Loading [MathJax]/extensions/tex2jax.js

3

33
6

文字

分享

3
33
6

【2021 年搞笑諾貝爾:物理獎】AT 力場全開!如何在擁擠的車站通道中不被別人撞到?

超中二物理宅_96
・2021/09/30 ・6652字 ・閱讀時間約 13 分鐘

並沒有,但朗之萬公式是今天的主角。

這兩年全世界都被 COVID-19(特殊嚴重傳染性肺炎、新冠肺炎、武漢肺炎)疫情搞得雞飛狗跳。除了疫苗之外,「口罩、洗手、社交距離」堪稱「物理防疫三神器」。我們剛度過了第二個疫情下的中秋假期,看到各大交通轉運樞紐人山人海的群聚,不禁讓人擔心,擠成這副德性,樣怎麼保持社交距離啊?

最近頒發的 2021 年「第 31 次的第一屆」搞笑諾貝爾物理獎,也跟「社交距離」有關:在行人十分擁擠的通道上,大家如何互相閃躲以避免相撞,並且順利通行?

疫情前,大家在生活中碰到這種情境的經驗應該很頻繁,反正就順著人流走,有人擠過來過互相閃一下(然後心裡暗譙一下…有時候啦),經過一個不怎麼舒服的過程後,通常能順利通過。

但是這種在生活中看起來簡單的過程,有沒有辦法以物理學來理解呢?

-----廣告,請繼續往下閱讀-----
圖/Pixabay

物理學的主流是「化約主義」:希望用最簡單的理論來解釋各種現象。例如古典物理中用一個牛頓第二定律「F = ma」來解釋物體如何運動,用馬克斯威爾的四條方程式解釋一切電、磁與光的現象。物理學家的終極目標就是找出可以用一條方程式理解整個宇宙的過去、現在與未來的「萬物理論(The Theory of everything)」,所謂的萬物,當然是包含「人類行為」在內囉!

但是其他領域的學者可不吃這一套!比如說「人類的社會行為」,牽涉到神經科學、心理學、社會學等領域,每個領域都十分複雜,怎麼可能用物理學的化約主義來研究呢?

物理學家才不管這些,先做了再說!荷蘭 Eindhoven 科技大學、加州州立大學長灘分校以及義大利 Vergata 大學組成的研究團隊,探討了「擁擠的車站內通道的行人動力學」。其中加州州立大學的成員,是來自台灣的女科學家 Chung-min Lee 教授。

遊戲機變成高效的姿態感測器!

研究者將四部微軟電視遊樂器 X-BOX 用來捕捉玩家身體姿態動作的影像捕捉週邊設備「Kinect」裝設在 Eindhoven 火車站的通道上方,用以記錄通過這個通道的人群動態。這條通道一頭是市中心,另一頭則是巴士總站。

圖一:(a) Eindhoven 車站的通道平面圖,以及 Kinect 感測器(K)配置。(b) 實景照片,上方白色橫樑可見四支 Kinect 感測器。

利用這四部 Kinect 拍攝到的行人影像,搭配影像辨識以及追跡演算法,可以同時標定每個進入畫面的行人,並且一路追蹤其軌跡直到離開畫面為止。整套系統從 2014 年 10 月到 2015 年 3 月,不間斷的記錄了六個月的時間,一共得到大約 500 萬人次的行人軌跡。

-----廣告,請繼續往下閱讀-----

數據太複雜?別擔心,物理學家最擅長「化約」了

這些紀錄是貨真價實的複雜人類行為:有的是勇往直前一直線,有些左右搖擺,有些因為某些原因走到一半掉頭,也有真的就跟別人撞成一團的…物理學家如何發揮「化約主義」本色,將這些複雜的行為化簡成可以分析的數學形式呢?

研究團隊採取的方法是用將這長達六個月,累計數百萬行人來來去去的影片轉換成一個由一組「節點」(node)以及節點與節點之間的連線(edge)所組成的「圖」(graph)。

圖中每個節點都代表一個行人以及通過通道時的相關資訊,如行徑方向與軌跡長度。如果兩個行人(節點)在同一時間出現在同一畫面中,則這兩個節點就用線連起來,這條線的資訊包含它連結了哪兩個節點、兩節點間最大與最小的距離、同時在畫面上的時間等等。

