才能享受同等的資源。另外一個挑戰則是綠色挑戰,1 公里精度的氣象模擬,每一模擬年將耗盡 191.7 百萬瓦時[6],相當於台灣一個家庭可以用上 43 年的電量[註三],也可以讓特斯拉的 Model 3LR 從地球開到月球來回開 1.5 次[註四],其耗能之巨,也是我們計算或是模擬界科學家應該要注意到的問題,也是為何除了 HPC Top500 外,亦有 Green 500[13]的原因吧,而具有超高效能的 Frontier,也同時奪下了 Green 500 之冠,也算是 Exascale 的好處吧。

註解與文獻

  • [註一] 若需使用 JSC 的超級電腦,必須透過不同的計畫項目進行申請,其計畫主持人(PI)為歐洲或是德國的研究者[14]
  • [註二] 日本的富岳其實也可以進行到 Exscale 的運算,只是要超頻而已,想當然爾是非常規設定。
  • [註三] 根據台電 2021 年新聞稿中,家庭離峰平均用電為 339 度以及 6-9 月為 434 度推估。
  • [註四] 根據 Tesla M3 LR 為 25kWh per 100 Miles,月球至地球為 384400 公里推估
  • [註五] Feng 也公開了他的程式碼
  • [1] Forschungszentrum Jülich 新聞稿
  • [2] EUROPE HPC 新聞稿
  • [3] 2022 年六月 HPC Top 500 名單
  • [4] 國家高速網路中心台灣杉二號介紹
  • [5] 司徒加特超級電腦中心:HAWK 主機之連線架構
  • [6] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler and C. Schär, “Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on Weather and Climate Simulations,” in Computing in Science & Engineering, vol. 21, no. 1, pp. 30-41, 1 Jan.-Feb. 2019, doi: 10.1109/MCSE.2018.2888788.
  • [7] Neumann P et al. 2019, Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?. Phil. Trans. R. Soc. A 377: 20180148. http://dx.doi.org/10.1098/rsta.2018.0148
  • [8] Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., & Wilkinson, J. M. (2017). Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?, Bulletin of the American Meteorological Society, 98(1), 79-93
  • [9] Bauer, P., Dueben, P.D., Hoefler, T. et al. The digital revolution of Earth-system science. Nat Comput Sci 1, 104–113 (2021). https://doi.org/10.1038/s43588-021-00023-0
  • [10] Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020. https://gmd.copernicus.org/articles/13/4809/2020/
  • [11] 「嗨量子世界!」~ Nature Newsletter
  • [12] Feng Pan, Keyang Chen, and Pan Zhang, Solving the sampling problem of the Sycamore quantum circuits, accepted by Phys. Rev. Lett.
  • [13] 2022 年六月 HPC Green 500 名單
  • [14] JSC 系統申請辦法

-----廣告,請繼續往下閱讀-----
Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。