網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

1
1

文字

分享

0
1
1

看到蜜蜂會隨之起舞,還是發抖害怕呢?大腦建構情緒,從「模擬」開始——《情緒跟你以為的不一樣》

商周出版_96
・2020/05/26 ・3100字 ・閱讀時間約 6 分鐘 ・SR值 538 ・八年級
  • 作者/麗莎.費德曼.巴瑞特博士 (Lisa Feldman Barrett, Ph.D.);
    譯者/李明芝
  • 編按:關於情緒的產生,巴瑞特博士跳脫過往舊思維提出「情緒建構論」,其中指出我們的情緒並不是被引發的,而是由自己所建構。

模擬是你的大腦對於世界正在發生什麼的猜測。在每個清醒的時刻,你都要面對從眼睛、鼻子、耳朵和其他感覺器官進來的嘈雜模糊訊息,你的大腦利用過去經驗建構假設(模擬),將之比較從感官接收的雜音。模擬以這樣的方式,讓你的大腦對噪音強加意義,選出相關的並忽略其餘的訊息。

人類心智活動的預設模式——模擬

1990 年代後期,模擬的發現為心理學和神經科學開創了新的紀元。科學證據顯示,我們所見、所聽、所觸、所嘗和所聞大多是對世界的模擬,而不是對世界的反應。1

有遠見的人推測,模擬這個常見的機制不只用於知覺,也用於了解語言、感到同理、記憶、想像、作夢,以及其他許多心理現象。我們的常識或許宣稱,思考、知覺和作夢是不同的心智活動(至少西方人這麼認為),但有個通用過程卻能描述它們全部。

模擬是所有心智活動的預設模式,它也是解開「大腦如何製造情緒」之謎的關鍵。

在你的大腦之外,模擬可能導致你的身體發生實質改變。讓我們以蜜蜂為例,稍微試試創造性的模擬。在你的腦海中,看到一隻蜜蜂在芬芳的白花瓣上輕輕跳躍,嗡嗡嗡地繞著花瓣尋找花粉。

如果你喜歡蜜蜂,那麼想像翅膀的拍動,此刻會造成其他的神經元讓身體準備好更進一步觀察:讓你的心臟跳得更快、讓你的汗腺蓄勢待發,並且讓你的血壓準備降低。

但如果你以前曾被蜜蜂狠狠叮過,你的大腦或許讓你的身體準備逃跑或做出拍打的動作,為此制定出一些其他模式的生理改變。每次你的大腦模擬感覺輸入,它都會讓你的身體做好自動改變的準備,這也讓你有可能改變你的感受。

嗡嗡嗡,你的舊經驗會影響你對蜜蜂的概念。圖/wikimedia

你對蜜蜂做出的模擬,根植於你對「蜜蜂」是什麼的心智「概念」(concept)。2 這個概念不只包含有關蜜蜂本身的訊息(牠看起來和聽起來像什麼樣、你對牠採取何種行動、你的自律神經系統的什麼改變讓你有所行動等等),還包括跟蜜蜂有關的其他概念(「草地」、「花朵」、「蜂蜜」、「叮咬」、「疼痛」等等)。

所有訊息都跟你的「蜜蜂」概念融為一體,共同引導你在這個特定的脈絡下如何模擬蜜蜂。因此,像「蜜蜂」這個概念,實際上是大腦裡的神經模式集合,代表你的過去經驗。你的大腦以不同的方式結合這些模式,藉此知覺並靈活地引導你在新的情境中如何行動。

「模擬」影響感官:以概念建構出具體感受

你的大腦利用你的概念,將某些東西聚集在一起,並將其他的東西分開。你可能在看著三堆土時,把其中兩堆知覺成「小丘」,而另一堆則是「大山」,這些都是根據你的概念。

建構是把世界看作一張壓扁的餅乾麵團,你的概念則是能切出界線的餅乾模具,界線不是自然存在,而是因為有用或有可取之處。3 這些界線當然自有物理限制,像是你絕對不會把山知覺成湖。不是所有的一切都互有關聯。

大腦會利用你的概念,建構出你對事物的感受。圖/giphy

你的概念是大腦用來猜測感覺輸入是何意義的主要工具。舉例來說,概念賦予聲壓(sound pressure)改變的意義,所以你會把聲壓改變聽成話語或音樂,而不是隨機的噪音。

在西方文化中,多數音樂都是根據分成十二個等距音高的八度音階,這種編曲被稱為「十二平均律音階」。每一個聽力正常的西方人,對於這種普遍存在的音階都有概念,即使他們無法明確地加以描述。然而,不是所有的音樂都使用這種音階。