圖二:將影像轉變為圖形,每個節點(以帶數字的圓圈表示)都是一個行人,如果兩個行人同時在鏡頭裡就會有一條連線。(a) 從影像轉來的原始圖形示意圖,這個圖可以分成四個子圖。(b) 把雖然有同時入鏡,但是距離太遠,不太可能會互相影響的兩個節點間的連線去掉(以虛線表示),讓圖形更進一步簡化。(c) 「只有一條線連結兩個節點」的子圖。(d) 行進方向相同,不需考慮迴避碰撞,所以把連結拿掉。(e) 最後剩下的「雙節點子圖」。圖/參考文獻 1

假設一個情境如下(請拿出您的耐性,搭配圖二 (a) 看):天剛亮時第 ① 個行人被攝影機捕捉到,接著第 ② 個行人跟在①後面進來,① 離開畫面後,③ 跟 ④ 分別從兩側走進來,在 ② 跟 ③ 離開畫面後,一班火車進站 ⑤⑥⑦ 先後進入畫面,然後人都離開了,中間的空檔只有 ⑧ 獨自通過,接著又有一班火車進來,⑨~⑫ 一起入鏡,最後一個離開鏡頭的 ⑫ 出鏡前瞬間 ⑬ 進來了,⑫ 離開後,⑭⑮ 進入,接著 ⑬⑭⑮ 先後出鏡,然後 ⑯ 獨自通過。

看起來有點煩,對不對?

不過轉換成圖二 (a) 的表示法,是不是就一目了然了呢?這就是「化約」的威力。即使如此,六個月累積下來的圖,上面會有 500 多萬個節點,節點間的連線數目可能上千萬,還是非常複雜。不過我們可以把這一大張圖拆成幾個「子圖」(subgraph):每個子圖包含的節點可以靠彼此的連結連成一片,不同子圖之間則完全沒有連線。

-----廣告,請繼續往下閱讀-----

以圖二 (a) 為例,可以分成四個子圖:一、節點 ①~⑦;二、節點 ⑧;三、節點 ⑨~⑮;四、節點 ⑯。只有子圖內部的節點可能彼此有交互作用。

但是即使把整張幾百萬個節點的超大圖拆成許多節點數較少的子圖,可能還是很難分析,像圖二 (a) 的「子圖一」包含了七個節點,要分析這七個行人怎麼互動,怎麼彼此調整行進的路線,還是太複雜了。考慮實際狀況,可以再進一步簡化:

兩個人即使同時出現在畫面中,如果距離很遠或接觸時間很短,幾乎不可能影響彼此,就把這兩人之間的連線拿掉,比如前面的例子「⑫ 出鏡前瞬間 ⑬ 進來了」的情形,就可以拿掉連線。如圖二 (b) 所示,這種太弱的連線(以虛線表示)拿掉後,會把圖形分成更多、更小的子圖。以圖二 (b) 來說,變成 8 個子圖,其中最大的也只有四個節點。

接下來,這篇論文只探討最簡單的兩種子圖:只有一個節點的,如圖二 (b) 中的 ⑧、⑬、⑯,以及兩個節點的 ①②、③④、以及 ⑭⑮,如圖二 (c)~(e)。其中 ①② 為同方向,不需要迴避相撞,所以也把這條連結拿掉,就變成各自落單的單一節點子圖了。

-----廣告,請繼續往下閱讀-----

實際上「單節點子圖」一共有 47122 個,「雙節點子圖」一共有 9089 個。

A 編按:圖2 (a) 上「節點上的數字」代表「進入鏡頭的順序」,「節點間的連線」代表「兩人是否同時出現在同一畫面」,透過這種方式組成的圖 2 (a),可以明確區分出那些序列是有可能相撞的。

接著再細部分析每個連線,如果距離太遠或接觸時間太短,就不可能產生碰撞或閃避行為,將符合此條件的連線設為「虛線」,形成圖 2 (b)。

最後考慮圖 2 (b) 內,每個有實線連結的節點行徑方向,如果是兩節點的行徑方向相同,就不會發生碰撞或閃避行為,可以排除不用分析,得到圖 2 (e) 的圖。

雖然我們物理學家經常吹噓物理很厲害,不過事實上我們能夠解出精確答案的力學問題,只有「一個粒子的運動」跟「兩個彼此交互作用的粒子的運動」而已,碰到「三個彼此交互作用的粒子的運動」就沒輒了,只能有近似解或是用數值模擬,所以才會有像「三體」這種科幻作品的出現啊!

三個、四個、五個…粒子的問題物理學家不會算,但是當粒子數目成千上萬或更多時,「熱力學」就登場了,物理學可以回答「很多粒子的平均行為」,並且拿來解釋熱、溫度與壓力等現象。

回歸正題,人類行為顯然比質點複雜太多,所以先從「一個人」跟「互相作用的兩個人」的行為模式著手,以此為基礎來探討「很多人的集體行為」,是相當合理的策略。

行人的軌跡其實不是直線,曲折的像是水裡的灰塵

先從最簡單的「一個人的動力學」開始,在沒有其他人的影響下,行人的軌跡大多會呈現頻率約 1 Hz(每秒一次)的小幅度「抖動」,這個很容易理解,因為這大約是人類的步伐頻率;除此之外,少數軌跡也會有比較大的晃動,甚至轉頭往回走的情形。研究團隊發現,這個行為模式跟「布朗運動」——把花粉、灰塵這些細小的物體放在水中,會被亂跑的水分子撞來撞去也跟著亂跑——類似。

-----廣告,請繼續往下閱讀-----

既然如此,就用解釋布朗運動的「朗之萬」方程式(Langevin equation,對,就是那位跟偉大的瑪麗‧居禮傳出緋聞的朗之萬)試試看吧!

圖/Pixabay

所謂的朗之萬方程式其實也很簡單,就是在物體「本來的運動傾向」之外,加上「流體的阻力」,以及「隨機的力量」。

什麼是這些行人「本來的運動傾向」呢?因為這是一條連通兩端的通道,不管是為了節省力氣或趕時間,絕大部分的人都是沿著平行通道的方向從一端以最短距離走向另一端,而不會斜著走;其次是多數人用正常速度走,但也有相當比例的人因為趕時間是快走或小跑步,其平均速率分別為每秒 1.29 與 2.70 公尺(換算成時速是 4.64 與 9.72 公里);最後就是兩個方向都有人走。以上這些「運動的傾向」,可以寫成牛頓第二運動定律的方程式。

接著是「流體的阻力」,當行人開始偏離原來的行進路線時,會受到一個與垂直原方向的速率成正比的阻力,要將這個人「推」回原來的路線。

各位在像台北車站這類擁擠的走道上時可能有注意到:雙向行人會構成「層流」的結構,走同一個方向的人自動排起來列隊前進,這是阻力較小,也會比較省力的走路方式,偏離你所在的隊伍,就可能跟隔壁的隊伍發生摩擦甚至碰撞而難以通行,所以除非有強大的改變路徑的原因,不然我們自然就會回到原來的路徑上。

最後就是「隨機的力量」,我們周圍的其他行人隨時都有狀況,停下來拿東西的、路線突然歪掉的、腳扭了一下、忘記東西回頭的…我們必須眼觀四面,耳聽八方,隨時對這些狀況做出反應,以避免可能的衝撞,同時也造成路徑的改變。

寫下了運動方程式後,就可以在電腦裡面進行模擬,然後來跟攝影機拍到的行人真正的行為比較。結果出來了,人類的行為,可能沒有比空中的灰塵,水中的花粉更高明……

-----廣告,請繼續往下閱讀-----
圖三:行人在 (a) 平行通道人流方向速率、(b) 垂直於人流方向的速率、與 (c) 偏離路徑的程度的統計分布。實際觀察結果(紅點)與電腦模擬數據(黑圈)的比較。 圖/參考文獻 1

圖三為「一開始朝著巴士站方向走」的那些「單一節點」(沒有受到旁人影響)的運動狀況統計,紅點是攝影機拍到的真實行為,黑色圈圈是朗之萬方程式模擬的結果。

圖三 (a) 為平行通道方向的速率分布(本來的運動傾向),可以發現真實行為與模擬結果相當吻合!最多人是用秒速 1.29 公尺前進,有少數人是用跑的,所以在超過秒速兩公尺處也有一個小高峰,還有極少數的人會往回走(速率是負的),唯一沒抓到的特徵是在速率為零(停止)的附近。因為行人偶爾會因為種種原因而在路上停下來一段時間,但是布朗運動中的微小粒子只有在轉向的瞬間才會測得速率為零。