印尼的甘美朗(Gamelan)音樂根據的是分成七個音高的八度音階,音高之間的距離並不相等。西方人第一次聽到甘美朗音樂時,更有可能覺得聽起來像噪音,聽慣了十二音音調的大腦,沒有具備甘美朗音樂的概念。我個人對迴響貝斯4 這種電子音樂有經驗盲區,不過我十幾歲的女兒很顯然有那個概念。

這究竟是草莓冰淇淋,還是冷凍鮭魚慕斯。圖/pxfuel

概念也讓製造味覺和嗅覺的化學物質有了意義。如果我端出粉紅色的冰淇淋,你可能預期(模擬)是草莓的味道,但如果嘗起來像魚,你會覺得很不協調,甚至可能覺得噁心。

但如果我介紹它是「冷凍鮭魚慕斯」,提前警告你的大腦,同樣的味道或許會讓你覺得美味(如果你很喜歡吃鮭魚)。5 或許你認為食物現存於物理世界中,但事實上,「食物」這個概念嚴重受到文化影響。很顯然,還是有些生物上的約束,所以你不可能吃刮鬍刀刀片。

但是有些絕對可吃的東西,卻不是每個人都認為是食物,例如「蜂之子」(hachinoko),這是一道油炸蜜蜂幼蟲的日本佳餚,但絕大多數的美國人應該會敬而遠之。這種文化差異就是因為概念。

只要你活著,你的大腦都會利用概念來模擬外在世界。如果缺乏概念,你會處於經驗盲區,就像是你看第 48 頁的斑點蜜蜂。如果有了概念,你的大腦會自動且無形地模擬,快到你的視覺、聽覺和其他感覺似乎像是反射而不是建構。

情緒是怎麼來的?原來是受到「概念」的影響

現在請仔細想想:如果你的大腦利用相同的過程讓來自體內的感覺──心跳、呼吸和其他內部運動引發的擾動──產生意義,那會怎麼樣呢?

神秘斑點。圖/商周出版提供

從大腦的觀點來看,你的身體只不過是另一個感覺輸入的來源。來自你的心臟和肺臟、你的新陳代謝、你的體溫改變等等感覺,就像圖中意義不明的斑點。在體內的這些純粹身體感覺,並不具有客觀的心理意義。

然而一旦概念介入,這些感覺或許開始具有額外的意義。如果你坐在餐桌旁時感到胃痛,或許你會把它經驗成飢餓。如果流感季節即將來臨,或許你會把相同的疼痛經驗成反胃作噁。如果你是法庭上的法官,或許你會把疼痛經驗成被告不可信任的直覺。6

你的大腦利用概念,會讓胃痛變得……更有意義。圖/giphy

在特定的時刻、特定的背景之下,你的大腦利用概念,賦予內在感覺意義,也讓來自世界的外在感覺有了意義,這些全都同時發生。你的大腦從你的胃痛,建構出飢餓、反胃作噁或不可信任的實例。

現在仔細想想,如果相同的胃痛出現在你嗅聞塗滿羊肉糊的尿布時,就像我女兒的朋友在「噁心食物」生日派對上所做的,你可能把疼痛經驗成噁心。亦或如果你親愛的另一半才剛走進臥房,你可能把疼痛經驗成一陣陣渴望。如果你正在診療室等待醫生說明健康檢查的結果,你可能把相同的疼痛經驗成焦慮感受

在這些噁心、渴望和焦慮的案例中,你大腦中活躍的概念是情緒概念。就像先前一樣,你的大腦藉由建構那個概念的實例,從你疼痛的胃再加上來自周遭環境的感覺一起產生意義。

這是一個情緒的實例。

這可能就是情緒如何生成的過程。

註釋:

  1. 「不是對世界的反應」(not reactions to it):相關回顧,請見 Chanes & Barret 2016.
  2. 「『蜜蜂』是什麼」(what a “Bee” is):Barsalou 2003, 2008a.
  3. 「因為有用或有可取之處」(because they’re useful or desirable):關於相似的類比,請見 Boghossian 2006.
  4. 譯註:dubstep,源自英國,於1990年代誕生的電子音樂,節奏短促、強調低音。
  5. 「如果你很喜歡吃鮭魚」(assuming you enjoy salmon):Yeomans et al. 2008.
  6. 「被告不可信任」(the defendant cannot be trusted):Danziger et al. 2011.

——本書摘自《情緒跟你以為的不一樣──科學證據揭露喜怒哀樂如何生成》,2020 年 3 月,商周出版

文章難易度
商周出版_96
81 篇文章 ・ 328 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商業出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。


0

12
5

文字

分享

0
12
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
15 篇文章 ・ 12 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》