圖三 (b) 為垂直於行進方向的速率(流體的阻力),圖三 (c) 為偏離原來行進路線的距離(隨機的力量),兩者也都相當吻合。

結論是:如果行人的密度相當稀疏,不需要互相閃避時,行人的行為基本上跟水中的花粉進行的布朗運動很類似,可以用朗之萬方程式模擬出來。

接下來,就是考慮「兩個人互相靠近,需要互相迴避,但附近沒有其他人攪局」,也就是如圖四的狀況。

圖四:兩個互相接近的行人彼此閃避的示意圖。灰色實線是各自原來的預定路徑,黑色實線是真正走的路線,會有點隨機擾動,但基本上跟預定路徑同方向,(i) 發現彼此可能相撞之後,開始調整路徑,改走虛線,到 (ii) 時兩者靠得最近,此時距離為 d,(iii) 擦身而過後進入互相遠離,又會把路徑調整到與通道平行的方向,但是跟原來的預定路徑有個平移。 圖/參考文獻 1

圖四中互相靠近的兩人,原本的預定路徑,也就是兩條灰色實線的距離太近,如果堅持往前走就會撞在一起,所以靠近到某一個距離就會開始調整方向,把路徑距離拉開避免碰撞(現實中還會有兩個人很有默契的往同一邊閃、再同時換邊、再同時換邊……一直閃不開的爆笑場景,這篇論文中倒是沒有討論),然後再互相遠離。

-----廣告,請繼續往下閱讀-----

由於真實的路徑歪七扭八,加上每個人開始轉彎的時機也不盡相同,所以我們再度發揮「化約主義」的精神,把圖四簡化成圖五。

圖五:AB 兩人互相接近、閃避、遠離的簡化示意圖。 圖/參考文獻 1

我們採用直角座標系,把通道方向(也是人流移動的分向)定義為 X 方向,垂直 X 的為 Y 方向,當大家都沿著 X 方向移動時,「會不會碰撞」是由 Y 方向的距離所決定。當兩人進入畫面時,兩條路徑的距離為 Δyi,兩人擦身而過時的距離為 Δys,遠離後的路徑距離為 Δye

在物理模型方面,得在「一個人的朗之萬模型」裡面加上「兩個人的交互作用力」,這個力分為兩部分:

  1. 「遠遠看到前方有人走過來該準備閃了」的「長程力」
  2. 「靠快撞到了趕快閃」的「短程力」

兩者都可以用數學函數寫出來加進方程式,成為「兩個人的朗之萬模型」。

研究團隊量了所有「雙節點子圖」的 Δyi,Δys,Δyie;同時也以「兩個人的朗之萬模型」在電腦上模擬了行人的行為並且量測了這三個數值,然後畫了 e(Δys) 對 Δyi 的關係圖,其中 e(Δys) 為對應於同一個 Δyi 的所有 Δys 的平均值;以及 e(Δye) 對 Δys 的關係圖,分別為圖六 (a) 與 (b)。

再一次,真實世界的行人行為(紅點)與電腦模擬(虛線)相當吻合。此外,這個模型連「發生相撞」的頻率都可以預測得很準。難道人類行為真的跟隨波逐流的布朗運動一樣?!

圖六:(a) 兩個人擦身而過時的距離平均值與起始路徑距離的關係。(b) 兩人互相遠離後的路徑距離平均值與擦身而過時的距離的關係。紅點為真實世界的人類行為,虛線為電腦模擬結果,通過原點的點線為兩人都不改變方向直直往前走的情形。 圖/參考文獻 1

每個人都有 AT 力場,半徑 1.4 公尺

值得注意的是,當 Δyi 較小時,互相走近的兩人會開始調整方向,把距離拉開,讓兩人擦身而過時,不至於撞到(Δy > 0.6m)。有趣的是,這個現象從 Δyi < 1.4m 就開始發生,在 0.6m~1.4m 這個範圍內,即使不改變方向,也不會撞到,但是這個距離已經夠近,讓人感到「個人領域受到侵犯」的威脅,而開始迴避對方,把距離拉開。

也就是說,在擁擠的通道中,「讓人安心的社交距離」是 1.4 公尺(我是很想把它叫做「AT-Field 絕對領域」啦…),我們不太想讓陌生人靠近到這個距離以內。要提醒各位的是,這是「一大堆人的行為」的平均值,並不是每個人都是同一個數值。

雖然說得到的是「搞笑諾貝爾獎」,不過這個研究過程可是很嚴謹的,一點也不搞笑。這個研究也說明了,個人的想法跟行為很複雜,人與人之間的互動很複雜,但是一大堆人的行為平均起來,可能會呈現簡單的模式,可以用物理學的「化約主義」方法,來理解「人類群體的行為」。

當然這還是相當初步的研究,而車站裡移動的人潮,也不過是人類的社會行為中一個非常簡單的現象,所以想用物理學的方法論,來研究社會科學,還有很長的路要走(而且社會科學家可能也會不高興)。

但是在物聯網越來越盛行的今日,各式各樣的人類活動被轉換成大量的資料累積下來,可以預見研究人類行為的方式會越來越多樣化。到最後會不會出現像艾希莫夫的科幻經典「基地系列」中,可以預知人類未來命運,並且扭轉其方向的「心理歷史學」呢?讓我們繼續看下去——

※ 更多搞笑諾貝爾的相關介紹,請到泛科專題【不認真就輸了!搞笑諾貝爾獎】

  1. Alessandro Corbetta, Jasper A. Meeusen, Chung-min Lee, Roberto Benzi, and Federico Toschi, Physics-based modeling and data representation of pairwise interactions among pedestrians, Phys. Rev. E 98, 062310 (2018).
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 3
超中二物理宅_96
8 篇文章 ・ 17 位粉絲

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
2

文字

分享

0
3
2
【2023 諾貝爾物理獎】什麼是「阿秒脈衝雷射」?能捕捉到電子運動的脈衝雷射?
PanSci_96
・2023/11/28 ・5966字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

林俊傑《江南》:「相信愛一天,抵過永遠,在這一剎那凍結了時間」

這一剎那持續了多久?這出自佛經的時間單位有多個解讀,其中最短,可以對應的國際單位制是阿秒。 1 阿秒又有多快呢? 1 阿秒等於一百萬兆分之一秒,是已經短到不行的飛秒的千分之一。在這段時間,別說是談戀愛了,連世界上行動最快的光,也只能移動一顆原子直徑的距離。

在阿秒的時間尺度裡,連光都得停下腳步,過去我們認為捉摸不定的電子,也終於將在我們眼前現身。 2023 年的諾貝爾物理學獎,正是頒給了三位帶領人類進入阿秒領域,探索全新世界的科學家。而這項技術,還可能讓電腦的運算速度加快一萬倍!

就讓我們一起來進入阿秒的領域吧,領域展開!

什麼是阿秒脈衝雷射?

今年諾貝爾物理學獎的三位得主分別是 Pierre Agostini 、 Ferenc Krausz 、和 Anne L’Huillier ,表彰他們對阿秒脈衝雷射實驗技術的貢獻。

-----廣告,請繼續往下閱讀-----
圖/X

所謂的阿秒脈衝雷射,指的是持續時間僅有數十到數百阿秒的雷射。當我們能使用脈衝雷射來觀察目標,就好比使用快門時間極短的相機對目標拍照,能捕捉到瞬間的畫面。

2018 年的諾貝爾物理學獎,就頒給了極短脈衝雷射的研究。短短 5 年後,雷射領域再次得獎,但這次是更快的阿秒雷射,能捕捉到電子運動的超快脈衝雷射。

世界上沒有東西能真正的觸碰彼此?看見電子能帶來什麼突破?

為什麼看見電子的運動那麼重要呢?我們複習一下原子的基本構造,在原子核之外,帶有微小負電荷的電子,被帶正電的原子核束縛住。量子力學告訴我們電子沒有確切的位置,而是以特定的機率分布在原子核周圍的不同地方,也就是所謂的電子雲。

圖/YouTube

雖然電子的體積比原子核小很多,但電子雲的範圍,卻占了原子體積的絕大部分。在物理或化學反應中,真正和其他原子產生交互作用的,幾乎都是這些外面的電子。在電影《奧本海默》中,當男女主角手心貼著手心,奧本海默這時卻說:「世界上沒有東西能真正的觸碰彼此,因為我們觸摸到的物體,都只是其中原子的電子雲和我們手上的電子雲產生的斥力。」

-----廣告,請繼續往下閱讀-----
圖/screenrant

對了,這種話也只有奧本海默跟五條悟可以講,一般人請不要隨便亂牽別人的手。

除了和心儀的他牽手,不同的電子排列狀態也會直接影響物質的化學活性、材料的導電導熱等基本性質,各種化學和物理過程都和電子息息相關。從非常實際的層面來說,電子可以說是物質世界最重要的基本單位。所以不難想像,如果我們能看見電子,甚至獲得可以操縱個別電子排列與能量的技術,我們能真正成為材料的創世神,許多不可能都將化為可能,是相當重大的突破。

捕捉電子運動有多困難?

但要操縱電子可不是什麼簡單的事,不只是因為電子非常小,更重要的是他們動得非常快。具體來說,電子在原子周圍跳動的週期時間尺度大約是十的負十八次方秒,也就是一阿秒。一顆原子的大小約是十的負十次方公尺,速度等於距離除以週期,換算下來,電子雲差不多是以光速等級的速度在原子核周圍跳動。

圖/wikipedia

如果要捕捉到阿秒尺度的電子運動,就必須將實驗的時間解析度也提升到阿秒等級,否則就會像是用長曝光鏡頭拍攝亞運競速滑冰比賽一樣,只能拍到一團糊糊的影像,而沒辦法分出勝負。

-----廣告,請繼續往下閱讀-----

可是,在 1980 年代,脈衝雷射最快只能達到十的負十五次方左右,還只有飛秒等級。而且光靠當時的技術和材料優化,已經沒辦法再縮短脈衝時間了,因此這時候,就要從原理上重新打造一套方法了。

如何製造更快的脈衝?

首先,要製造更快的脈衝並不是用頻率更高的電磁波就好。你想,我們在拍照時,想要讓曝光時間更短,要改善的不是把室內光源從可見光改成頻率更高的紫外光,而是調快快門的開闔速度,讓光一段一段進入感光元件中,變成影片一幀一幀的畫面。而這一段一段進入像機的光訊號,就像是我們的脈衝。

不論是皮秒雷射、飛秒雷射還是阿秒雷射,一直以來在做的都是同一件事,在整體輸出功率不變的情況下,讓每一次脈衝的持續時間更短,同時單一次的功率也會更高。簡單來說,就是要從無數次的普通攻擊,變成每一次都是集氣後再攻擊。

但要怎麼為光集氣呢?光和其他波動一樣,可以和其他波動疊加。把不同頻率的光疊加在一起,波峰和波谷會抵消,波峰遇上波峰則會增強。只要用特定的比例組合許多不同頻率的光,就可以在整體總能量不變的情況下,產生一個超級窄的波峰,其他地方全部抵銷。

-----廣告,請繼續往下閱讀-----

1987 年,本次諾貝爾獎得主之一的 Anne L’Huillier 教授發現,當紅外線雷射穿過惰性氣體時,氣體會被激發放出整數倍頻的光。也就是氣體放出許多不同頻率的光,而這些頻率都是原本光源頻率的整數倍,從兩倍三倍到三十幾倍以上的高倍頻光都有。而橫跨這麼大頻率範圍的光,就能組合出時間長度很短的脈衝光。

不過這聽起來未免也太好康了,真的有那麼簡單嗎?

這個看似魔法的實驗背後其實有著相當簡潔的物理圖像。電子原本是被電磁力束縛在原子中,當一道強度夠強的雷射通過氣體原子,原本抓住電子的電位能被雷射削弱。

雖然這道牆只是矮了一些可是還是存在,但此時,在電子的大小尺度下,量子力學發揮了作用。調皮的電子有機會透過量子穿隧現象,穿過這道束縛,暫時逃離原子核的掌控。關於量子穿隧效應的介紹,我們近期也會再做一集節目來專門介紹。

-----廣告,請繼續往下閱讀-----

但電子還來不及逃遠,雷射光已經從波谷翻到波峰。電磁波的波谷與波峰,不是指能量的高和低,而是指方向相反。因此在相反的電磁場方向下,不幸的電子被推回原子核附近,再度被原子核捕獲。但在這欲擒故縱、七擒七縱的過程後,電子並非一無所獲,他所得到的動能會以光的形式重新放出。

而因為這些能量最早都來自雷射,因此電子放出的光波長,也剛好會是雷射的整數倍。再說的細一些,你可以理解為這些電子在吸收一顆顆光子後,一口氣釋放這些能量,所以能量都是一開始光子的整數倍。

在 1990 年代,科學家已經掌握了這個現象背後的原理。但一直到千禧年過後。這次諾貝爾獎得主之一 Pierre Agostini 教授和他的研究團隊才終於在適當的實驗條件之下,利用高倍頻光打造出了一連串寬度只有 250 阿秒的脈衝。同時第三位得主 Ferenc Krausz 也使用不同方法,分離出 650 阿秒的脈衝。

最後,獲得阿秒脈衝這個祕密武器之後,我們的世界將迎來哪些變化呢?

-----廣告,請繼續往下閱讀-----

阿秒脈衝在各領域的應用

其實啊,有在關注諾貝爾獎都知道,諾貝爾獎通常不會頒給時下正夯的新興研究,前面講的研究,實際上都已經是二十多年前的往事了,而這些辛苦的科學家會在這麼多年後拿下諾貝爾獎的榮耀,正是因為阿秒雷射的發明經過了時間的考驗,成為非常普及的實驗技術,而且被大家公認為重要的科學貢獻。

當然,今年生醫獎的 mRNA 是個超快例外,有興趣的話,別忘了點擊下方影片,看看編劇都編不出來的 mRNA 研究歷程。

說了那麼多,阿秒雷射究竟對人類生活有什麼幫助呢?當然,它能讓我們更深刻了解物質還有光的本質,但是除了幫電子拍下美美的照片放在期刊的封面上,阿秒雷射可以用來做什麼?

在過去這二十年,許多研究已經找到了相當有潛力的應用。

-----廣告,請繼續往下閱讀-----

舉例來說,在醫療方面,阿秒雷射可以用來分析血液或尿液樣本。控制良好的超短脈衝可以精準的刺激生物樣本中的各種有機分子,讓這些分子震動並放出紅外線訊號。如果使用的脈衝長度太長,分子釋放的訊號就很容易和原本施加刺激的雷射混在一起,造成量測的困難。唯有阿秒等級的超短脈衝能夠實現這樣的量測。

這些紅外線光譜就像是質譜儀一樣,能幫助我們快速分析血液中的蛋白質、脂質、核酸等重點物質的關鍵官能基狀態。並透過機器學習的方式整合,成為個人化的健康狀態報表,或是做為診斷的依據,將精準醫療提升到全新的層次。

圖/attoworld

不只如此,發送超短脈衝的技術也可能革新當今的電腦運算。電腦運作的方式就是利用電晶體這種微小的開關,不斷的開開關關去發送一跟零的訊號,所以開關電流的速度便決定了你的運算速度。以半導體為基礎的電晶體,工作頻率通常不超過上百 GHz ,在時間上也就是十的負十一次方秒。

自從阿秒雷射技術普及之後,就有科學家想到:既然雷射脈衝的速度更快,那不如就別用半導體了,改用光學脈衝來控制電流作為運算的媒介。這個概念叫做光學電晶體(Optical Transistor)。

今年初,亞利桑那大學的團隊便發展示了如何利用小於十的負十五次方秒的超短雷射脈衝,來開關電流並傳送一與零的位元,這個頻率比現有半導體電晶體快了一萬倍以上。這顯示了光學方法的操作頻率可以有多快,或許能讓我們突破訊號處理和運算上的速度瓶頸。

看完這些便可以理解,阿秒等級的超快雷射脈衝的確是相當近代的一個科學里程碑。就像是科學革命時望遠鏡和顯微鏡的發明,讓人們看見那些最遠和最小的事物,超快脈衝用最快的時間解析度,讓我們看到許多人類從未看過的景象。

阿秒脈衝雷射的出現,是科學上的一個里程碑,讓我們能用更高的時間解析度,讓我們看到許多過去從未看到的景象。最後也想問問大家,在雷射這一塊,你最期待有哪些應用,或者最希望我們接著來講哪個主題呢?

  1. 為什麼醫美、眼科手術那麼喜歡用飛秒、阿秒雷射,真的有比較好嗎?
  2. 使用雷射脈衝的光學電晶體真的有可能取代傳統電晶體嗎?
  3. 除了光學電晶體,最近很夯的矽光子技術,聽說裡面也有用到雷射,可以一起來介紹嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

2
0

文字

分享

1
2
0
【2023 年搞笑諾貝爾化學與地質獎】舔石頭以外,猛獁象竟是海龜湯?
寒波_96
・2023/10/20 ・2211字 ・閱讀時間約 4 分鐘

搞笑諾貝爾獎每年都是新的開始,2023 年也不例外。今年「第 33 次第一屆搞笑諾貝爾獎」頒發十個獎項,「化學與地質獎」以看似獵奇的舔石頭博取不少眼球,不過得主揚.扎拉謝維奇( Jan Zalasiewicz)的文章中,其實還提到另一件知名的歷史公案。

1951 年晚宴真相,竟然是海龜湯?!圖/americanoceans

1951 年晚宴真相,竟然是海龜湯?!圖/americanoceans

文學史上用味覺帶出情節,最知名的案例之一是普魯斯特的小說《追憶似水年華》開頭,由瑪德蓮的味道切入,接著進入意識的海洋游泳。扎拉謝維奇的文章開頭,也從品嚐岩石的味道切入,自由切換不同的題材。

地質學家為什麼要舔石頭?《舌頭、石頭,迸出新滋味?科學家為什麼要舔石頭?——2023 搞笑諾貝爾獎》一文有精簡介紹。最主要的理由是,缺乏現代儀器之際,舌頭可謂方便的化學感應器,能提供有用的資訊。

-----廣告,請繼續往下閱讀-----

當然,即使有了現代儀器,舌頭還是很方便的工具。

處於意識流科學史中,扎拉謝維奇的文章從舌頭感應器,十分合理地切換到一場宴會。那場 1951 年的晚宴中,據說提供猛獁象肉製作的餐點。

這場晚宴由美國的「探險俱樂部(The Explorers Club)」舉行,主辦方宣稱當天有道菜,來自已經滅絕的動物大地懶(Megatherium)。但是幾天後有報紙披露,宴會中的奇珍異獸不是大地懶,而是來自阿留申群島,25 萬年久遠的猛獁象!

1951 年保存至今的晚餐。圖/取自 參考資料3

-----廣告,請繼續往下閱讀-----

奇妙的是,當天的餐點竟然有少量樣本被保留至今。當時沒有參加的豪威斯(Paul Griswold Howes)寫信要到一份樣本,一直保存到他去世為止。後來樣本輾轉來到耶魯大學的皮博迪自然史博物館(Yale Peabody Museum)。

那一餐到底是大地懶,還是猛獁象呢?2014 年,耶魯大學的研究生葛拉斯(Jessica Glass)等人成功由樣本中取得 DNA,結果在 2016 年發表。比對之下相當明顯,答案是綠蠵龜。

現今綠蠵龜是保育類動物,合法的狀況下沒有機會吃到。然而 1951 年那個時候,綠蠵龜尚未面臨滅團威脅,仍然是普遍的食材。

區區綠蠵龜製成的海龜湯,當然無法彰顯晚宴的尊絕不凡。不過俱樂部宣稱的大地懶,怎麼又會變成猛獁象?

-----廣告,請繼續往下閱讀-----

最可疑的是當天在場的俱樂部成員尼可斯(Herbert Bishop Nichols),他也是基督科學箴言報(The Christian Science Monitor)的科學編輯。可考的記錄中,他第一個對外提出相關描述,後來被視為吃猛獁象的證據。

海龜湯的幾位相關人猿。(A) 據說將食材從北極帶回的極區探險家 Father Bernard Rosecrans Hubbard。(B) 極區探險家 George Francis Kosco。(C) 晚宴主辦人 Wendell Phillips Dodge。(D) 保存樣本的 Paul Griswold Howes。圖/取自 參考資料3

如果真的是那道菜的材料,那麼狀況就是:俱樂部用綠蠵龜做菜,宣稱是大地懶,報紙以訛傳訛寫成猛獁象。

「吃猛獁象」之類的傳聞,雖然不是嚴謹的科學,卻因為有噱頭而容易引人注目。作為沒多少負面影響的玩笑,也沒有人想要特別澄清。使得這類事件的真相,往往不了了之。

-----廣告,請繼續往下閱讀-----

儘管沒有特別獲得搞笑諾貝爾獎關注,對於這道海龜湯的追根究底,倒是相當符合搞笑諾貝爾獎的精神。

海龜湯以後,扎拉謝維奇的文章意識又跳躍到另一種已經滅團的生物:貨幣蟲(Nummulites)。許多古生物,當初也是其他古生物的食物。儘管擁有堅硬的外殼保護,貨幣蟲這種生物依然有機會成為美食。

1912 年的時候,英國古生物學家庫克派崔克(Randolph Kirkpatrick)提出一個觀點:地球有一段時間存在非常大量的貨幣蟲,後來它們變成稱為「貨幣球(Nummulosphere)」的地層,是地殼岩石的源頭。

看起來很搞笑,可是庫克派崔克是認真的。所以他即使生在現代,應該也沒有獲得搞笑諾貝爾獎的機會。

-----廣告,請繼續往下閱讀-----

2023 年搞笑諾貝爾獎頒獎典禮影片(化學與地質獎從 10:18 開始):

延伸閱讀

參考資料

  1. The 33rd First Annual Ig Nobel Prizes
  2. Eating fossils
  3. Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?
  4. Mammoth meat was never served at 1950s New York dinner, says researcher

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。